1
|
Jurida L, Werner S, Knapp F, Niemann B, Li L, Grün D, Wirth S, Weber A, Beuerlein K, Liebetrau C, Wiedenroth CB, Guth S, Kojonazarov B, Jafari L, Weissmann N, Günther S, Braun T, Bartkuhn M, Schermuly RT, Dorfmüller P, Yin X, Mayr M, Schmitz ML, Czech L, Schlüter KD, Schulz R, Rohrbach S, Kracht M. A common gene signature of the right ventricle in failing rat and human hearts. NATURE CARDIOVASCULAR RESEARCH 2024; 3:819-840. [PMID: 39196177 PMCID: PMC11358011 DOI: 10.1038/s44161-024-00485-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/02/2024] [Indexed: 08/29/2024]
Abstract
The molecular mechanisms of progressive right heart failure are incompletely understood. In this study, we systematically examined transcriptomic changes occurring over months in isolated cardiomyocytes or whole heart tissues from failing right and left ventricles in rat models of pulmonary artery banding (PAB) or aortic banding (AOB). Detailed bioinformatics analyses resulted in the identification of gene signature, protein and transcription factor networks specific to ventricles and compensated or decompensated disease states. Proteomic and RNA-FISH analyses confirmed PAB-mediated regulation of key genes and revealed spatially heterogeneous mRNA expression in the heart. Intersection of rat PAB-specific gene sets with transcriptome datasets from human patients with chronic thromboembolic pulmonary hypertension (CTEPH) led to the identification of more than 50 genes whose expression levels correlated with the severity of right heart disease, including multiple matrix-regulating and secreted factors. These data define a conserved, differentially regulated genetic network associated with right heart failure in rats and humans.
Collapse
Affiliation(s)
- Liane Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Sebastian Werner
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Fabienne Knapp
- Department of Physiology, Justus Liebig University, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University, Giessen, Germany
| | - Ling Li
- Department of Physiology, Justus Liebig University, Giessen, Germany
| | - Dimitri Grün
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Stefanie Wirth
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Knut Beuerlein
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Christoph Liebetrau
- Department of Cardiology and Angiology, Justus Liebig University, Giessen, Germany
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | | | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
| | - Baktybek Kojonazarov
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
- Medical Clinic II, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Leili Jafari
- Department of Cardiology, Kerckhoff Heart and Lung Center, Bad Nauheim, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Norbert Weissmann
- Medical Clinic II, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Cardio-Pulmonary Institute, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marek Bartkuhn
- Cardio-Pulmonary Institute, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Medical Clinic II, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Peter Dorfmüller
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute of Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Xiaoke Yin
- National Heart and Lung Institute, Faculty of Medicine,Imperial College London, London, UK
| | - Manuel Mayr
- National Heart and Lung Institute, Faculty of Medicine,Imperial College London, London, UK
| | - M Lienhard Schmitz
- German Center for Lung Research (DZL), Giessen, Germany
- Institute of Biochemistry, Justus Liebig University, Giessen, Germany
| | - Laureen Czech
- Department of Physiology, Justus Liebig University, Giessen, Germany
| | | | - Rainer Schulz
- Department of Physiology, Justus Liebig University, Giessen, Germany
| | - Susanne Rohrbach
- Department of Physiology, Justus Liebig University, Giessen, Germany.
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
- Cardio-Pulmonary Institute, Giessen, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
- German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
2
|
Datta S, Cao W, Skillman M, Wu M. Hypoplastic Left Heart Syndrome: Signaling & Molecular Perspectives, and the Road Ahead. Int J Mol Sci 2023; 24:15249. [PMID: 37894928 PMCID: PMC10607600 DOI: 10.3390/ijms242015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a lethal congenital heart disease (CHD) affecting 8-25 per 100,000 neonates globally. Clinical interventions, primarily surgical, have improved the life expectancy of the affected subjects substantially over the years. However, the etiological basis of HLHS remains fundamentally unclear to this day. Based upon the existing paradigm of studies, HLHS exhibits a multifactorial mode of etiology mediated by a complicated course of genetic and signaling cascade. This review presents a detailed outline of the HLHS phenotype, the prenatal and postnatal risks, and the signaling and molecular mechanisms driving HLHS pathogenesis. The review discusses the potential limitations and future perspectives of studies that can be undertaken to address the existing scientific gap. Mechanistic studies to explain HLHS etiology will potentially elucidate novel druggable targets and empower the development of therapeutic regimens against HLHS in the future.
