1
|
Filgueira FP, Lobato NS, Nascimento DL, Ceravolo GS, Giachini FRC, Lima VV, Dantas AP, Fortes ZB, Webb RC, Tostes RC, Carvalho MHC. Equilin displays similar endothelium-independent vasodilator potential to 17β-estradiol regardless of lower potential to inhibit calcium entry. Steroids 2019; 141:46-54. [PMID: 30458188 PMCID: PMC6984400 DOI: 10.1016/j.steroids.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022]
Abstract
Conjugated equine estrogens (CEE) have been widely used by women who seek to relieve symptoms of menopause. Despite evidence describing protective effects against risk factors for cardiovascular diseases by naturally occurring estrogens, little is known about the vascular effects of equilin, one of the main components of CEE and not physiologically present in women. In this regard, the present study aims to compare the vascular effects of equilin in an experimental model of hypertension with those induced by 17β-estradiol. Resistance mesenteric arteries from female spontaneously hypertensive rats (SHR) were used for recording isometric tension in a small vessel myograph. As effectively as 17β-estradiol, equilin evoked a concentration-dependent relaxation in mesenteric arteries from female SHRs contracted with KCl, U46619, PDBu or ET-1. Equilin-induced vasodilation does not involve classical estrogen receptor activation, since the estrogen receptor antagonist (ICI 182,780) failed to inhibit relaxation in U46619-precontracted mesenteric arteries. Vasorelaxation was not affected by either endothelium removal or by inhibiting the release or action of endothelium-derived factors. Incubation with L-NAME (NOS inhibitor), ODQ (guanylyl cyclase inhibitor) or KT5823 (inhibitor of protein kinase G) did not affect equilin-induced relaxation. Similarly, indomethacin (COX inhibitor) or blockage of potassium channels with tetraethylammonium, glibenclamide, 4-aminopyridine, or ouabain did not affect equilin-induced relaxation. Inhibitors of adenylyl cyclase SQ22536 or protein kinase A (KT5720) also had no effects on equilin-induced relaxation. While 17β-estradiol inhibited calcium (Ca2+) -induced contractions in high-K+ depolarization medium in a concentration-dependent manner, equilin induced a slight rightward-shift in the contractile responses to Ca2+. Comparable pattern of responses were observed in the concentration-response curves to (S)-(-)-Bay K 8644, a L-type Ca2+ channel activator. Equilin was unable to block the transitory contraction produced by caffeine-induced Ca2+ release from intracellular stores. In conclusion, equilin blocks L-type Ca2+ channels less effectively than 17β-estradiol. Despite its lower effectiveness, equilin equally relaxes resistance mesenteric arteries by blocking Ca2+ entry on smooth muscle.
Collapse
Affiliation(s)
- Fernando P Filgueira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Department of Physiology, Augusta University, Augusta, GA, USA; Faculty of Medicine, Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil.
| | - Núbia S Lobato
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Department of Physiology, Augusta University, Augusta, GA, USA; Faculty of Medicine, Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Denise L Nascimento
- Faculty of Medicine, Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Graziela S Ceravolo
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda R C Giachini
- Department of Physiology, Augusta University, Augusta, GA, USA; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Victor V Lima
- Department of Physiology, Augusta University, Augusta, GA, USA; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Ana Paula Dantas
- Experimental Cardiology, Institut Clínic Cardiovascular, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Zuleica B Fortes
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Maria Helena C Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease. Handb Exp Pharmacol 2017; 243:249-269. [PMID: 27787716 DOI: 10.1007/164_2016_82] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An important hallmark of cardiac failure is abnormal second messenger signaling due to impaired synthesis and catabolism of cyclic adenosine 3',5'- monophosphate (cAMP) and cyclic guanosine 3',5'- monophosphate (cGMP). Their dysregulation, altered intracellular targeting, and blunted responsiveness to stimulating pathways all contribute to pathological remodeling, muscle dysfunction, reduced cell survival and metabolism, and other abnormalities. Therapeutic enhancement of either cyclic nucleotides can be achieved by stimulating their synthesis and/or by suppressing members of the family of cyclic nucleotide phosphodiesterases (PDEs). The heart expresses seven of the eleven major PDE subtypes - PDE1, 2, 3, 4, 5, 8, and 9. Their differential control over cAMP and cGMP signaling in various cell types, including cardiomyocytes, provides intriguing therapeutic opportunities to counter heart disease. This review examines the roles of these PDEs in the failing and hypertrophied heart and summarizes experimental and clinical data that have explored the utility of targeted PDE inhibition.
