1
|
Peruri A, Morgan A, D’Souza A, Mellon B, Hung CW, Kayal G, Shin H, Nguyen K, Zahed M, Yount M, Ellis R, Wynne T, Fritz V, Simmons Z, Roballo KCS. Pineal Gland from the Cell Culture to Animal Models: A Review. Life (Basel) 2022; 12:1057. [PMID: 35888145 PMCID: PMC9317964 DOI: 10.3390/life12071057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022] Open
Abstract
This review demonstrates current literature on pineal gland physiology, pathology, and animal model experiments to concisely explore future needs in research development with respect to pineal gland function and neuro-regenerative properties. The pineal gland plays an integral role in sleep and recovery by promoting physiologic circadian rhythms via production and release of melatonin. Yet, the current literature shows that the pineal gland has neuroprotective effects that modulate both peripheral and central nerve injuries through several direct and indirect mechanisms, such as angiogenesis and induction of growth factors and anti-inflammatory mediators. Animal models have also shown correlations between pineal gland function and metabolic homeostasis. Studies have shown that a functional pineal gland is essential in preventing and slowing the progression of certain diseases such as diabetes, osteoporosis, vertebral osteoarthritis, and neurodegenerative processes. Lastly, the array of cell culturing methods and animal models that can be used to further develop the study of pineal gland function and nervous system injury were reviewed.
Collapse
Affiliation(s)
- Alekhya Peruri
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Alexandra Morgan
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Alida D’Souza
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Bridget Mellon
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Carey W. Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Haejung Shin
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Kim Nguyen
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Malek Zahed
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Mason Yount
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Taylor Wynne
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Virginia Fritz
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Zachary Simmons
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Kelly C. S. Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 1410 Prices Fork, Blacksburg, VA 24060, USA
| |
Collapse
|
2
|
Juan CH, Chen MH, Lin FH, Wong CS, Chien CC, Chen MH. In Vitro Differentiation of Human Placenta-Derived Multipotent Cells into Schwann-Like Cells. Biomolecules 2020; 10:biom10121657. [PMID: 33322066 PMCID: PMC7763858 DOI: 10.3390/biom10121657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Human placenta-derived multipotent stem cells (PDMCs) resembling embryonic stem cells can differentiate into three germ layer cells, including ectodermal lineage cells, such as neurons, astrocytes, and oligodendrocytes. The favorable characteristics of noninvasive cell harvesting include fewer ethical, religious, and legal considerations as well as accessible and limitless supply. Thus, PDMCs are attractive for cell-based therapy. The Schwann cell (SC) is the most common cell type used for tissue engineering such as nerve regeneration. However, the differentiation potential of human PDMCs into SCs has not been demonstrated until now. In this study, we evaluated the potential of PDMCs to differentiate into SC-like cells in a differentiation medium. After induction, PDMCs not only exhibited typical SC spindle-shaped morphology but also expressed SC markers, including S100, GFAP, p75, MBP, and Sox 10, as revealed by immunocytochemistry. Moreover, a reverse transcription-quantitative polymerase chain reaction analysis revealed the elevated gene expression of S100, GFAP, p75, MBP, Sox-10, and Krox-20 after SC induction. A neuroblastoma cell line, SH-SY5Y, was cultured in the conditioned medium (CM) collected from PDMC-differentiated SCs. The growth rate of the SH-SY5Y increased in the CM, indicating the function of PDMC-induced SCs. In conclusion, human PDMCs can be differentiated into SC-like cells and thus are an attractive alternative to SCs for cell-based therapy in the future.
Collapse
Affiliation(s)
- Chung-Hau Juan
- Department of Anesthesiology, Cathay General Hospital, Taipei 106438, Taiwan; (C.-H.J.); (C.-S.W.); (C.-C.C.)
- Department of Biomedical Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Mei-Hsiu Chen
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Department of Biomedical Engineering, Ming Chuan University, Taoyuan 333321, Taiwan
| | - Feng-Hui Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 106438, Taiwan; (C.-H.J.); (C.-S.W.); (C.-C.C.)
| | - Chih-Cheng Chien
- Department of Anesthesiology, Cathay General Hospital, Taipei 106438, Taiwan; (C.-H.J.); (C.-S.W.); (C.-C.C.)
| | - Ming-Hong Chen
- Department of Neurosurgery, Taipei Municipal Wangfang Hospital, Taipei 116081, Taiwan
- Department of Biomedical Sciences, Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells 2020; 9:E1990. [PMID: 32872454 PMCID: PMC7565191 DOI: 10.3390/cells9091990] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Functional recovery after neurotmesis, a complete transection of the nerve fiber, is often poor and requires a surgical procedure. Especially for longer gaps (>3 mm), end-to-end suturing of the proximal to the distal part is not possible, thus requiring nerve graft implantation. Artificial nerve grafts, i.e., hollow fibers, hydrogels, chitosan, collagen conduits, and decellularized scaffolds hold promise provided that these structures are populated with Schwann cells (SC) that are widely accepted to promote peripheral and spinal cord regeneration. However, these cells must be collected from the healthy peripheral nerves, resulting in significant time delay for treatment and undesired morbidities for the donors. Therefore, there is a clear need to explore the viable source of cells with a regenerative potential similar to SC. For this, we analyzed the literature for the generation of Schwann cell-like cells (SCLC) from stem cells of different origins (i.e., mesenchymal stem cells, pluripotent stem cells, and genetically programmed somatic cells) and compared their biological performance to promote axonal regeneration. Thus, the present review accounts for current developments in the field of SCLC differentiation, their applications in peripheral and central nervous system injury, and provides insights for future strategies.