Collapse
Affiliation(s)
| | | | | | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (S.D.); (W.C.); (M.S.)
| |
Collapse
|
3
|
Kmieć P, Rosenkranz S, Odenthal M, Caglayan E. Differential Role of Aldosterone and Transforming Growth Factor Beta-1 in Cardiac Remodeling. Int J Mol Sci 2023; 24:12237. [PMID: 37569619 PMCID: PMC10419155 DOI: 10.3390/ijms241512237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Angiotensin II, a major culprit in cardiovascular disease, activates mediators that are also involved in pathological cardiac remodeling. In this context, we aimed at investigating the effects of two of them: aldosterone (Ald) and transforming growth factor beta-1 (TGF-β1) in an in vivo model. Six-week-old male wild-type (WT) and TGF-β1-overexpressing transgenic (TGF-β1-TG) mice were infused with subhypertensive doses of Ald for 2 weeks and/or treated orally with eplerenone from postnatal day 21. Thehearts' ventricles were examined by morphometry, immunoblotting to assess the intracellular signaling pathways and RT qPCR to determine hypertrophy and fibrosis marker genes. The TGF-β1-TG mice spontaneously developed cardiac hypertrophy and interstitial fibrosis and exhibited a higher baseline phosphorylation of p44/42 and p38 kinases, fibronectin and ANP mRNA expression. Ald induced a comparable increase in the ventricular-heart-weight-to-body-weight ratio and cardiomyocyte diameter in both strains, but a less pronounced increase in interstitial fibrosis in the transgenic compared to the WT mice (23.6% vs. 80.9%, p < 0.005). Ald increased the phosphorylation of p44/42 and p38 in the WT but not the TGF-β1-TG mice. While the eplerenone-enriched chow partially prevented Ald-induced cardiac hypertrophy in both genotypes and interstitial fibrosis in the WT controls, it completely protected against additional fibrosis in transgenic mice. Ald appears to induce cardiac hypertrophy independently of TGF-β1, while in the case of fibrosis, the downstream signaling pathways of these two factors probably converge.
Collapse
Affiliation(s)
- Piotr Kmieć
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, 80214 Gdańsk, Poland;
| | - Stephan Rosenkranz
- Clinic for Internal Medicine III and Cologne Cardiovascular Research Center, Cologne University Heart Center, 50937 Köln, Germany;
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne and Center for Molecular Medicine, University of Cologne, 50937 Köln, Germany;
| | - Evren Caglayan
- Department of Cardiology, University-Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
4
|
Bai B, Ji Z, Wang F, Qin C, Zhou H, Li D, Wu Y. CTRP12 ameliorates post-myocardial infarction heart failure through down-regulation of cardiac apoptosis, oxidative stress and inflammation by influencing the TAK1-p38 MAPK/JNK pathway. Inflamm Res 2023:10.1007/s00011-023-01758-4. [PMID: 37382682 DOI: 10.1007/s00011-023-01758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE C1q/tumour necrosis factor-related protein 12 (CTRP12) is closely related to coronary artery disease and has an outstanding cardioprotective effect. However, whether CTRP12 participates in heart failure (HF) has not been well studied. This work aimed to explore the role and mechanism of CTRP12 in post-myocardial infarction (MI) HF. METHODS Rats were subjected to left anterior descending artery ligation and then raised for six weeks to establish post-MI HF. Recombinant adeno-associated virus-mediated gene transfer was applied to overexpress or silence CTRP12 in rat hearts. RT-qPCR, Immunoblot, Echocardiography, Haematoxylin-eosin (HE) staining, Masson's trichrome staining, TUNEL staining and ELISA were carried out. RESULTS CTRP12 levels were decreased in the hearts of rats with post-MI HF. The overexpression of CTRP12 improved cardiac function and attenuated cardiac hypertrophy and fibrosis in rats with post-MI HF. CTRP12 silencing exacerbated cardiac dysfunction, hypertrophy and fibrosis in rats with post-MI HF. The cardiac apoptosis, oxidative stress and inflammatory response induced by post-MI HF were weakened by CTRP12 overexpression or aggravated by CTRP12 silencing. CTRP12 inhibited the activation of the transforming growth factor-β activated kinase 1 (TAK1)-p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinase (JNK) pathway in the hearts of rats with post-MI HF. Treatment with the TAK1 inhibitor reversed the adverse effects of CTRP12 silencing on post-MI HF. CONCLUSIONS CTRP12 protects against post-MI HF by modulating the TAK1-p38 MAPK/JNK pathway. CTRP12 may be a therapeutic target for the treatment of post-MI HF.
Collapse
Affiliation(s)
- Baobao Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710048, China
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zhaole Ji
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Fangfang Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chaoshi Qin
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Haijia Zhou
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Dongdong Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710048, China.
| |
Collapse
|
5
|
Wang J, Guo R, Ma X, Wang Y, Zhang Q, Zheng N, Zhang J, Li C. Liraglutide inhibits AngII-induced cardiac fibroblast proliferation and ECM deposition through regulating miR-21/PTEN/PI3K pathway. Cell Tissue Bank 2023; 24:125-137. [PMID: 35792987 DOI: 10.1007/s10561-022-10021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cardiac fibrosis characterized with the aberrant proliferation of cardiac fibroblasts and extracellular matrix (ECM) deposition is a major pathophysiological feature of atrial fibrillation (AF). Liraglutide has exerted an alleviative role in various cardiovascular diseases, and can also regulate the level of microRNAs (miRNAs). It has been reported that miR-21 modulated cardiac fibrosis in AF. However, the regulative effect of liraglutide on atrial fibrosis via miR-21 and the underlying mechanism are still unclear. METHODS The atrial fibroblasts were isolated from the heart of C57BL/6 mice, and treated with Angiotensin II (AngII) and liraglutide. The proliferation, migration, and ECM deposition were determined by cell counting Kit-8 (CCK-8), Brdu, transwell assay, cell scratch, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot and immunofluorescence. The underlying mechanism was explored after transfection of miR-21 mimics into cells. RESULTS Liraglutide inhibited proliferation, migration, invasion of fibroblast cell and ECM deposition in AngII-stimulated cardiac fibroblasts. Additionally, liraglutide decreased the AngII-induced increase in the expression level of miR-21, but enhanced the expression of phosphatase and tensin homolog (PTEN), a target of miR-21, thereby suppressing the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Rescue assay confirmed that overexpression of miR-21 counteracted the ameliorative effect of liraglutide on the proliferation, migration, invasion and ECM deposition in fibroblasts stimulated by AngII. CONCLUSIONS Liraglutide dampened AngII-induced proliferation and migration, and ECM deposition of cardiac fibroblast via modulating miR-21/PTEN/PI3K pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China.