Collapse
|
3
|
Mokhtar SS, Vanhoutte PM, Leung SWS, Yusof MI, Wan Sulaiman WA, Mat Saad AZ, Suppian R, Rasool AHG. Endothelium dependent hyperpolarization-type relaxation compensates for attenuated nitric oxide-mediated responses in subcutaneous arteries of diabetic patients. Nitric Oxide 2016; 53:35-44. [DOI: 10.1016/j.niox.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 01/17/2023]
|
4
|
Aguirre JA, Lucchinetti E, Clanachan AS, Plane F, Zaugg M. Unraveling Interactions Between Anesthetics and the Endothelium. Anesth Analg 2016; 122:330-48. [DOI: 10.1213/ane.0000000000001053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Brancaleone V, Vellecco V, Matassa DS, d'Emmanuele di Villa Bianca R, Sorrentino R, Ianaro A, Bucci M, Esposito F, Cirino G. Crucial role of androgen receptor in vascular H2S biosynthesis induced by testosterone. Br J Pharmacol 2014; 172:1505-15. [PMID: 24750035 DOI: 10.1111/bph.12740] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H2S) is a gaseous mediator strongly involved in cardiovascular homeostasis, where it provokes vasodilatation. Having previously shown that H2 S contributes to testosterone-induced vasorelaxation, here we aim to uncover the mechanisms underlying this effect. EXPERIMENTAL APPROACH H2 S biosynthesis was evaluated in rat isolated aortic rings following androgen receptor (NR3C4) stimulation. Co-immunoprecipitation and surface plasmon resonance analysis were performed to investigate mechanisms involved in NR3C4 activation. KEY RESULTS Pretreatment with NR3C4 antagonist nilutamide prevented testosterone-induced increase in H2S and reduced its vasodilator effect. Androgen agonist mesterolone also increased H2S and induced vasodilatation; effects attenuated by the selective cystathionine-γ lyase (CSE) inhibitor propargylglycine. The NR3C4-multicomplex-derived heat shock protein 90 (hsp90) was also involved in this effect; its specific inhibitor geldanamycin strongly reduced testosterone-induced H2S production. Neither progesterone nor 17-β-oestradiol induced H2S release. Furthermore, we demonstrated that CSE, the main vascular H2S-synthesizing enzyme, is physically associated with the NR3C4/hsp90 complex and the generation of such a ternary system represents a key event leading to CSE activation. Finally, H2S levels in human blood collected from male healthy volunteers were higher than those in female samples. CONCLUSIONS AND IMPLICATIONS We demonstrated that selective activation of the NR3C4 is essential for H2S biosynthesis within vascular tissue, and this event is based on the formation of a ternary complex between cystathionine-γ lyase, NR3C4and hsp90. This novel molecular mechanism operating in the vasculature, corroborated by higher H2S levels in males, suggests that the L-cysteine/CSE/H2S pathway may be preferentially activated in males leading to gender-specific H2S biosynthesis.
Collapse
Affiliation(s)
- V Brancaleone
- Department of Science, University of Basilicata, Potenza, Italy; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta. PLoS One 2013; 8:e73474. [PMID: 24058477 PMCID: PMC3772950 DOI: 10.1371/journal.pone.0073474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs) activity, the cGMP formation, the cGMP-dependent protein kinase (PKG) activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.