Collapse
Affiliation(s)
- Alois Hopf
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
| | - Dirk J. Schaefer
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Daniel F. Kalbermatten
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| |
Collapse
|
4
|
Leung YY. Management and prevention of third molar surgery-related trigeminal nerve injury: time for a rethink. J Korean Assoc Oral Maxillofac Surg 2019; 45:233-240. [PMID: 31728330 PMCID: PMC6838349 DOI: 10.5125/jkaoms.2019.45.5.233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/26/2022] Open
Abstract
Trigeminal nerve injury as a consequence of lower third molar surgery is a notorious complication and may affect the patient in long term. Inferior alveolar nerve (IAN) and lingual nerve (LN) injury result in different degree of neurosensory deficit and also other neurological symptoms. The long term effects may include persistent sensory loss, chronic pain and depression. It is crucial to understand the pathophysiology of the nerve injury from lower third molar surgery. Surgery remains the most promising treatment in moderate-to-severe nerve injuries. There are limitations in the current treatment methods and full recovery is not commonly achievable. It is better to prevent nerve injury than to treat with unpredictable results. Coronectomy has been proved to be effective in reducing IAN injury and carries minimal long-term morbidity. New technologies, like the roles of erythropoietin and stem cell therapy, are being investigated for neuroprotection and neural regeneration. Breakthroughs in basic and translational research are required to improve the clinical outcomes of the current treatment modalities of third molar surgery-related nerve injury.
Collapse
Affiliation(s)
- Yiu Yan Leung
- Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Schaal SM, Kitay BM, Cho KS, Lo TP, Barakat DJ, Marcillo AE, Sanchez AR, Andrade CM, Pearse DD. Schwann Cell Transplantation Improves Reticulospinal Axon Growth and Forelimb Strength after Severe Cervical Spinal Cord Contusion. Cell Transplant 2017; 16:207-28. [PMID: 17503734 DOI: 10.3727/000000007783464768] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.
Collapse
Affiliation(s)
- S M Schaal
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Plant GW, Chirila TV, Harvey AR. Implantation of Collagen Iv/Poly(2-Hydroxyethyl Methacrylate) Hydrogels Containing Schwann Cells into the Lesioned Rat Optic Tract. Cell Transplant 2017; 7:381-91. [PMID: 9710307 DOI: 10.1177/096368979800700406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Poly (2-hydroxyethylmethacrylate) (PolyHEMA) hydrogels, when combined with extracellular matrix molecules and infiltrated with cultured Schwann cells, have the capability to induce CNS axonal regrowth after injury. We have further investigated these PolyHEMA hydrogels and their potential to bridge CNS injury sites. Collagen IV-impregnated hydrogels containing Schwann cells were implanted into the lesioned optic tract in 14 rats. On examination 2–4 months later, there was good adherence between the implants and CNS tissue, and large numbers of viable Schwann cells (S100+, GFAP+, Laminin+, and LNGFR+) were seen within the hydrogel matrices. Immunohistochemical analysis showed that the collagen IV-impregnated PolyHEMA hydrogels preferentially supported the transplanted Schwann cells and not host glial cells such as astrocytes (GFAP+) or oligodendroglia (CAII+). Macrophages (ED1+) were also seen within the sponge structure. Eighty-three percent of the implanted hydrogels contained RT97+ axons within their trabecular networks. Regrowing axons were associated with the transplanted Schwann cells and not with the small number of infiltrating astrocytes. RT97+ axons were traced up to 510 μm from the nearest host neuropil. These axons were sometimes myelinated by the transplanted Schwann cells and expressed the peripheral myelin marker Po+. WGA/HRP-labeled retinal axons were seen within transplanted hydrogel sponges, with 40% of the cases growing for distances up to 350–450 μm within the polymer network. The data indicate that impregnating PolyHEMA sponges with collagen IV can modify the host glial reaction and support the survival of transplanted Schwann cells. This study thus provides new information on how biomaterials could be used to modify and bridge CNS injury sites.
Collapse
Affiliation(s)
- G W Plant
- Department of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
7
|
Predegenerated Schwann cells--a novel prospect for cell therapy for glaucoma: neuroprotection, neuroregeneration and neuroplasticity. Sci Rep 2016; 6:23187. [PMID: 27034151 PMCID: PMC4817039 DOI: 10.1038/srep23187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is an optic neuropathy that leads to irreversible blindness. Because the current therapies are not sufficient to protect against glaucoma-induced visual impairment, new treatment approaches are necessary to prevent disease progression. Cell transplantation techniques are currently considered to be among the most promising opportunities for nervous system damage treatment. The beneficial effects of undifferentiated cells have been investigated in experimental models of glaucoma, however experiments were accompanied by various barriers, which would make putative treatment difficult or even impossible to apply in a clinical setting. The novel therapy proposed in our study creates conditions to eliminate some of the identified barriers described for precursor cells transplantation and allows us to observe direct neuroprotective and pro-regenerative effects in ongoing optic neuropathy without additional modifications to the transplanted cells. We demonstrated that the proposed novel Schwann cell therapy might be promising, effective and easy to apply, and is safer than the alternative cell therapies for the treatment of glaucoma.