| | - Run Guo
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Xiaoli Ma
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Ying Wang
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Qianyu Zhang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Nan Zheng
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Jun Zhang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Chenchen Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| |
Collapse
|
6
|
Genetic Disruption of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Triggers Differential Cardiac Fibrosis and Disorders in Male and Female Mutant Mice: Role of TGF-β1/SMAD Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911487. [PMID: 36232788 PMCID: PMC9569686 DOI: 10.3390/ijms231911487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/01/2023] Open
Abstract
The global targeted disruption of the natriuretic peptide receptor-A (NPRA) gene (Npr1) in mice provokes hypertension and cardiovascular dysfunction. The objective of this study was to determine the mechanisms regulating the development of cardiac fibrosis and dysfunction in Npr1 mutant mice. Npr1 knockout (Npr1-/-, 0-copy), heterozygous (Npr1+/-, 1-copy), and wild-type (Npr1+/+, 2-copy) mice were treated with the transforming growth factor (TGF)-β1 receptor (TGF-β1R) antagonist GW788388 (2 µg/g body weight/day; ip) for 28 days. Hearts were isolated and used for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analyses. The Npr1-/- (0-copy) mice showed a 6-fold induction of cardiac fibrosis and dysfunction with markedly induced expressions of collagen-1α (3.8-fold), monocyte chemoattractant protein (3.7-fold), connective tissue growth factor (CTGF, 5.3-fold), α-smooth muscle actin (α-SMA, 6.1-fold), TGF-βRI (4.3-fold), TGF-βRII (4.7-fold), and phosphorylated small mothers against decapentaplegic (pSMAD) proteins, including pSMAD-2 (3.2-fold) and pSMAD-3 (3.7-fold), compared with wild-type mice. The expressions of phosphorylated extracellular-regulated kinase ERK1/2 (pERK1/2), matrix metalloproteinases-2, -9, (MMP-2, -9), and proliferating cell nuclear antigen (PCNA) were also significantly upregulated in Npr1 0-copy mice. The treatment of mutant mice with GW788388 significantly blocked the expression of fibrotic markers, SMAD proteins, MMPs, and PCNA compared with the vehicle-treated control mice. The treatment with GW788388 significantly prevented cardiac dysfunctions in a sex-dependent manner in Npr1 0-copy and 1-copy mutant mice. The results suggest that the development of cardiac fibrosis and dysfunction in mutant mice is predominantly regulated through the TGF-β1-mediated SMAD-dependent pathway.
Collapse
|
7
|
Chen Y, He T, Zhang Z, Zhang J. Activation of SIRT1 by Resveratrol Alleviates Pressure Overload-Induced Cardiac Hypertrophy via Suppression of TGF-β1 Signaling. Pharmacology 2021; 106:667-681. [PMID: 34518478 DOI: 10.1159/000518464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Silent information regulator 1 (SIRT1) has been extensively investigated in the cardiovascular system and has been shown to play a pivotal role in mediating cell death/survival, energy production, and oxidative stress. However, the functional role of SIRT1 in pressure overload-induced cardiac hypertrophy and dysfunction remains unclear. Resveratrol (Rsv), a widely used activator of SIRT1, has been reported to protect against cardiovascular disease. We here examine whether activation of SIRT1 by Rsv attenuate pressure overload-induced cardiac hypertrophy and to identify the underlying molecular mechanisms. METHODS In vivo, rat model of pressure overload-induced myocardial hypertrophy was established by abdominal aorta constriction (AAC) procedure. In vitro, Angiotensin II (Ang II) was applied to induce hypertrophy in cultured neonatal rat cardiomyocytes (NCMs). Hemodynamics and histological analyses of the heart were evaluated. The expression of SIRT1, transforming growth factor-β1 (TGF-β1)/phosphorylated (p)-small mother against decapentaplegic (Smad)3 and hypertrophic markers were determined by immunofluorescence, real-time PCR, and Western blotting techniques. RESULTS In the current study, Rsv treatment improved left ventricular function and reduced left ventricular hypertrophy and cardiac fibrosis significantly in the pressure overload rats. The expression of SIRT1 was significantly reduced, while the expression of TGF-β1/p-Smad3 was significantly enhanced in AAC afflicted rat heart. Strikingly, treatment with Rsv restored the expressions of SIRT1 and TGF-β1/p-Smad3 under AAC influence. However, SIRT1 inhibitor Sirtinol (Snl) markedly prevented the effects of Rsv, which suggest that SIRT1 signaling pathway was involved in the cardiac protective effect of Rsv. In vitro studies performed in Ang II-induced hypertrophy in NCMs confirmed the cardiac protective effect of Rsv. Furthermore, the study presented that SIRT1 negatively correlated with the cardiac hypertrophy, cardiac fibrosis, and the TGF-β1/p-Smad3 expression. CONCLUSIONS Taken together, these results indicated that activation of SIRT1 by Rsv attenuates cardiac hypertrophy, cardiac fibrosis, and improves cardiac function possibly via regulation of the TGF-β1/p-Smad3 signaling pathway. Our study may provide a potential therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China.,Department of Neurosurgery, Shenzhen University Clinical Medical Academy, Shenzhen, China.,Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ting He
