1
|
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95:1-46. [PMID: 25540137 DOI: 10.1152/physrev.00012.2014] [Citation(s) in RCA: 902] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium (Mg(2+)) is an essential ion to the human body, playing an instrumental role in supporting and sustaining health and life. As the second most abundant intracellular cation after potassium, it is involved in over 600 enzymatic reactions including energy metabolism and protein synthesis. Although Mg(2+) availability has been proven to be disturbed during several clinical situations, serum Mg(2+) values are not generally determined in patients. This review aims to provide an overview of the function of Mg(2+) in human health and disease. In short, Mg(2+) plays an important physiological role particularly in the brain, heart, and skeletal muscles. Moreover, Mg(2+) supplementation has been shown to be beneficial in treatment of, among others, preeclampsia, migraine, depression, coronary artery disease, and asthma. Over the last decade, several hereditary forms of hypomagnesemia have been deciphered, including mutations in transient receptor potential melastatin type 6 (TRPM6), claudin 16, and cyclin M2 (CNNM2). Recently, mutations in Mg(2+) transporter 1 (MagT1) were linked to T-cell deficiency underlining the important role of Mg(2+) in cell viability. Moreover, hypomagnesemia can be the consequence of the use of certain types of drugs, such as diuretics, epidermal growth factor receptor inhibitors, calcineurin inhibitors, and proton pump inhibitors. This review provides an extensive and comprehensive overview of Mg(2+) research over the last few decades, focusing on the regulation of Mg(2+) homeostasis in the intestine, kidney, and bone and disturbances which may result in hypomagnesemia.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Abstract
Nearly 50 medications have been implicated as inducing hypomagnesaemia, sometimes based on insufficient data regarding clinical significance and frequency of occurrence. In fact, clinical effects attributed to hypomagnaesemia have been reported in only 17 of these drugs. A considerable amount of literature relating to individual drugs has been published, yet a comprehensive overview of this issue is not available and the hypomagnesaemic effect of a drug could be either overemphasised or under-rated. In addition, there are neither guidelines regarding treatment, prevention and monitoring of drug-induced hypomagnesaemia nor agreement as to what serum level of magnesium may actually be defined as 'hypomagnesaemia'. By compiling data from published papers, electronic databases, textbooks and product information leaflets, we attempted to assess the clinical significance of hypomagnesaemia induced by each drug. A practical approach for managing drug-induced hypomagnesaemia, incorporating both published literature and personal experience of the physician, is proposed. When drugs classified as inducing 'significant' hypomagnesaemia (cisplatin, amphotericin B, ciclosporin) are administered, routine magnesium monitoring is warranted, preventive treatment should be considered and treatment of hypomagnesaemia should be initiated with or without overt clinical manifestations. In drugs belonging to the 'potentially significant' category, among which are amikacin, gentamicin, laxatives, pentamidine, tobramycin, tacrolimus and carboplatin, magnesium monitoring is justified when either of the following occurs: clinical manifestations are apparent; persistent hypokalaemia, hypocalcaemia or alkalosis are present; other precipitating factors for hypomagnesaemia coexist; or treatment is with more than one potentially hypomagnesaemic drug. No preventive treatment is required and treatment should be initiated only if hypomagnesaemia is accompanied by symptoms or clinically significant relevant laboratory findings. In those drugs whose hypomagnesaemic effect is labelled as 'questionable', including furosemide and hydrochlorothiazide, routine monitoring and treatment are not required.
Collapse
Affiliation(s)
- Jacob Atsmon
- Clinical Pharmacology Unit, Tel Aviv Sourasky Medical Center, Te Aviv, Israel.