Collapse
|
8
|
Kitada M. Mesenchymal cell populations: development of the induction systems for Schwann cells and neuronal cells and finding the unique stem cell population. Anat Sci Int 2012; 87:24-44. [PMID: 22237924 DOI: 10.1007/s12565-011-0128-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/20/2011] [Indexed: 01/01/2023]
Abstract
Mesenchymal cell populations, referred to as mesenchymal stem cells or multipotent stromal cells (MSCs), which include bone marrow stromal cells (BMSCs), umbilical cord stromal cells and adipose stromal cells (ASCs), participate in tissue repair when transplanted into damaged or degenerating tissues. The trophic support and immunomodulation provided by MSCs can protect against tissue damage, and the differentiation potential of these cells may help to replace lost cells. MSCs are easily accessible and can be expanded on a large scale. In addition, BMSCs and ASCs can be harvested from the patient himself. Thus, MSCs are considered promising candidates for cell therapy. In this review, I will discuss recently discovered high-efficiency induction systems for deriving Schwann cells and neurons from MSCs. Other features of MSCs that are important for tissue repair include the self-renewing property of stem cells and their potential for differentiation. Thus, I will also discuss the stemness of MSCs and describe the discovery of a certain stem cell type among adult MSCs that can self-renew and differentiate into cells of all three germ layers. Furthermore, I will explore the prospects of using this cell population for cell therapy.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
9
|
Olfactory ensheathing glia: Repairing injury to the mammalian visual system. Exp Neurol 2011; 229:99-108. [DOI: 10.1016/j.expneurol.2010.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 12/13/2022]
|
10
|
Niapour A, Karamali F, Karbalaie K, Kiani A, Mardani M, Nasr-Esfahani MH, Baharvand H. Novel method to obtain highly enriched cultures of adult rat Schwann cells. Biotechnol Lett 2010; 32:781-6. [PMID: 20213527 DOI: 10.1007/s10529-010-0230-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022]
Abstract
Schwann cells (SCs) can be used to repair both the peripheral and central nervous systems. Therefore, establishment of a procedure to obtain activated, highly proliferative SCs, in an appropriate time for clinical applications, is a prerequisite. Purification is complicated by contamination with fibroblasts which often become the predominant cell type in an in vitro SC culture. This study describes a novel and efficient method to enrich SCs by utilizing the differential detachment properties of the two cell types. In culture, cells were treated with two different media and the chelator, EGTA, which detached SCs faster than fibroblasts and allowed for easy isolation of SCs. Within seven days, high yields of SCs with a purity of greater than 99% were achieved. This was confirmed by immunostaining characterization and flow-cytometric analyses using an antibody against the p75 low affinity nerve growth factor receptor (p75LNGFR). The entire procedure was completed in approximately 21 days. This method has the advantage of being technically easier, faster, and more efficient than other previously described methods. An SC culture that was about 99% homogenous was achieved.
Collapse
Affiliation(s)
- Ali Niapour
- Department of Cell and Molecular Biology, Royan Institute for Animal Biotechnology, ACECR, P.O. Box 815896-8433, Isfahan, Iran
| | | | | | | | | | | | | |
Collapse
|
11
|
Huang H, Chen L, Sanberg P. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era. CELL MEDICINE 2010; 1:15-46. [PMID: 21359168 DOI: 10.3727/215517910x516673] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology.
Collapse
Affiliation(s)
- Hongyun Huang
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | |
Collapse
|
12
|
Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS. Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 2008; 87:251-63. [DOI: 10.1002/jbm.b.31000] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Grosheva M, Guntinas-Lichius O, Arnhold S, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats. Biol Chem 2008; 389:873-88. [DOI: 10.1515/bc.2008.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractRecently, we devised and validated a novel strategy in rats to improve the outcome of facial nerve reconstruction by daily manual stimulation of the target muscles. The treatment resulted in full recovery of facial movements (whisking), which was achieved by reducing the proportion of pathologically polyinnervated motor endplates. Here, we posed whether manual stimulation could also be beneficial after a surgical procedure potentially useful for treatment of large peripheral nerve defects, i.e., entubulation of the transected facial nerve in a conduit filled with suspension of isogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) in collagen. Compared to control treatment with collagen only, entubulation with BM-MSCs failed to decrease the extent of collateral axonal branching at the lesion site and did not improve functional recovery. Post-operative manual stimulation of vibrissal muscles also failed to promote a better recovery following entubulation with BM-MSCs. We suggest that BM-MSCs promote excessive trophic support for regenerating axons which, in turn, results in excessive collateral branching at the lesion site and extensive polyinnervation of the motor endplates. Furthermore, such deleterious effects cannot be overridden by manual stimulation. We conclude that entubulation with BM-MSCs is not beneficial for facial nerve repair.
Collapse
|
14
|
Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun 2007; 359:915-20. [PMID: 17573041 DOI: 10.1016/j.bbrc.2007.05.212] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Accepted: 05/30/2007] [Indexed: 12/16/2022]
Abstract
We examined the availability of human bone marrow stromal cells (MSCs) as a source of transplantation therapy in nerve injury. Human MSCs were subjected to a series of treatments with a reducing agent, retinoic acid and a combination of trophic factors. Morphologically and immunocytochemically, such treated cells differentiated into Schwann cell characteristics in vitro. Cells were filled into a transpermeable tube, transplanted into the gap made in the rat sciatic nerve of a rat and followed up to 3weeks under the control of immunosuppressant. In contrast to untreated human MSCs, differentiated human MSCs expressed Schwann cell markers in vivo and supported regenerating axons. These results suggest that human MSCs can be induced to be a substitute for Schwann cells that may be applied for nerve regeneration.
Collapse
Affiliation(s)
- Satoshi Shimizu
- Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Symonds ACE, King CE, Bartlett CA, Sauvé Y, Lund RD, Beazley LD, Dunlop SA, Rodger J. EphA5 and ephrin-A2 expression during optic nerve regeneration: a ‘two-edged sword’. Eur J Neurosci 2007; 25:744-52. [PMID: 17328773 DOI: 10.1111/j.1460-9568.2007.05321.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During development, gradients of EphA receptors (nasal(low)-temporal(high)) and their ligands ephrin-As (rostral(low)-caudal(high)) are involved in establishing topography between retinal ganglion cells (RGCs) and the superior colliculus (SC). EphA5-expressing RGC axons are repulsed by ephrin-A2-expressing SC neurones. In adult rats RGCs maintain graded EphA5 expression but ephrin-A2 expression is down-regulated in the SC to a weak gradient. At 1 month after optic nerve transection, EphA5 expression is reduced in the few remaining RGCs and is no longer graded; by contrast, SC ephrin-A2 is up-regulated to a rostral(low)-caudal(high) gradient. Here we examined expression in adult rat 1 month after bridging the retina and SC with a peripheral nerve graft, a procedure that enhances RGC survival and permits RGC axon regeneration. Double labelling with cell markers revealed preservation of a nasal(low)-temporal(high) EphA5 gradient in RGCs and establishment of a rostral(low)-caudal(high) ephrin-A2 gradient within neurones of the SC. The results suggest a potential for guidance cues to restore the topography of RGC axons in the SC. However, high ephrin-A2 levels were also found in astrocytes surrounding the peripheral nerve graft insertion site. The repulsive ephrin-A2 environment offers at least a partial explanation for the observation that only a limited number of RGC axons can exit the graft to enter target central nervous system tissue.