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Zhongjun Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Anesthesiology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Junzhi Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Anesthesiology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Yun W, Qian L, Yuan R, Xu H. Periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation in mice. Biomed Pharmacother 2021; 139:111562. [PMID: 33839492 DOI: 10.1016/j.biopha.2021.111562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Periplocymarin is an effective component of Periplocae Cortex, which was wildly used as an ingredient in Traditional Chinese Medicine. Our group previously reported that periplocymarin exerted cardiotonic role via promoting calcium influx. However, its exact role in the pathogenesis of myocardial fibrosis has not been elucidated yet. The present study was aimed at determining the potential effect and underlying mechanism of periplocymarin in isoproterenol (ISO)-induced myocardial fibrosis. C57BL/6 mice were subcutaneously injected with ISO (5 mg/kg/day) or saline for 1 week. The early-to-atrial wave ratio (E/A ratio) measured by echocardiography revealed that ISO-induced heart stiffness was remarkably reversed by administration of periplocymarin (5 mg/kg/day). Masson trichrome staining exhibited that treatment of periplocymarin reduced the excessive deposition of extracellular matrix (ECM). Further investigations employing real-time PCR and western blot demonstrated that periplocymarin suppressed the expression of fibrosis related genes (Col1a1, Col3a1, Acta2 and Tgfb1) and proteins (Collagen I, Collagen III, α-SMA and TGF-β1) induced by ISO. Metabolomics analysis demonstrated that periplocymarin ameliorated the disorders triggered by ISO and many of the differential metabolic substances were involved in amino acid, glucose and lipid metabolism. Further analysis using network pharmacology revealed that three key genes, namely NOS2, NOS3 and Ptgs2, may be the potential targets of periplocymarin and responsible for the disorders. Validation using heart tissues showed that the mRNA expression of NOS3 was decreased while Ptgs2 was increased upon ISO treatment, which were reversed by periplocymarin. Moreover, the expression of COX-2 (Ptgs2 encoded protein) was consistent with the aspect of Ptgs2 mRNA, while eNOS (NOS3 encoded protein) expression was unchanged. In vitro studies exhibited that periplocymarin exerts anti-fibrotic function via regulating at least eNOS and COX-2 in cardiomyocyte. Taken together, periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation, the potential mechanism was that periplocymarin targeted on, at least eNOS and COX-2, to improve the metabolic processes of cardiomyocyte and thus attenuated the myocardial fibrosis. Our study highlighted that periplocymarin is a potential therapeutic agent for the prevention of myocardial fibrosis.
Collapse
Affiliation(s)
- Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
Li J, Tu J, Gao H, Tang L. MicroRNA-425-3p inhibits myocardial inflammation and cardiomyocyte apoptosis in mice with viral myocarditis through targeting TGF-β1. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:288-298. [PMID: 33332750 PMCID: PMC7860592 DOI: 10.1002/iid3.392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Objective Emerging articles have profiled the relations between microRNAs and viral myocarditis. This research was unearthed to explore the capacity of miR‐425‐3p on cardiomyocyte apoptosis in mice with viral myocarditis and its mechanism. Methods A total of 120 mice were classified into 4 groups in a random fashion (n = 30). The mice were intraperitoneally injected with coxsackievirus type B3 (CVB3) to induce myocarditis. On the 7th day after CVB3 infection, 10 mice in each group were euthanized to assess the heart function indices of mice, observe the pathological conditions, detect myocardial tissue apoptosis, and measure the inflammatory factor levels in myocardial tissues. Expression of miR‐425‐3p, transforming growth factor (TGF‐β1), and apoptosis‐associated proteins in myocardial tissues was determined. The remaining 20 mice in each group were used for survival observation. The luciferase activity assay was implemented to validate the relationship between miR‐425‐3p and TGF‐β1. miR‐425‐3p mimic was transfected into mouse cardiomyocytes HL‐1 and then infected with CVB3 to further verify the regulatory effect of miR‐425‐3p on the cardiomyocyte apoptosis in viral myocarditis. Results miR‐425‐3p was lowly expressed in myocardial tissues of mice with viral myocarditis. Overexpressed miR‐425‐3p improved the cardiac function, alleviated pathological conditions, reduced cardiomyocyte apoptosis, decreased Bax and cleaved Caspase‐3 expression, elevated Bcl‐2 expression, decreased levels of inflammatory factors and improved survival rate of mice with viral myocarditis. Luciferase activity assay verified that miR‐425‐3p could bind to TGF‐β1, and overexpressed miR‐425‐3p suppressed TGF‐β1, p‐smad2/smad2 and p‐smad3/smad3 expression. In vitro experiments further verified that overexpression of miR‐425‐3p inhibited the apoptosis of CVB3‐HL‐1 cells, and the addition of TGF‐β1 would reverse this effect. Conclusion Our research indicates that miR‐425‐3p is poorly expressed in myocardial tissues of mice with viral myocarditis. Overexpressed miR‐425‐3p inhibits cardiomyocyte apoptosis and myocardial inflammation in mice with viral myocarditis as well as improves their survival rates through suppressing the TGF‐β1/smad axis.