| | | |
Collapse
|
3
|
Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001; 81:51-84. [PMID: 11152754 DOI: 10.1152/physrev.2001.81.1.51] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle. Because there is little Mg(2+) reabsorption beyond the distal tubule, this segment plays an important role in determining the final urinary excretion. The distal convoluted segment (DCT) is characterized by a negative luminal voltage and high intercellular resistance so that Mg(2+) reabsorption is transcellular and active. This review discusses recent evidence for selective and sensitive control of Mg(2+) transport in the DCT and emphasizes the importance of this control in normal and abnormal renal Mg(2+) conservation. Normally, Mg(2+) absorption is load dependent in the distal tubule, whether delivery is altered by increasing luminal Mg(2+) concentration or increasing the flow rate into the DCT. With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent. Peptide hormones such as parathyroid hormone, calcitonin, glucagon, and arginine vasopressin enhance Mg(2+) absorption in the distal tubule and stimulate Mg(2+) uptake into MDCT cells. Prostaglandin E(2) and isoproterenol increase Mg(2+) entry into MDCT cells. The current evidence indicates that cAMP-dependent protein kinase A, phospholipase C, and protein kinase C signaling pathways are involved in these responses. Steroid hormones have significant effects on distal Mg(2+) transport. Aldosterone does not alter basal Mg(2+) uptake but potentiates hormone-stimulated Mg(2+) entry in MDCT cells by increasing hormone-mediated cAMP formation. 1,25-Dihydroxyvitamin D(3), on the other hand, stimulates basal Mg(2+) uptake. Elevation of plasma Mg(2+) or Ca(2+) inhibits hormone-stimulated cAMP accumulation and Mg(2+) uptake in MDCT cells through activation of extracellular Ca(2+)/Mg(2+)-sensing mechanisms. Mg(2+) restriction selectively increases Mg(2+) uptake with no effect on Ca(2+) absorption. This intrinsic cellular adaptation provides the sensitive and selective control of distal Mg(2+) transport. The distally acting diuretics amiloride and chlorothiazide stimulate Mg(2+) uptake in MDCT cells acting through changes in membrane voltage. A number of familial and acquired disorders have been described that emphasize the diversity of cellular controls affecting renal Mg(2+) balance. Although it is clear that many influences affect Mg(2+) transport within the DCT, the transport processes have not been identified.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Diaz R, Fuleihan GE, Brown EM. Parathyroid Hormone and Polyhormones: Production and Export. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Kang HS, Kerstan D, Dai LJ, Ritchie G, Quamme GA. Aminoglycosides inhibit hormone-stimulated Mg 2+uptake in mouse distal convoluted tubule cells. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clinical use of aminoglycosides often leads to renal magnesium wasting and hypomagnesemia. Of the nephron segments, both the thick ascending limb of Henle's loop and the distal tubule play significant roles in renal magnesium conservation but the distal convoluted tubule exerts the final control of urinary excretion. An immortalized mouse distal convoluted tubule (MDCT) cell line has been extensively used to study the cellular mechanisms of magnesium transport in this nephron segment. Peptide hormones, such as parathyroid hormone (PTH), glucagon, calcitonin, and arginine vasopressin (AVP) stimulate Mg2+uptake in MDCT cells that is modulated by extracellular polyvalent cations, Ca2+and Mg2+. The present studies determined the effect of aminoglycosides on parathyroid hormone (PTH)-mediated cAMP formation and Mg2+uptake in MDCT cells. Gentamicin, a prototypic aminoglycoside, illicited transient increases in intracellular Ca2+from basal levels of 102 ± 13 nM to 713 ± 125 nM, suggesting a receptor-mediated response. In order to determine Mg2+transport, MDCT cells were Mg2+-depleted by culturing in Mg2+-free media for 16 h and Mg2+uptake was measured by microfluorescence after placing the depleted cells in 1.0 mM MgCl2. The mean rate of Mg2+uptake, d([Mg2+]i)/dt, was 138 ± 24 nM/s in control MDCT cells. Gentamicin (50 µM) did not affect basal Mg2+uptake (105 ± 29 nM/s), but inhibited PTH stimulated Mg2+entry, decreasing it from 257 ± 36 nM/s to 108 ± 42 nM/s. This was associated with diminished PTH-stimulated cAMP formation, from 80 ± 2.5 to 23 ± 1 pmol/mg protein·5 min. Other aminoglycosides such as tobramycin, streptomycin, and neomycin also inhibited PTH-stimulated Mg2+entry and cAMP formation. As these antibiotics are positively charged, the data suggest that aminoglycosides act through an extracellular polyvalent cation-sensing receptor present in distal convoluted tubule cells. We infer from these studies that aminoglycosides inhibit hormone-stimulated Mg2+absorption in the distal convoluted tubule that may contribute to the renal magnesium wasting frequently observed with the clinical use of these antibiotics.Key words: intracellular Mg2+, Mg2+uptake, aminoglycosides, gentamicin, tobramycin, streptomycin, neomycin, parathyroid hormone, microfluorescence, cAMP measurements.