Collapse
Affiliation(s)
- A C E Symonds
- School of Animal Biology M092, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Plant GW, Cui Q. Gene therapy and transplantation in CNS repair: The visual system. Prog Retin Eye Res 2006; 25:449-89. [PMID: 16963308 DOI: 10.1016/j.preteyeres.2006.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these cells. We provide a brief overview of these studies, but the major focus of this review is on the inner retina, in particular how gene therapy and transplantation can improve the viability and regenerative capacity of retinal ganglion cells (RGCs). Such studies are relevant to the development of new treatments for ocular conditions that cause RGC loss or dysfunction, for example glaucoma, diabetes, ischaemia, and various inflammatory and neurodegenerative diseases. However, RGCs and associated central visual pathways also serve as an excellent experimental model of the adult central nervous system (CNS) in which it is possible to study the molecular and cellular mechanisms associated with neuroprotection and axonal regeneration after neurotrauma. In this review we present the current state of knowledge pertaining to RGC responses to injury, neurotrophic and gene therapy strategies aimed at promoting RGC survival, and how best to promote the regeneration of RGC axons after optic nerve or optic tract injury. We also describe transplantation methods being used in attempts to replace lost RGCs or encourage the regrowth of RGC axons back into visual centres in the brain via peripheral nerve bridges. Cooperative approaches including novel combinations of transplantation, gene therapy and pharmacotherapy are discussed. Finally, we consider a number of caveats and future directions, such as problems associated with compensatory sprouting and the reformation of visuotopic maps, the need to develop efficient, regulatable viral vectors, and the need to develop different but sequential strategies that target the cell body and/or the growth cone at appropriate times during the repair process.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The implantation of exogenous cells or tissues has been a popular and successful strategy to overcome physical discontinuity and support axon growth in experimental models of spinal cord injury (SCI). Cellular therapies exhibit a multifarious potential for SCI restoration, providing not only a supportive substrate upon which axons can traverse the injury site, but also reducing progressive tissue damage and scarring, facilitating remyelination repair, and acting as a source for replacing and re-establishing lost neural tissue and its circuitry. The past two decades of research into cell therapies for SCI repair have seen the progressive evolution from whole tissue strategies, such as peripheral nerve grafts, to the use of specific, purified cell types from a diverse range of sources and, recently, to the employment of stem or neural precursor cell populations that have the potential to form a full complement of neural cell types. Although the progression of cell therapies from laboratory to clinical implementation has been slow, human SCI safety and efficacy trials involving several cell types within the US appear to be close at hand.
Collapse
Affiliation(s)
- Damien D Pearse
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Department of Neurological Surgery, Lois Pope Life Center, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA.
| | | |
Collapse
|
18
|
Leaver SG, Harvey AR, Plant GW. Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro. Glia 2006; 53:467-76. [PMID: 16355371 DOI: 10.1002/glia.20311] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In vivo, transplanted adult olfactory ensheathing glia (OEG) and adult Schwann cells (SC) can support the regrowth of at least some transected axons within adult CNS neuropil. In the present study, we developed an in vitro adult rat retinal explant model to explore the influence of primary adult SC and OEG on retinal ganglion cell (RGC) neurite regrowth in the presence of glial cells endogenous to the retina. Retinal quadrants were plated RGC-side down onto aclar hats coated with either pure collagen (type 1), collagen with OEG, collagen with SCs, or collagen coated with both OEG and SCs. Regrowing retinal neurites extended onto the pure collagen substrate, largely in association with astrocytes that migrated out from the explants (mean number of neurites: 144+/-65 SEM). The additional presence of OEG (669+/-122), but not SCs (97+/-41), supported the regrowth of significantly greater numbers of RGC neurites. Furthermore, this OEG-stimulated regeneration was over significantly greater distances; >68% of neurites extended >500 microm from the explant, compared with explants plated onto SCs or collagen alone (15% and 29%, respectively). When OEG and SCs were co-cultured the number of regenerating neurites was reduced (397+/-81) compared with the pure OEG treatment. Analysis of explants on pure collagen substrates fed with media conditioned by purified OEG or SC showed no increase in neurite outgrowth compared with control treatments, suggesting that the enhanced growth in the presence of OEG is a contact-mediated effect. The observed differences between the abilities of OEG and SC to support the growth of CNS-derived fibers in the presence of astrocytes support the suggestion that OEG may be better suited for direct transplantation into CNS neuropil following injury.
Collapse
Affiliation(s)
- S G Leaver
- School of Anatomy and Human Biology and Reds Spinal Cord Research Laboratory, The University of Western Australia, Western Australia
| | | | | |
Collapse
|
19
|
Hu Y, Leaver SG, Plant GW, Hendriks WTJ, Niclou SP, Verhaagen J, Harvey AR, Cui Q. Lentiviral-mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol Ther 2005; 11:906-15. [PMID: 15922961 DOI: 10.1016/j.ymthe.2005.01.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/20/2005] [Accepted: 01/24/2005] [Indexed: 11/22/2022] Open
Abstract
We recently described a method for reconstituting peripheral nerve (PN) sheaths using adult Schwann cells (SCs). Reconstructed PN tissue grafted onto the cut optic nerve supports the regeneration of injured adult rat retinal ganglion cell (RGC) axons. To determine whether genetic manipulation of such grafts can further enhance regeneration, adult SCs were transduced with lentiviral vectors encoding either ciliary neurotrophic factor (LV-CNTF) or green fluorescent protein (LV-GFP). SCs expressed transgenes for at least 4 weeks after transplantation. There were high levels of CNTF mRNA and CNTF protein in PN grafts containing LV-CNTF-transduced SCs. Mean RGC survival was significantly increased with these grafts (11,863/retina) compared with LV-GFP controls (7064/retina). LV-CNTF-transduced SCs enhanced axonal regeneration to an even greater extent (3097 vs 393 RGCs/retina in LV-GFP controls). Many regenerated axons were myelinated. The use of genetically modified, reconstituted PN grafts to bridge tissue defects may provide new therapeutic strategies for the treatment of both CNS and PNS injuries.