Collapse
Affiliation(s)
- Junhua Li
- Department of Cardiology, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang), Nanchang, Jiangxi, China
| | - Jiehong Tu
- Department of Cardiology, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang), Nanchang, Jiangxi, China
| | - Hong Gao
- Department of Cardiology, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang), Nanchang, Jiangxi, China
| | - Lu Tang
- Department of Pediatrics, XD Group Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Hong L, Du X, Li W, Mao Y, Sun L, Li X. EndMT: A promising and controversial field. Eur J Cell Biol 2018; 97:493-500. [PMID: 30082099 DOI: 10.1016/j.ejcb.2018.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/03/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
The endothelial to mesenchymal transition (EndMT) is the process by which endothelial cells lose a portion of their cellular features and obtain certain characteristics of mesenchymal cells, including loss of tight junctions, increased motility, and increased secretion of extracellular matrix proteins. EndMT is involved in cardiac development and a variety of diseases processes, such as vascular or tissue fibrosis and tumor. However, its role in specific diseases remains under debate. This review summarizes EndMT-related diseases, existing controversies, different types of EndMT, and molecules and signaling pathways associated with the process.
Collapse
Affiliation(s)
- Lei Hong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China.
| | - Xiaolong Du
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China.
| | - Wendong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China
| | - Youjun Mao
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China
| | - Lili Sun
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China
| | - Xiaoqiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou 215000, JiangSu, China.
| |
Collapse
|
11
|
Vang A, Clements RT, Chichger H, Kue N, Allawzi A, O'Connell K, Jeong EM, Dudley SC, Sakhatskyy P, Lu Q, Zhang P, Rounds S, Choudhary G. Effect of α7 nicotinic acetylcholine receptor activation on cardiac fibroblasts: a mechanism underlying RV fibrosis associated with cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 2017; 312:L748-L759. [PMID: 28258105 PMCID: PMC5451597 DOI: 10.1152/ajplung.00393.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
Right ventricular (RV) dysfunction is associated with numerous smoking-related illnesses, including chronic obstructive pulmonary disease (COPD), in which it is present even in the absence of pulmonary hypertension. It is unknown whether exposure to cigarette smoke (CS) has direct effects on RV function and cardiac fibroblast (CF) proliferation or collagen synthesis. In this study, we evaluated cardiac function and fibrosis in mice exposed to CS and determined mechanisms of smoke-induced changes in CF signaling and fibrosis. AKR mice were exposed to CS for 6 wk followed by echocardiography and evaluation of cardiac hypertrophy, collagen content, and pulmonary muscularization. Proliferation and collagen content were evaluated in primary isolated rat CFs exposed to CS extract (CSE) or nicotine. Markers of cell proliferation, fibrosis, and proliferative signaling were determined by immunoblot or Sircol collagen assay. Mice exposed to CS had significantly decreased RV function, as determined by tricuspid annular plane systolic excursion. There were no changes in left ventricular parameters. RV collagen content was significantly elevated, but there was no change in RV hypertrophy or pulmonary vascular muscularization. CSE directly increased CF proliferation and collagen content in CF. Nicotine alone reproduced these effects. CSE and nicotine-induced fibroblast proliferation and collagen content were mediated through α7 nicotinic acetylcholine receptors and were dependent on PKC-α, PKC-δ, and reduced p38-MAPK phosphorylation. CS and nicotine have direct effects on CFs to induce proliferation and fibrosis, which may negatively affect right heart function.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Enzyme Activation/drug effects
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics/drug effects
- Hypertrophy, Right Ventricular/complications
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- MAP Kinase Signaling System/drug effects
- Male
- Mice, Inbred AKR
- Myocardium/pathology
- Nicotine/pharmacology
- Phosphorylation/drug effects
- Protein Kinase C-alpha/metabolism
- Protein Kinase C-delta/metabolism
- Rats, Sprague-Dawley
- Smoking/adverse effects
- Vascular Remodeling/drug effects
- Ventricular Dysfunction, Right/complications
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- alpha7 Nicotinic Acetylcholine Receptor/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Richard T Clements
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Surgery, Rhode Island Hospital, Providence, Rhode Island; and
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nouaying Kue
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Ayed Allawzi
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Kelly O'Connell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Euy-Myoung Jeong
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Samuel C Dudley
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Pavlo Sakhatskyy
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peng Zhang
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island;
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
12
|