Collapse
|
6
|
von Vigier RO, Truttmann AC, Zindler-Schmocker K, Bettinelli A, Aebischer CC, Wermuth B, Bianchetti MG. Aminoglycosides and renal magnesium homeostasis in humans. Nephrol Dial Transplant 2000; 15:822-6. [PMID: 10831634 DOI: 10.1093/ndt/15.6.822] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The use of aminoglycosides has been linked with hypomagnesaemia in scattered reports. The objective of the study was to measure prospectively the effect of treatment with the aminoglycoside amikacin on renal magnesium homeostasis. METHODS Twenty-four cystic fibrosis patients (aged 9-19 years) admitted because of exacerbation of pulmonary symptoms caused by Pseudomonas aeruginosa were treated with the aminoglycoside amikacin and the cephalosporin ceftazidime for 14 days. Renal values and plasma and urinary electrolytes were measured before and at the end of the systemic anti-pseudomonal therapy. RESULTS In the patients with cystic fibrosis, treatment with amikacin and ceftazidime did not modify plasma creatinine or urea and plasma or urinary sodium, potassium and calcium. Treatment with amikacin and ceftazidime significantly decreased both plasma total magnesium (from 0.77 (0. 74-0.81) to 0.73 (0.71-75) mmol/l; median and interquartile range) and ionized magnesium (from 0.53 (0.50-0.55) to 0.50 (0.47-0.52) mmol/l) concentration and increased fractional urinary magnesium excretion (from 0.0568 (0.0494-0.0716) to 0.0721 (0.0630-0.111)) and total urinary magnesium excretion (from 30.7 (26.5-38.0) to 38.5 (31. 5-49.0) micromol/l glomerular filtration rate). CONCLUSIONS The present study demonstrates that systemic therapy with amikacin plus ceftazidime causes mild hypomagnesaemia secondary to renal magnesium wasting even in the absence of a significant rise in circulating creatinine and urea.
Collapse
Affiliation(s)
- R O von Vigier
- Department of Pediatrics, University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
7
|
Parsons PP, Garland HO, Harpur ES. Localization of the nephron site of gentamicin-induced hypercalciuria in the rat: a micropuncture study. Br J Pharmacol 2000; 130:441-9. [PMID: 10807684 PMCID: PMC1572084 DOI: 10.1038/sj.bjp.0703329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2000] [Revised: 02/25/2000] [Accepted: 02/29/2000] [Indexed: 11/08/2022] Open
Abstract
In vivo renal micropuncture techniques were used to locate the nephron site of hypercalciuria induced by acute gentamicin infusion in anaesthetized Sprague Dawley rats. Three series of experiments were conducted. The effect of gentamicin on calcium reabsorption in the proximal tubule (Series I) and loop of Henle (Series II) was investigated using in vivo microperfusion whereas the effect on distal calcium handling (Series III) was studied using in vivo microinfusion. In all three experimental series, acute systemic gentamicin infusion at 0.28 mg kg(-1) min(-1) caused significant hypercalciuria within 30 min of commencing drug infusion. Gentamicin had no effect on the rates of urine flow or sodium excretion. Acute gentamicin infusion had no effect on unidirectional calcium reabsorption in the proximal tubule or loop of Henle despite a simultaneous and highly significant hypercalciuria at the whole kidney level. Net fluid reabsorption was also unaffected by the drug in these nephron segments. Acute gentamicin infusion significantly increased the urinary recovery of calcium following microinfusion into early distal tubules, whereas urinary calcium recovery was decreased after microinfusion into late distal tubules. We conclude that acute gentamicin-induced hypercalciuria is mediated by a decrease in calcium reabsorption in the early distal tubule. Thus, the acute hypercalciuric effect of gentamicin occurs at a different nephron site to the nephrotoxic effects associated with longer-term administration of the drug. It is, therefore, unlikely that gentamicin-induced hypercalciuria is involved in the pathogenesis of subsequent proximal tubular cell injury.
Collapse
Affiliation(s)
- P P Parsons
- School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
8
|
Hamilton K, Eaton EJ, Garland HO, Old S. Effect of experimental diabetes mellitus on gentamicin-induced acute renal functional changes in the anaesthetized rat. Clin Exp Pharmacol Physiol 1998; 25:231-5. [PMID: 9590574 DOI: 10.1111/j.1440-1681.1998.t01-8-.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Rats with streptozotocin (STZ) diabetes are protected from gentamicin (GEN) nephrotoxicity. Because the chronic renal damage from GEN is preceded by acute renal functional changes (notably hypercalciuria), the present study aims to determine whether diabetes may also protect against the acute effects of the drug. If there is a link between the rapid physiological actions of GEN and its subsequent nephrotoxicity, the former may also be affected by the diabetic condition. 2. Standard renal clearance techniques were performed on anaesthetized rats that had been injected with STZ or vehicle 2 weeks previously. All animals were infused with 0.9% NaCl for 5 h and then either GEN (0.28 mg/kg per min) or 0.9% NaCl alone for 2 h. 3. Baseline fractional calcium excretion (FE(Ca)) of diabetic rats was three-fold that of control animals (6.6+/-0.2 vs 2.2+/-0.2%, respectively; P<0.01, MANOVA). Following GEN infusion, a comparable increase in FE(Ca) occurred in control and diabetic rats (5.3+/-0.6 vs 5.3+/-0.8%, respectively; NS). 4. Streptozotocin diabetes, therefore, does not alter the acute hypercalciuric response to GEN. This may suggest that the acute effects of GEN on renal calcium handling do not contribute to the subsequent nephrotoxicity. However, the higher baseline FE(Ca) seen in diabetic rats may afford protection against the renal injury caused by gentamicin.