Collapse
|
7
|
Ross RL, Serock MR, Khalil RA. Experimental benefits of sex hormones on vascular function and the outcome of hormone therapy in cardiovascular disease. Curr Cardiol Rev 2011; 4:309-22. [PMID: 20066139 PMCID: PMC2801863 DOI: 10.2174/157340308786349462] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Experimental data have shown beneficial vascular effects of estrogen including stimulation of endothelium-dependent nitric oxide, prostacyclin and hyperpolarizing factor-mediated vascular relaxation. However, the experimental evidence did not translate into vascular benefits of hormone replacement therapy (HRT) in postmenopausal women, and HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events with HRT. The lack of vascular benefits of HRT could be related to the hormone used, the vascular estrogen receptor (ER), and the subject’s age and preexisting cardiovascular condition. Natural and phytoestrogens in small doses may be more beneficial than synthetic estrogen. Specific estrogen receptor modulators (SERMs) could maximize the vascular benefits, with little side effects on breast cancer. Transdermal estrogens avoid the first-pass liver metabolism associated with the oral route. Postmenopausal decrease and genetic polymorphism in vascular ER and post-receptor signaling mechanisms could also modify the effects of HRT. Variants of cytosolic/nuclear ER mediate transcriptional genomic effects that stimulate endothelial cell growth, but inhibit vascular smooth muscle (VSM) proliferation. Also, plasma membrane ERs trigger not only non-genomic stimulation of endothelium-dependent vascular relaxation, but also inhibition of [Ca2+]i, protein kinase C and Rho kinase-dependent VSM contraction. HRT could also be more effective in the perimenopausal period than in older postmenopausal women, and may prevent the development, while worsening preexisting CVD. Lastly, progesterone may modify the vascular effects of estrogen, and modulators of estrogen/testosterone ratio could provide alternative HRT combinations. Thus, the type, dose, route of administration and the timing/duration of HRT should be customized depending on the subject’s age and preexisting cardiovascular condition, and thereby make it possible to translate the beneficial vascular effects of sex hormones to the outcome of HRT in postmenopausal CVD.
Collapse
Affiliation(s)
- Reagan L Ross
- Division of Vascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
8
|
Abstract
Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.
Collapse
|
9
|
Endothelial-mediated microcirculatory responses to an acute estradiol test are influenced by time since menopause, cumulative hormone exposure, and vasomotor symptoms. Menopause 2010; 17:749-57. [DOI: 10.1097/gme.0b013e3181cde2bd] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Onkal R, Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: Clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625:206-19. [DOI: 10.1016/j.ejphar.2009.08.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/04/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
|
11
|
do Nascimento GRA, Barros YVR, Wells AK, Khalil RA. Research into Specific Modulators of Vascular Sex Hormone Receptors in the Management of Postmenopausal Cardiovascular Disease. Curr Hypertens Rev 2009; 5:283-306. [PMID: 20694192 DOI: 10.2174/157340209789587717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Studies on the vasculature have identified estrogen receptors ERα, ERβ and a novel estrogen binding membrane protein GPR30, that mediate genomic and/or non-genomic effects. Estrogen promotes endothelium-dependent relaxation by inducing the production/activity of nitric oxide, prostacyclin, and hyperpolarizing factor, and inhibits the mechanisms of vascular smooth muscle contraction including [Ca(2+)](i), protein kinase C, Rho kinase and mitogen-activated protein kinase. Additional effects of estrogen on the cytoskeleton, matrix metalloproteinases and inflammatory factors contribute to vascular remodeling. However, the experimental evidence did not translate into vascular benefits of menopausal hormone therapy (MHT), and the HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events. The discrepancy has been partly related to delayed MHT and potential changes in the vascular ER amount, integrity, affinity, and downstream signaling pathways due to the subjects' age and preexisting CVD. The adverse vascular effects of MHT also highlighted the need of specific modulators of vascular sex hormone receptors. The effectiveness of MHT can be improved by delineating the differences in phramcokinetics and pharmacodynamics of natural, synthetic, and conjugated equine estrogens. Estriol, "hormone bioidenticals" and phytoestrogens are potential estradiol substitutes. The benefits of low dose MHT, and transdermal or vaginal estrogens over oral preparations are being evaluated. Specific ER modulators (SERMs) and ER agonists are being developed to maximize the effects on vascular ERs. Also, the effects of estrogen are being examined in the context of the whole body hormonal environment and the levels of progesterone and androgens. Thus, the experimental vascular benefits of estrogen can be translated to the outcome of MHT in postmenopausal CVD, as more specific modulators of sex hormone receptors become available and are used at the right dose, route of administration and timing, depending on the subject's age and preexisting cardiovascular condition.