Chen X, Xu J, Jiang B, Liu D. Bone Morphogenetic Protein-7 Antagonizes Myocardial Fibrosis Induced by Atrial Fibrillation by Restraining Transforming Growth Factor-β (TGF-β)/Smads Signaling. Med Sci Monit 2016; 22:3457-3468. [PMID: 27677228 PMCID: PMC5045133 DOI: 10.12659/msm.897560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background This aim of this study was to investigate the expression of BMP-7 in atrial fibrillation and illuminate the role of BMP-7 and TGF-β/Smads signaling in myocardial fibrosis. Material/Methods Fibrosis of myocardial fibroblasts was induced by TGF-β1 and the optimal condition was determined by the MTT assay. Cells with TGF-β1 treatment were sub-divided into 4 groups: TGF-β1 group, TGF-β1 + Smad3 siRNA group, TGF-β1 + BMP-7 group, and TGF-β1 + BMP-7 + Smad1/5 siRNA group. Cells were then analyzed by detecting the expression of epithelial cadherin (E-cadherin), collagen I, alpha smooth muscle cell actin (α-SMA), and activated Smads using Western blot. Mice were injected daily with Ach-CaCl2 with or without the addition of BMP-7 and Smad1/5 siRNA over a period of 4 weeks. Cardiac functions were tested by echocardiogram assay and fibrosis was diagnosed by histopathological examination. Finally, molecule biomarkers were detected using standard procedures. Results TGF-β1 treatment significantly down-regulated E-cadherin expression and up-regulated expressions of Collagen I, α-SMA, and pSmad3 (P<0.05). The effects of TGF-β1 treatment can be significantly suppressed by Smad3 siRNA (P<0.05). Cells in the BMP-7 group exhibited significantly higher expression levels of E-cadherin and pSmad1/5 together with lower expression levels of pSmad3, collagen I, and α-SMA (P<0.05). Moreover, Smad1/5 siRNA can substantially repress the effects of BMP-7 (P<0.05) and results from the mice model coincided with those in myocardial fibroblasts. Conclusions BMP-7 can regulate TGF-β1/Smad3 by targeting Smad1/5 to antagonize fibrosis in myocardial fibroblasts resulting from atrial fibrillation.
Collapse
Affiliation(s)
- Xinjun Chen
- Emergency Internal Medicine, Shaanxi Province People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Jing Xu
- Department of Emergency, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Baozhou Jiang
- Emergency Internal Medicine, Shaanxi Province People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Danping Liu
- Emergency Internal Medicine, Shaanxi Province People's Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
13
|
Meganathan K, Sotiriadou I, Natarajan K, Hescheler J, Sachinidis A. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol 2015; 183:117-28. [PMID: 25662074 DOI: 10.1016/j.ijcard.2015.01.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/19/2014] [Accepted: 01/25/2015] [Indexed: 02/08/2023]
Abstract
Several in-vivo heart developmental models have been applied to decipher the cardiac developmental patterning encompassing early, dorsal, cardiac and visceral mesoderm as well as various transcription factors such as Gata, Hand, Tin, Dpp, Pnr. The expression of cardiac specific transcription factors, such as Gata4, Tbx5, Tbx20, Tbx2, Tbx3, Mef2c, Hey1 and Hand1 are of fundamental significance for the in-vivo cardiac development. Not only the transcription factors, but also the signaling molecules involved in cardiac development were conserved among various species. Enrichment of the bone morphogenic proteins (BMPs) in the anterior lateral plate mesoderm is essential for the initiation of myocardial differentiation and the cardiac developmental process. Moreover, the expression of a number of cardiac transcription factors and structural genes initiate cardiac differentiation in the medial mesoderm. Other signaling molecules such as TGF-beta, IGF-1/2 and the fibroblast growth factor (FGF) play a significant role in cardiac repair/regeneration, ventricular heart development and specification of early cardiac mesoderm, respectively. The role of the Wnt signaling in cardiac development is still controversial discussed, as in-vitro results differ dramatically in relation to the animal models. Embryonic stem cells (ESC) were utilized as an important in-vitro model for the elucidation of the cardiac developmental processes since they can be easily manipulated by numerous signaling molecules, growth factors, small molecules and genetic manipulation. Finally, in the present review the dynamic role of the long noncoding RNA and miRNAs in the regulation of cardiac development are summarized and discussed.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Isaia Sotiriadou
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Karthick Natarajan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
14
|
Pyridostigmine ameliorates cardiac remodeling induced by myocardial infarction via inhibition of the transforming growth factor-β1/TGF-β1-activated kinase pathway. J Cardiovasc Pharmacol 2014; 63:412-20. [PMID: 24805145 DOI: 10.1097/fjc.0000000000000062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Autonomic imbalance characterized by sympathetic predominance coinciding with diminished vagal activity is an independent risk factor in cardiovascular diseases. Several studies show that vagus nerve stimulation exerted beneficial effects on cardiac function and survival. In this study, we investigated the vagomimetic effect of pyridostigmine on left ventricular (LV) remodeling in rats after myocardial infarction. After myocardial infarction, surviving rats were treated with or without pyridostigmine (31 mg·kg⁻¹·d⁻¹) for 2 weeks, and hemodynamic parameters were measured. LV tissue was used to assess infarct size and interstitial fibrosis by Masson's trichrome and 0.1% picrosirius red staining. Protein expression of heart tissues was used to assess the efficacy of the treatment. Pyridostigmine markedly reduced myocardial infarct size and improved cardiac diastolic function. These improvements were accompanied with a significant decrease in matrix metalloproteinase-2 expression and collagen deposition. Additionally, pyridostigmine inhibited both transforming growth factor-β1 (TGF-β1) and TGF-β1-activated kinase expression in hearts postmyocardial infarction. Thus, pyridostigmine reduces collagen deposition, attenuates cardiac fibrosis, and improves LV diastolic function after myocardial infarction via TGF-β1/TGF-β1-activated kinase pathway inhibition.