Collapse
Affiliation(s)
- K Hamilton
- School of Biological Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
9
|
Parsons PP, Garland HO, Harpur ES, Old S. Acute gentamicin-induced hypercalciuria and hypermagnesiuria in the rat: dose-response relationship and role of renal tubular injury. Br J Pharmacol 1997; 122:570-6. [PMID: 9351517 PMCID: PMC1564962 DOI: 10.1038/sj.bjp.0701403] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Standard renal clearance techniques were used to assess the dose-response relationship between acute gentamicin infusion and the magnitude of hypercalciuria and hypermagnesiuria in the anaesthetized Sprague-Dawley rat. Also investigated were whether these effects occurred independently of renal tubular cell injury. 2. Acute gentamicin infusion was associated with a significant hypercalciuria and hypermagnesiuria evident within 30 min of drug infusion. The magnitude of these responses was related to the dose of drug infused (0.14-1.12 mg kg(-1) min[-1]). Increased urinary electrolyte losses resulted from a decreased tubular reabsorption of calcium and magnesium. 3. A rapid dose-related increase in urinary N-acetyl-beta-D-glucosaminidase (NAG) excretion was also observed in response to gentamicin infusion. However, there was no evidence of renal tubular cell injury and no myeloid bodies were observed within the lysosomes of the proximal tubular cells. Gentamicin may thus interfere with the mechanisms for cellular uptake and intracellular processing of NAG causing increased NAG release into the tubular lumen. 4. The absence of changes in renal cellular morphology indicates that the excessive renal losses of calcium and magnesium were an effect of gentamicin per se and not the result of underlying renal tubular injury. The renal effects described in this paper were apparent after administration of relatively low total drug doses, and with plasma concentrations calculated to be within the clinical range. These findings suggest that disturbances of plasma electrolyte homeostasis could occur in the absence of overt renal injury in patients receiving aminoglycoside antibiotics.
Collapse
Affiliation(s)
- P P Parsons
- School of Biological Sciences, University of Manchester
| | | | | | | |
Collapse
|
10
|
Suzuki S, Takamura S, Yoshida J, Shinzawa Y, Niwa O, Tamatani R. Comparison of gentamicin nephrotoxicity between rats and mice. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1995; 112:15-28. [PMID: 8564786 DOI: 10.1016/0742-8413(95)00075-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxic effects of gentamicin administration (10-80 mg/kg body weight, subcutaneously (s.c.), once daily for 7 days) on several enzyme activities of kidney and duodenal mucosa together with other parameters were compared between male rats and mice. In Wistar rat kidney, tubular brush border Mg(2+)-dependent, HCO3(-)-stimulated ATPase (Mg(2+)-HCO3(-)-ATPase) activity was inhibited by 40-80 mg/kg gentamicin in an almost dose-dependent manner with no changes in microsomal Mg(2+)-Na(+)-K(+)-ATPase activity. Cytosol carbonic anhydrase (CA) activity was inhibited only by 80 mg/kg gentamicin. In rat duodenal mucosa, Mg(2+)-HCO3(-)-ATPase and CA activities were unchanged by any dose of gentamicin. Rat serum urea nitrogen (UN), GOT and GPT concentrations and urinary N-acetyl-beta-D-glucosaminidase (NAG) activity were significantly increased by 80 mg/kg gentamicin. In ddY mice, however, almost all parameters described above were unaffected by gentamicin except for the urinary NAG activity which was increased only by 80 mg/kg gentamicin. The concentration of gentamicin in cytosol of rat whole kidney was approximately 3.4-fold higher compared with that in mouse kidney after 80 mg/kg treatment. In light microscopic analysis, 80 mg/kg gentamicin produced necrosis in the greater part of rat kidney proximal tubuli with no pathological findings in mouse kidney. In conclusion, Mg(2+)-HCO3(-)-ATPase activity in brush border membrane of rat proximal tubuli was selectively damaged in gentamicin nephrotoxicity, indicating that the rats are the suitable model for studies of gentamicin nephrotoxicity in humans.
Collapse
Affiliation(s)
- S Suzuki
- Department of Pharmacology, Kanazawa Medical University, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|