Collapse
Affiliation(s)
- Ying Hu
- School of Anatomy and Human Biology, Western Australian Institute for Medical Research, UWA Centre for Medical Research, Perth, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bampton ETW, Ma CH, Tolkovsky AM, Taylor JSH. Osteonectin is a Schwann cell-secreted factor that promotes retinal ganglion cell survival and process outgrowth. Eur J Neurosci 2005; 21:2611-23. [PMID: 15926910 DOI: 10.1111/j.1460-9568.2005.04128.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have investigated the factors made by Schwann cells (SCs) that stimulate survival and neurite outgrowth from postnatal rat retinal ganglion cells (RGCs). These effects are preserved under K252a blockade of the Trk family of neurotrophin receptors and are not fully mimicked by the action of a number of known trophic factors. To identify novel factors responsible for this regenerative activity, we have used a radiolabelling assay. Proteins made by SCs were labelled radioactively and then fed to purified RGCs. The proteins taken up by the RGCs were then isolated and further characterized. Using this assay we have identified a major 40 kDa factor taken up by RGCs, which was microsequenced and shown to be the matricellular protein osteonectin (ON). Using an in vitro assay of purified RGCs we show that ON promotes both survival and neurite outgrowth. We conclude that ON has a potential new role in promoting CNS repair.
Collapse
Affiliation(s)
- Edward T W Bampton
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | |
Collapse
|
21
|
Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. ACTA ACUST UNITED AC 2005; 49:48-64. [PMID: 15960986 DOI: 10.1016/j.brainresrev.2004.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 09/29/2004] [Accepted: 11/29/2004] [Indexed: 02/04/2023]
Abstract
Owing to the profound impact of nervous system damage, extensive studies have been carried out aimed at facilitating axonal regeneration following injury. Tissue engineering, as an emerging and rapidly growing field, has received extensive attention for nervous system axonal guidance. Numerous engineered substrates containing oriented extracellular matrix molecules, cells or channels have displayed potential of supporting axonal regeneration and functional recovery. Most attempts are focused on seeking new biomaterials, new cell sources, as well as novel designs of tissue-engineered neuronal bridging devices, to generate safer and more efficacious neuronal tissue repairs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Bioengineering, Clemson University, BSB# 303, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
22
|
Li S, Hu B, Tay D, So KF, Yip HKF. Intravitreal transplants of Schwann cells and fibroblasts promote the survival of axotomized retinal ganglion cells in rats. Brain Res 2004; 1029:56-64. [PMID: 15533316 DOI: 10.1016/j.brainres.2004.09.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2004] [Indexed: 11/23/2022]
Abstract
Schwann cells (SCs) are considered one of the major cellular components to maintain the integrity of the peripheral nervous system (PNS) neurons after injury. Intravitreal transplant of peripheral nerves or Schwann cells has been shown to enhance the regenerative ability of retinal ganglion cells (RGCs). In the present study, we compared the effects of intravitreal transplants of Schwann cells and fibroblasts, two major components of peripheral nerves, on the survival of retinal ganglion cells in adult rats after optic nerve (ON) transection. Purified Schwann cells and fibroblasts from neonatal sciatic nerves were injected into the vitreous body of adult rats. Three days after the injection, the optic nerves were transected intraorbitally. After 1 week or 1 month, surviving retinal ganglion cells were retrogradely labelled with Fluoro-Gold (FG) and the number of surviving retinal ganglion cells was counted. The retinas were further processed for 200-kDa neurofilament RT-97 immunohistochemistry. It was found that intravitreally injected- Schwann cells and -fibroblasts delayed the death of axotomized retinal ganglion cells for 1 week. In addition, in the animal group with 1 month survival time after optic nerve transection, those received a larger number of Schwann cells had more surviving retinal ganglion cells and more profusely ramified axonal processes near the optic disc. These findings reveal that both Schwann cells and fibroblasts isolated from the peripheral nerve can promote retinal ganglion cell survival after optic nerve transection, presumably by secreting neurotrophic factors. In addition, the data also demonstrate that Schwann cells could promote intraretinal axonal sprouting. Our findings demonstrate a remarkable glial source of neurotrophic factors with potential clinical applications, as autologous Schwann cells and fibroblasts can be feasibly obtained from peripheral nerves.
Collapse
Affiliation(s)
- Shengxiu Li
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
23
|
Gillon RS, Cui Q, Dunlop SA, Harvey AR. Effects of immunosuppression on regrowth of adult rat retinal ganglion cell axons into peripheral nerve allografts. J Neurosci Res 2003; 74:524-32. [PMID: 14598296 DOI: 10.1002/jnr.10788] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Analysis of the effectiveness of allografts and immunosuppression in the repair of nerve defects in the adult peripheral nervous system (PNS) has a long experimental and clinical history. There is little information, however, on the use of allografts in peripheral nerve (PN) transplantation into the injured central nervous system (CNS). We assessed the ability of PN allografts (from Dark-Agouti rats) to support regeneration of adult rat retinal ganglion cell (RGC) axons in immunosuppressed host Lewis rats. PN allografts were sutured onto intraorbitally transected optic nerves. Three weeks after grafting, regenerating RGC axon numbers were determined using retrograde fluorescent labelling, and total axons within PN grafts were assessed using pan-neurofilament immunohistochemistry. In the absence of immunosuppression, PN allografts contained few axons and there were very few labelled RGC. These degenerate grafts contained many T cells and macrophages. Systemic (intraperitoneal) application of the immunosuppressants cyclosporin-A or FK506 reduced cellular infiltration into allografts and resulted in extensive axonal regrowth from surviving RGCs. The average number of RGCs regenerating axons into immunosuppressed allografts was not significantly different from that seen in PN autografts in rats sham-injected with saline. Many pan-neurofilament-positive axons, a proportion of which were myelinated, were seen in immunosuppressed allografts, particularly in proximal regions of the grafts toward the optic nerve-PN interface. This study demonstrates that PN allografts can support axonal regrowth in immunosuppressed adult hosts, and points to possible clinical use in CNS repair.