Collapse
|
15
|
Abstract
The extracellular matrix (ECM) is a living network of proteins that maintains the structural integrity of the myocardium and allows the transmission of electrical and mechanical forces between the myocytes for systole and diastole. During ventricular remodeling, as a result of iterations in the hemodynamic workload, collagen, the main component of the ECM, increases and occupies the areas between the myocytes and the vessels. The resultant fibrosis (reparative fibrosis) is initially a compensatory mechanism and may progress adversely influencing tissue stiffness and ventricular function. Replacement fibrosis appears at sites of previous cardiomyocyte necrosis to preserve the structural integrity of the myocardium, but with the subsequent formation of scar tissue and widespread distribution, it has adverse functional consequences. Continued accumulation of collagen impairs diastolic function and compromises systolic mechanics. Nevertheless, the development of fibrosis is a dynamic process wherein myofibroblasts, the principal cellular elements of fibrosis, are not only metabolically active and capable of the production and upregulation of cytokines but also have contractile properties. During the process of reverse remodeling with left ventricular assist device unloading, cellular, structural, and functional improvements are observed in terminal heart failure patients. With the advent of anti-fibrotic pharmacologic therapies, cellular therapy, and ventricular support devices, fibrosis has become an important therapeutic target in heart failure patients. Herein, we review the current concepts of fibrosis as a main component of ventricular remodeling in heart failure patients. Our aim is to integrate the histopathologic process of fibrosis with the neurohormonal, cytochemical, and molecular changes that lead to ventricular remodeling and its physiologic consequences in patients. The concept of fibrosis as living scar allows us to envision targeting this scar as a means of improving ventricular function in heart failure patients.
Collapse
Affiliation(s)
- Ana Maria Segura
- Department of Cardiovascular Pathology Research, Texas Heart Institute at St. Luke's Episcopal Hospital, MC 1-283, PO Box 20345, Houston, TX, 77225-0345, USA,
| | | | | |
Collapse
|
16
|
Garside VC, Chang AC, Karsan A, Hoodless PA. Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development. Cell Mol Life Sci 2013; 70:2899-917. [PMID: 23161060 PMCID: PMC4996658 DOI: 10.1007/s00018-012-1197-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022]
Abstract
Congenital heart defects affect approximately 1-5 % of human newborns each year, and of these cardiac defects 20-30 % are due to heart valve abnormalities. Recent literature indicates that the key factors and pathways that regulate valve development are also implicated in congenital heart defects and valve disease. Currently, there are limited options for treatment of valve disease, and therefore having a better understanding of valve development can contribute critical insight into congenital valve defects and disease. There are three major signaling pathways required for early specification and initiation of endothelial-to-mesenchymal transformation (EMT) in the cardiac cushions: BMP, TGF-β, and Notch signaling. BMPs secreted from the myocardium set up the environment for the overlying endocardium to become activated; Notch signaling initiates EMT; and both BMP and TGF-β signaling synergize with Notch to promote the transition of endothelia to mesenchyme and the mesenchymal cell invasiveness. Together, these three essential signaling pathways help form the cardiac cushions and populate them with mesenchyme and, consequently, set off the cascade of events required to develop mature heart valves. Furthermore, integration and cross-talk between these pathways generate highly stratified and delicate valve leaflets and septa of the heart. Here, we discuss BMP, TGF-β, and Notch signaling pathways during mouse cardiac cushion formation and how they together produce a coordinated EMT response in the developing mouse valves.