Collapse
|
12
|
Martorell A, Sagredo A, Aras-López R, Balfagón G, Ferrer M. Ovariectomy increases the formation of prostanoids and modulates their role in acetylcholine-induced relaxation and nitric oxide release in the rat aorta. Cardiovasc Res 2009; 84:300-8. [PMID: 19567483 DOI: 10.1093/cvr/cvp214] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIMS This study examines the effect of ovarian function on thromboxane A(2) (TXA(2)), prostaglandin (PG) I(2), PGF(2alpha), and PGE(2) release as well as the role of these substances in nitric oxide (NO) release and acetylcholine (ACh)-mediated relaxation. METHODS AND RESULTS Aortic segments from ovariectomized and control female Sprague-Dawley rats were used. Cyclooxygenase (COX-1 and COX-2) expression was studied. ACh-induced relaxation was analysed in the absence and presence of the COX-2 inhibitor NS-398, the TXA(2) synthesis inhibitor furegrelate, the PGI(2) synthesis inhibitor tranylcypromine (TCP), or the thromboxane-prostanoid receptor antagonist SQ-29548. TXA(2), PGI(2), PGF(2alpha), and PGE(2) release was measured, and the vasomotor effect of exogenous TXA(2), PGI(2,) PGF(2alpha), and PGE(2) was assessed. Basal and ACh-induced NO release in the absence and presence of NS-398, furegrelate, TCP, or TCP plus furegrelate was studied. Ovariectomy did not alter or increased COX-1 or COX-2 expression, respectively. NS-398 decreased, and furegrelate did not change, the ACh-induced relaxation in arteries from both groups. SQ29,548 decreased the ACh-induced relaxation only in aortas from ovariectomized rats. TCP decreased the ACh-induced relaxation in both groups, and furegrelate or SQ29,548 totally restored that response only in aortas from control rats. Ovariectomy increased the ACh-induced TXA(2), PGI(2), and PGE(2) release and the contractile responses induced by exogenous TXA(2), PGF(2alpha), or PGE(2), while it decreased the PGI(2)-induced vasodilator response. In aortas from control rats, NS-398 did not alter the ACh-induced NO release, and furegrelate, TCP, or TCP plus furegrelate increased that release. In arteries from ovariectomized rats, NS-398, furegrelate, TCP, or TCP plus furegrelate decreased the ACh-induced NO release. CONCLUSION Despite the prevalence of vasoconstrictor prostanoids derived from COX-2 in aortas from ovariectomized rats, the ACh-induced relaxation is maintained, probably as consequence of the positive regulation that prostanoids exert on eNOS activity.
Collapse
Affiliation(s)
- Aina Martorell
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Abstract
1. Stroke is a major cause of disability and death worldwide. It is preferable to prevent stroke rather than to treat it and, for the prevention of stroke, all risk factors relating to stroke need to be understood. The present paper reviews potential new strategies for the prevention of stroke based on findings of new risk factors, as well as classical risk factors. 2. Recently, new risk factors related to stroke were reported, including dysfunction of the arterial baroreflex, pro-inflammatory cytokines, vitamins and hormone deficiency. Correspondingly, therapies targeting these risk factors where shown to significantly reduce the incidence and/or severity of stroke. 3. Because the genesis of stroke is multifactorial, the prevention of stroke should not target one risk factor only. Combination therapies with drugs acting on different risk factors may be more effective in the prevention of stroke.
Collapse
Affiliation(s)
- Ai-Jun Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|
14
|
Marni F, Wang Y, Morishima M, Shimaoka T, Uchino T, Zheng M, Kaku T, Ono K. 17 beta-estradiol modulates expression of low-voltage-activated Ca(V)3.2 T-type calcium channel via extracellularly regulated kinase pathway in cardiomyocytes. Endocrinology 2009; 150:879-88. [PMID: 18832095 DOI: 10.1210/en.2008-0645] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
T-type Ca(2+) channel current (I(Ca,T)) plays an important role for spontaneous pacemaker activity and is involved in the progression of structural heart diseases. Estrogens are of importance for the regulation of growth and differentiation and function in a wide array of target tissues, including those in the cardiovascular system. The aim of this study was to elucidate the short-term and long-term effects of 17beta-estradiol (E(2)) on I(Ca,T) in cardiomyocytes. We employed in vivo and in vitro techniques to clarify E(2)-mediated modulation of heart rate (HR) in ovariectomized rats and I(Ca,T) in cardiomyocytes. Ovariectomy increased HR and E(2) supplement reduced HR in ovariectomized rats. Slowing of E(2)-induced HR was consistent with the deceleration of automaticity in E(2)-treated neonatal cardiomyocytes. Short-term application of E(2) did not have significant effects on I(Ca,T), whereas in cardiomyocytes treated with 10 nm E(2) for 24 h, estrogen receptor-independent down-regulation of peak I(Ca,T) and declination of Ca(V)3.2 mRNA were observed. Expression of a cardiac-specific transcription factor Csx/Nkx2.5 was also suppressed by E(2) treatment for 24 h. On the other hand, expression of Ca(V)3.1 mRNA was unaltered by E(2) treatment in this study. An ERK-1/2, 5 inhibitor, PD-98059, abolished the effects of E(2) on I(Ca,T) and Ca(V)3.2 mRNA as well as Csx/Nkx2.5 mRNA. These findings indicate that E(2) decreases Ca(V)3.2 I(Ca,T) through activation of ERK-1/2, 5, which is mediated by the suppression of Csx/Nkx2.5-dependent transcription, suggesting a genomic effect of E(2) as a negative chronotropic factor in the heart.