Collapse
Affiliation(s)
- Russell S Gillon
- School of Anatomy and Human Biology, The Western Australian Institute for Medical Research, The University of Western Australia, Crawley, Perth, Australia
| | | | | | | |
Collapse
|
24
|
Ahmed Z, Underwood S, Brown RA. Nerve guide material made from fibronectin: assessment of in vitro properties. TISSUE ENGINEERING 2003; 9:219-31. [PMID: 12740085 DOI: 10.1089/107632703764664693] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously used orientated mats of fibronectin as conduits to repair short gaps in peripheral nerves. Here we describe the in vitro properties of a new material in the form of large cables produced from a fibronectin-enriched solution with potential as a conduit for longer nerve defects. Large cables of fibronectin were made up to 14 cm long x 1.5 cm in diameter. When freeze dried, scanning electron microscopy revealed a predominant fiber orientation. Dried cables hydrated rapidly to 1.6 and 4.8 times their original length and diameter, respectively. Once hydrated these cables had pores that ranged from 10 to 100 microm through which Schwann cells and fibroblasts were able to grow in vitro and align with the axis of the fibrils by contact guidance. Furthermore, the porosity of the cable was enhanced by the natural dissolution of protein over a 3-week duration in culture with cells, such that 50- to 200-microm pores were observed. This study suggests that large fibronectin cables are a suitable alternative to the original fibronectin mats to guide components of the peripheral nerves and so to act as conduits with potential use in guiding regeneration across long nerve defects.
Collapse
Affiliation(s)
- Z Ahmed
- Tissue Repair and Engineering Centre, University College London, Institute of Orthopaedics, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | | | | |
Collapse
|
25
|
Cui Q, Pollett MA, Symons NA, Plant GW, Harvey AR. A new approach to CNS repair using chimeric peripheral nerve grafts. J Neurotrauma 2003; 20:17-31. [PMID: 12614585 DOI: 10.1089/08977150360517155] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have examined whether transplanted freeze-thawed peripheral nerve (PN) sheaths repopulated ex vivo with purified adult Schwann cells (SCs) support the regeneration of adult rat retinal ganglion cell (RGC) axons. Cultured adult SCs were derived from donor rats or from the host animals themselves. We also transplanted PN sheaths filled with neonatal SCs or donor adult olfactory ensheathing glia (OEG). 100,000 cells were injected into 1.5-cm lengths of freeze-thawed PN. After 2 days in culture, repopulated PN segments were grafted onto the transected optic nerve of adult Fischer rats. Three weeks later, 6% fluorogold (FG) was applied to distal PN. Retrogradely labeled RGCs were counted in retinal wholemounts and PN grafts were processed for immunohistochemistry. As expected, there was no RGC axon regeneration in cell-free grafts. Regrowth was also absent in neonatal SC- and adult OEG-filled grafts, which contained only small numbers of surviving donor cells. Many cells were, however, seen in adult SC repopulated PN grafts, intermingled with pan-neurofilament(+) and GAP-43(+) fibers. SCs were aligned along the grafts and were S-100(+), p75(+). Ultrastructurally, SCs were associated with myelinated and unmyelinated axons. Hundreds of FG-labeled RGCs were seen in retinas of rats with congeneic or allogeneic PN sheaths repopulated with either donor or autologous (host-derived) adult SCs. Intraocular CNTF injections significantly increased the number of regenerating RGCs in donor and autologous adult SC groups. The use of chimeric grafts to bridge CNS tissue defects could provide a clinical alternative to using multiple PN autografts, the harvesting of which would exacerbate peripheral dysfunction in already injured patients.
Collapse
Affiliation(s)
- Qi Cui
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Perth, Australia.
| | | | | | | | | |
Collapse
|
26
|
Harvey AR, Kamphuis W, Eggers R, Symons NA, Blits B, Niclou S, Boer GJ, Verhaagen J. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci 2002; 21:141-57. [PMID: 12359157 DOI: 10.1006/mcne.2002.1168] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Replication-deficient viral vectors encoding the marker gene green fluorescent protein (GFP) were injected into the vitreous of newborn, juvenile (P14), and adult rats. We tested two different types of modified virus: adeno-associated viral-2-GFP (AAV-GFP) and lentiviral-GFP vectors (LV-GFP). The extent of retinal cell transduction in different-aged animals was compared 7, 21, and 70 days after eye injections. At all postinjection times, LV-GFP transduction was mostly limited to pigment epithelium and cells in sclera and choroid. In contrast, transduction of large numbers of neural retinal cells was seen 21 and 70 days after AAV-GFP injections. AAV-GFP predominantly transduced neurons, although GFP-positive Müller cells were seen. All neuronal classes were labeled, but the extent of transduction for a given class varied depending on injection age. After P0 injections about 50% of transduced cells were photoreceptors and 30-40% were amacrine or bipolar cells. After adult injections 60-70% of transduced cells were retinal ganglion cells. In adults many GFP-positive retinal axons were traced through the optic nerve/tract and terminal arbors were visualized in central targets.
Collapse
Affiliation(s)
- A R Harvey
- School of Anatomy and Human Biology and Western Australian Institute for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Goldberg JL, Klassen MP, Hua Y, Barres BA. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 2002; 296:1860-4. [PMID: 12052959 DOI: 10.1126/science.1068428] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The central nervous system (CNS) loses the ability to regenerate early during development, but it is not known why. The retina has long served as a simple model system for study of CNS regeneration. Here we show that amacrine cells signal neonatal rat retinal ganglion cells (RGCs) to undergo a profound and apparently irreversible loss of intrinsic axon growth ability. Concurrently, retinal maturation triggers RGCs to greatly increase their dendritic growth ability. These results suggest that adult CNS neurons fail to regenerate not only because of CNS glial inhibition but also because of a loss of intrinsic axon growth ability.
Collapse
Affiliation(s)
- Jeffrey L Goldberg
- Stanford University School of Medicine, Department of Neurobiology, Sherman Fairchild Science Building D231, 299 Campus Drive, Stanford, CA 94305-5125, USA.
| | | | | | | |
Collapse
|
28
|
Dezawa M. Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells. Anat Sci Int 2002; 77:12-25. [PMID: 12418080 DOI: 10.1046/j.0022-7722.2002.00012.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In contrast to the peripheral nervous system (PNS), little structural and functional regeneration of the central nervous system (CNS) occurs spontaneously following injury in adult mammals. The inability of the CNS to regenerate is mainly attributed to its own inhibitorial environment such as glial scar formation and the myelin sheath of oligodendrocytes. Therefore, one of the strategies to promote axonal regeneration of the CNS is to experimentally modify the environment to be similar to that of the PNS. Schwann cells are the myelinating glial cells in the PNS, and are known to play a key role in Wallerian degeneration and subsequent regeneration. Central nervous system regeneration can be elicited by Schwann cell transplantation, which provides a suitable environment for regeneration. The underlying cellular mechanism of regeneration is based upon the cooperative interactions between axons and Schwann cells involving the production of neurotrophic factors and other related molecules. Furthermore, tight and gap junctional contact between the axon and Schwann cell also mediates the molecular interaction and linking. In this review, the role of the Schwann cell during the regeneration of the sciatic (representing the PNS) and optic (representing the CNS) nerves is explained. In addition, the possibility of optic nerve reconstruction by an artificial graft of Schwann cells is also described. Finally, the application of cells not of neuronal lineage, such as bone marrow stromal cells (MSCs), in nerve regeneration is proposed. Marrow stromal cells are known as multipotential stem cells that, under specific conditions, differentiate into several kinds of cells. The strategy to transdifferentiate MSCs into the cells with a Schwann cell phenotype and the induction of sciatic and optic nerve regeneration are described.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Anatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
29
|
Guntinas-Lichius O, Angelov DN, Tomov TL, Dramiga J, Neiss WF, Wewetzer K. Transplantation of olfactory ensheathing cells stimulates the collateral sprouting from axotomized adult rat facial motoneurons. Exp Neurol 2001; 172:70-80. [PMID: 11681841 DOI: 10.1006/exnr.2001.7774] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axon regrowth after CNS and PNS injury is only the first step toward complete functional recovery which depends largely on the specificity of the newly formed nerve-target projections. Since most of the studies involving the application of glial cells to the lesioned nervous system have focused primarily on the extent of neurite outgrowth, little is known regarding their effects on the accompanying processes of axonal sprouting and pathfinding. In this study, we analyzed the effects of transplanted olfactory ensheathing cells (OECs) on axonal sprouting of adult facial neurons by using triple fluorescent retrograde tracing and biometrical analysis of whisking behavior. We found that 2 months after facial nerve axotomy and immediate implantation of OECs in between both nerve stumps fixed in a silicon tube, the total number of labeled neurons was increased by about 100%, compared to animals with simple facial nerve suture or entubulation in an empty conduit. This change in the number of axon sprouts was not random. The highest increase in axon number was observed in the marginal mandibular branch, whereas no changes were detected in the zygomatic branch. This increased sprouting did not improve the whisking behavior as measured by biometric video analysis. Our results demonstrate that OECs are potent inducers of axonal sprouting in vivo. Hence OEC-filled nerve conduits may be a powerful tool to enforce regeneration of a peripheral nerve under adverse conditions, e.g., after long delay between injury and surgical repair. In mixed nerves, increased axonal sprouting will improve specificity since inappropriate nerve-target connections are pruned off during preferential motor innervation. In pure motor nerves, however, OEC-mediated axonal sprouting may result in polyneuronal innveration of target muscles.
Collapse
Affiliation(s)
- O Guntinas-Lichius
- Department of Oto-Rhino-Laryngology, University of Cologne, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Plant GW, Harvey AR. A new type of biocompatible bridging structure supports axon regrowth after implantation into the lesioned rat optic tract. Cell Transplant 2000; 9:759-72. [PMID: 11202563 DOI: 10.1177/096368970000900603] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have developed a new type of polymer/cell/matrix implant and tested whether it can promote the regrowth of retinal ganglion cell (RGC) and other axons across surgically induced tissue defects in the CNS. The constructs, which consisted of 2-2.5-mm-long polycarbonate tubes filled with lens capsule-derived extracellular matrix coated with cultured neonatal Schwann cells, were implanted into lesion cavities made in the left optic tract (OT) of 18-21-day-old rats. In one group, to promote Schwann cell proliferation and perhaps also to stimulate axon regrowth, basic fibroblast growth factor (bFGF) was added to the lens capsule matrix prior to implantation. In another group, to determine whether application of growth factors to the somata of cells enhances the regrowth of distally injured axons, the neurotrophin NT-4/5 was injected into the eye contralateral to the OT lesion. NT-4/5 and bFGF treatments were combined in some rats. After medium-term (4-10 weeks) or long-term (15-20 weeks) survivals, axon growth into implants was assessed immunohistochemically using a neurofilament (RT97) antibody. RGC axons were visualized after injection of WGA/HRP into the right eye. Viable Schwann cells were present in implants at all times after transplantation. Large numbers of RT97+ axons were consistently found within the bridging implants, often associated with the peripheral glia. Axons were traced up to 1.7 mm from the nearest CNS neuropil and there was immunohistochemical evidence of myelination by Schwann cells and by host oligodendrocytes. There were fewer RGC axons in the implants, fibers growing up to 1.6 mm from the thalamus. Neither NT-4/5 nor bFGF, alone or in combination, significantly increased the extent of RGC axon growth within the implants. A group of OT-lesioned rats was implanted with polymer tubes filled with 2-2.5-mm-long pieces of predegenerate peripheral nerve. Surprisingly, polymer/cell/matrix constructs contained comparatively greater numbers of RGC and other axons and supported more extensive axon elongation. Thus, implants of this type may potentially be useful in bridging large tissue defects in the CNS.