Collapse
Affiliation(s)
- Farzana Marni
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Marinho RM, Soares JM, Santiago RC, Maganhin CC, Machado F, de Miranda Cota AM, Baracat EC. Effects of estradiol on the cognitive function of postmenopausal women. Maturitas 2008; 60:230-4. [PMID: 18775608 DOI: 10.1016/j.maturitas.2008.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 05/20/2008] [Accepted: 07/13/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To analyze the effect of estrogen on the cognitive function of postmenopausal women through psychometric tests. METHODS Seventy-four postmenopausal women were divided into two groups: (G1) estrogen group (n = 34), treated with 2 mg 17 beta-estradiol; (G2) placebo group (n = 31), treated with inactive substance. All the participants were submitted, before and after treatment, to psychometric tests, Greene's Scale of Climacteric Symptoms and the Hamilton Scale for depression. Statistical analysis was performed using the Mann-Whitney test and Student's t-test. In order to evaluate the degree of improvement of symptoms or depression after estrogen treatment, Spearman's correlation coefficient was calculated. RESULTS A few psychometric tests (immediate and late recall of story, Trailmaking A and B, FAS, Stroop, Bells tests) showed post-intervention improvement, but these were not significant when compared to the placebo group's data. The estrogen group's climacteric symptoms were mitigated in comparison to placebo's, but there was no significant difference between the two groups on the Hamilton Scale. Reduction in climacteric symptoms was associated with improvement in executive function performance as evaluated by the Stroop test. CONCLUSION Our results suggest estrogen improves the cognitive function, possibly due to a decrease in vasomotor symptoms.
Collapse
Affiliation(s)
- Ricardo M Marinho
- Federal University of Sâo Paulo and Faculdade de Ciências Médicas de Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Qiao X, McConnell KR, Khalil RA. Sex steroids and vascular responses in hypertension and aging. ACTA ACUST UNITED AC 2008; 5 Suppl A:S46-64. [PMID: 18395683 DOI: 10.1016/j.genm.2008.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sex hormones play a significant role in human physiology. Estrogen may have protective effects in the cardiovascular system, as evidenced by the decreased incidence of cardiovascular disease (CVD) in premenopausal compared with postmenopausal women. OBJECTIVE This review highlights the acute and long-term effects of sex hormones on the vascular endothelium and vascular smooth muscle (VSM) in adults. Changes in the sex hormone mix, their receptors, and their effects on vascular function in hypertension and aging are also discussed. METHODS Literature collected from the National Centers for Biotechnology Information as identified by a PubMed database search, as well as our experimental work, was used to highlight current knowledge regarding vascular responses to sex hormones in hypertension and in aging. RESULTS Experiments in adult female animals have shown that estrogen induces endothelium-dependent vascular relaxation via the nitric oxide (NO), prostacyclin, and hyperpolarization pathways. Also, surface membrane estrogen receptors (ERs) decrease intracellular free Ca2+ concentration and perhaps protein kinase C-dependent VSM contraction. However, clinical trials such as the Heart and Estrogen/progestin Replacement Study (HERS), HERS-II, and the Women's Health Initiative did not support the experimental findings and demonstrated adverse cardiovascular events of hormone therapy (HT) in aging women. The lack of vascular benefits of HT may be related to the hormone used, the ER, or the patient's cardiovascular condition or age. Experiments on vascular strips from aging (16-month-old) female spontaneously hypertensive rats have shown reduced ER-mediated NO production from endothelial cells and decreased inhibitory effects of estrogen on Ca2+ entry mechanisms of VSM contraction. The age-related decrease in ER-mediated vascular relaxation may explain the decreased effectiveness of HT on CVD in aging women. CONCLUSIONS New HT strategies should further examine the benefits of natural estrogens and phytoestrogens. Transdermal estrogen may be more effective than the oral form, and specific ER modulators may maximize the vascular benefits and reduce the risk of invasive breast cancer. Variants of vascular ERs should be screened for genetic polymorphisms and postmenopausal decrease in the amount of downstream signaling mechanisms. HT may be more effective during the menopausal transition than in late menopause. Progesterone, testosterone, or their specific modulators may be combined with estrogen to provide alternative HT strategies. Thus, HT type, dose, route of administration, and timing should be customized, depending on the patient's cardiovascular condition and age, thereby enhancing the vascular benefits of HT in aging women.