Collapse
Affiliation(s)
- G W Plant
- Department of Anatomy and Human Biology, The University of Western Australia, Perth, Australia.
| | | |
Collapse
|
31
|
Abstract
In a relatively short period of time covering the last 2 decades, regeneration of retinofugal axons has become one of most prominent experimental models in restorative neurobiology. There is now a significant knowledge both on the mechanisms governing retinal ganglion cell responses to transection of the optic nerve, and the subsequent cell-cell interactions accumulating in death of the neurons. In addition, retinofugal axons served as an excellent model to examine whether, and to conclude that these axons have remarkable abilities for re-growth. This last issue was of invaluable importance, because axons could regenerate in vivo, into peripheral nerve grafts, and last but not least within the white matter of the cut optic nerve. As it stands to date, the extremely complex aspects of axonal regeneration will probably be understood within the retinofugal pathway. Final elucidation of this delicate system will essentially lead to some revision of our knowledge concerning neurotraumatology and CNS-repair.
Collapse
Affiliation(s)
- P Heiduschka
- Department of Experimental Ophthalmology, University of Münster Eye Hospital, Domagkstrasse 15, 48149 Münster, Germany
| | | |
Collapse
|
32
|
Abstract
This study examined whether prior regenerative growth through peripheral nerve (PN) bridging grafts influenced the specificity with which lesioned adult rat retinal ganglion cell (RGC) axons grew into co-grafts of developing target tissue (fetal superior colliculus). Growth into nontarget (muscle) tissue was also examined. Autologous PN was grafted onto the transected optic nerve. After 14 days, the distal ends of the PNs were placed next to, or inserted into, embryonic tectal tissue or into autologous muscle grafts placed in frontal cortex cavities. Host retinal projections were examined 3-8 months later using anterograde and retrograde tracing techniques. In rats in which there was good apposition between PN and tectal tissue, small numbers of RGC axons were observed growing into the tectal grafts (maximum distance of 180 microm). No evidence of specific innervation of appropriate target regions within tectal grafts was detected, even though such regions (identified by acetylcholinesterase histochemistry) were often located close to the PN grafts. In rats with PN/muscle co-grafts, the extent of retinal axon outgrowth was greater (up to 465 microm from the PN tip) and labelled profiles that resembled motor endplates were seen contacting muscle fibres. Previous studies have shown that spontaneously regenerating RGC axons consistently and selectively innervate appropriate target areas in fetal tectal tissue grafted directly into optic tract lesion cavities. Together, the data suggest that exposure to a PN environment may have reduced the extent of adult retinal axon growth into fetal tectal transplants and affected the way regenerating axons responded to specific developmental cues expressed by target cells in the co-grafted tissue.
Collapse
Affiliation(s)
- M M Tan
- Department of Anatomy and Human Biology, The University of Western Australia, Nedlands, Perth, Western Australia 6907, Australia.
| | | |
Collapse
|
33
|
Abstract
To a large extent the success of axon regeneration and sustained remyelination which distinguishes the PNS from the CNS is attributable to differences in their respective glial environments. For this reason, many have been attracted to the idea that repair of the CNS might be achieved by transplanting Schwann cells into areas of CNS pathology. Schwann cells will not only promote regeneration but will also myelinate axons thereby making them an appropriate cell type to mediate repair of lesions characterised by demyelination as well as axotomy. The recent discovery that olfactory glia are capable of forming myelin sheaths, together with their well-documented ability to support axon regeneration, means that these cells have a range of repair properties similar to that of Schwann cells. It is not clear at present which of these two alternatives, the Schwann cells or the olfactory glial cell, would be of greater benefit for achieving regeneration of axons or remyelination of persistent demyelination following transplantation into the CNS. In this article we review the repair properties of olfactory glia and identify the areas in which their use for repairing the CNS may have advantages over Schwann cells.
Collapse
Affiliation(s)
- R J Franklin
- MRC Cambridge Centre for Brain Repair and Department of Clinical Veterinary Medicine, University of Cambridge, United Kingdom.
| | | |
Collapse
|
34
|
Tan MM, Harvey AR. A comparison of postlesion growth of retinotectal and corticotectal axons after superior colliculus transections in neonatal rats. J Comp Neurol 1997; 386:681-99. [PMID: 9378860 DOI: 10.1002/(sici)1096-9861(19971006)386:4<681::aid-cne12>3.0.co;2-n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined, in neonatal rats, the postinjury response of two different axonal systems that project to a common target area in the visual system. Transections across the rostral part of the left superior colliculus (SC) were made in 2- or 6-day-old rats (P2, P6). Lesioned animals were randomly selected into short- or long-term groups. The short-term group was used to determine the efficacy of the lesion technique; 2-6 days after transections, right (contralateral) eyes were injected with horseradish peroxidase (HRP). Complete deafferentation of the SC was achieved in 73% of P2 (n = 22) and 53% of P6 (n = 10) short-term animals. In the long-term group (examined 2-7 months after transection), retinotectal and corticotectal projections were assessed in each animal by using [3H]proline and wheat germ agglutin-HRP, respectively. Examination of a series of sagittal sections revealed that the cut had extended across the entire SC in 63% of P2 (n = 19) and 55% of P6 (n = 12) long-term rats. Despite this, retinal and cortical axons were seen in appropriate layers in postlesion SC in all P2 lesioned animals. Cortical projections caudal to the cut were seen in all P6 rats; however, in these animals, the retinal projection was sparse and not always present. Differences in lesion geometry led to consistent differences in the pattern and extent of ingrowth of retinal and cortical axons into postlesion SC neuropil. The two axonal populations also followed different paths as they grew between prelesion and postlesion SC. It is likely that a number of factors influenced the patterns of postlesion growth, including the relative maturity of the axons and the neuropil into which they were growing. There was also, however, clear evidence of competitive interactions between retinal and cortical axons in postlesion SC that consistently led to greater than normal segregation of the two populations and hence restricted their terminal distributions.
Collapse
Affiliation(s)
- M M Tan
- Department of Anatomy and Human Biology, The University of Western Australia, Nedlands, Perth
| | | |
Collapse
|