Collapse
Affiliation(s)
- Xiaoying Qiao
- Division of Vascular Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
17
|
Naito A, Sato T, Matsumoto T, Takeyama K, Yoshino T, Kato S, Ohdera M. Dihydrotestosterone inhibits murine hair growth via the androgen receptor. Br J Dermatol 2008; 159:300-5. [PMID: 18547308 DOI: 10.1111/j.1365-2133.2008.08671.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Androgens cause regression of human hair follicles in the parietofrontal scalp, but the precise mechanisms by which they do so are unknown. Although many investigators have elucidated the effect of androgens on hair growth by using rodents and other animals, some of the evidence is conflicting. OBJECTIVES To investigate the effect of androgens on mouse hair regrowth and hair cycle by using androgen receptor knockout (ARKO) mice. Methods We examined the effects of dihydrotestosterone (DHT) on hair regrowth by using ARKO mice and wild-type (WT) littermates, compared the hair cycles in ARKO mice and WT littermates by histology and histomorphometry, and measured hair length and thickness in ARKO mice and WT littermates. RESULTS DHT inhibited the hair regrowth of WT mice but not that of their ARKO littermates. The anagen phase in the second hair cycle was longer in ARKO mice than in their WT littermates. The hair of ARKO mice was longer and thicker than that of their WT littermates. CONCLUSIONS Androgens inhibit hair growth in mice, and this inhibition might be caused by androgen-androgen receptor signals.
Collapse
Affiliation(s)
- A Naito
- Biological Science Research Laboratories, Research and Development Headquarters, LION Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kunert MP, Dwinell MR, Drenjancevic Peric I, Lombard JH. Sex-specific differences in chromosome-dependent regulation of vascular reactivity in female consomic rat strains from a SSxBN cross. Am J Physiol Regul Integr Comp Physiol 2008; 295:R516-27. [PMID: 18509103 DOI: 10.1152/ajpregu.00038.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-throughput studies in the Medical College of Wisconsin Program for Genomic Applications (Physgen) were designed to link chromosomes with physiological function in consomic strains derived from a cross between Dahl salt-sensitive SS/JrHsdMcwi (SS) and Brown Norway normotensive BN/NHsdMcwi (BN) rats. The specific goal of the vascular protocol was to characterize the responses of aortic rings from these strains to vasoconstrictor and vasodilator stimuli (phenylephrine, acetylcholine, sodium nitroprusside, and bath hypoxia) to identify chromosomes that either increase or decrease vascular reactivity to these vasoactive stimuli. Because previous studies demonstrated sex-specific quantitative trait loci (QTLs) related to regulation of cardiovascular phenotypes in an F2 cross between the parental strains, males and females of each consomic strain were included in all experiments. As there were significant sex-specific differences in aortic sensitivity to vasoconstrictor and vasodilator stimuli compared with the parental SS strain, we report the results of the females separately from the males. There were also sex-specific differences in aortic ring sensitivity to these vasoactive stimuli in consomic strains that were fed a high-salt diet (4% NaCl) for 3 wk to evaluate salt-induced changes in vascular reactivity. Differences in genetic architecture could contribute to sex-specific differences in the development and expression of cardiovascular diseases via differential regulation and expression of genes. Our findings are the first to link physiological traits with specific chromosomes in female SS rats and support the idea that sex is an important environmental variable that plays a role in the expression and regulation of genes.
Collapse
Affiliation(s)
- Mary Pat Kunert
- College of Nursing, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Ricky Y K Man
- Department of Pharmacology, University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|