Collapse
Affiliation(s)
- Victoria C. Garside
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Alex C. Chang
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
17
|
Zhang Y, Hu N, Hua Y, Richmond KL, Dong F, Ren J. Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radic Biol Med 2012; 53:194-207. [PMID: 22565031 PMCID: PMC3392511 DOI: 10.1016/j.freeradbiomed.2012.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
Cold exposure is associated with an increased prevalence of cardiovascular disease although the mechanism is unknown. Metallothionein, a heavy-metal-scavenging antioxidant, protects against cardiac anomalies. This study was designed to examine the impact of metallothionein on cold exposure-induced myocardial dysfunction, intracellular Ca(2+) derangement, fibrosis, endoplasmic reticulum (ER) stress, and apoptosis. Echocardiography, cardiomyocyte function, and Masson trichrome staining were evaluated in Friend virus B (FVB) and cardiac-specific metallothionein transgenic mice after cold exposure (3 months, 4 °C). Cold exposure increased plasma levels of norepinephrine, endothelin-1, and TGF-β; reduced plasma NO levels and cardiac antioxidant capacity; enlarged ventricular end-systolic diameter; compromised fractional shortening; promoted reactive oxygen species (ROS) production and apoptosis; and suppressed the ER stress markers Bip, calregulin, and phospho-eIF2α, accompanied by cardiac fibrosis and elevated levels of matrix metalloproteinases and Smad-2/3 in FVB mice. Cold exposure-induced echocardiographic, histological, ER stress, ROS, apoptotic, and fibrotic signaling changes (but not plasma markers) were greatly improved by metallothionein. In vitro metallothionein induction by zinc chloride ablated H(2)O(2)- but not TGF-β-induced cell proliferation in fibroblasts. In summary, our data suggest that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of myocardial fibrosis.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Kacy L. Richmond
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Feng Dong
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| |
Collapse
|
18
|
Doerdelmann T, Kojetin DJ, Baird-Titus JM, Solt LA, Burris TP, Rance M. Structural and biophysical insights into the ligand-free Pitx2 homeodomain and a ring dermoid of the cornea inducing homeodomain mutant. Biochemistry 2012; 51:665-76. [PMID: 22224469 PMCID: PMC3264736 DOI: 10.1021/bi201639x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The homeodomain-containing transcription factor Pitx2 (pituitary homeobox protein 2) is present in many developing embryonic tissues, including the heart. Its homeodomain is responsible for the recognition and binding to target DNA sequences and thus constitutes a major functional unit in the Pitx2 protein. Nuclear magnetic resonance techniques were employed to determine the solution structure of the native Pitx2 homeodomain and a R24H mutant that causes autosomal dominantly inherited ring dermoid of the cornea syndrome. The structures reveal that both isoforms possess the canonical homeodomain fold. However, the R24H mutation results in a 2-fold increase in DNA binding affinity and a 5 °C decrease in thermal stability, while changing the dynamic environment of the homeodomain only locally. When introduced into full-length Pitx2c, the mutation results in an only 25% loss of transactivation activity. Our data correlate well with clinical observations suggesting a milder deficiency for the R24H mutation compared to those of other Pitx2 homeodomain mutations.
Collapse
Affiliation(s)
- Thomas Doerdelmann
- University of Cincinnati, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Douglas J. Kojetin
- University of Cincinnati, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- The Scripps Research Institute, Scripps Florida, Department of Molecular Therapeutics, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jamie M. Baird-Titus
- College of Mount St. Joseph, Department of Chemistry, 5701 Delhi Road, Cincinnati, OH 45233, USA
| | - Laura A. Solt
- The Scripps Research Institute, Scripps Florida, Department of Molecular Therapeutics, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas P. Burris
- The Scripps Research Institute, Scripps Florida, Department of Molecular Therapeutics, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Mark Rance
- University of Cincinnati, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
19
|
Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, Guo S, Wang Y, Fan K, Zhan D, Zha L, Cao Y, Li Z, Cheng X, Zhang Y, Yang X. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res 2011; 22:516-27. [PMID: 21844895 PMCID: PMC3292295 DOI: 10.1038/cr.2011.132] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have begun to reveal critical roles of microRNAs (miRNAs) in the pathogenesis of cardiac hypertrophy and dysfunction. In this study, we tested whether a transforming growth factor-β (TGF-β)-regulated miRNA played a pivotal role in the development of cardiac hypertrophy and heart failure (HF). We observed that miR-27b was upregulated in hearts of cardiomyocyte-specific Smad4 knockout mice, which developed cardiac hypertrophy. In vitro experiments showed that the miR-27b expression could be inhibited by TGF-β1 and that its overexpression promoted hypertrophic cell growth, while the miR-27b suppression led to inhibition of the hypertrophic cell growth caused by phenylephrine (PE) treatment. Furthermore, the analysis of transgenic mice with cardiomyocyte-specific overexpression of miR-27b revealed that miR-27b overexpression was sufficient to induce cardiac hypertrophy and dysfunction. We validated the peroxisome proliferator-activated receptor-γ (PPAR-γ) as a direct target of miR-27b in cardiomyocyte. Consistently, the miR-27b transgenic mice displayed significantly lower levels of PPAR-γ than the control mice. Furthermore, in vivo silencing of miR-27b using a specific antagomir in a pressure-overload-induced mouse model of HF increased cardiac PPAR-γ expression, attenuated cardiac hypertrophy and dysfunction. The results of our study demonstrate that TGF-β1-regulated miR-27b is involved in the regulation of cardiac hypertrophy, and validate miR-27b as an efficient therapeutic target for cardiac diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu W, Foley AC. Signaling pathways in early cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:191-205. [PMID: 20830688 DOI: 10.1002/wsbm.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
21
|
Arthur HM, Bamforth SD. TGFβ signaling and congenital heart disease: Insights from mouse studies. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:423-34. [PMID: 21538815 DOI: 10.1002/bdra.20794] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/17/2011] [Accepted: 01/28/2011] [Indexed: 12/14/2022]
Abstract
Transforming growth factor β (TGFβ) regulates one of the major signaling pathways that control tissue morphogenesis. In vitro experiments using heart explants indicated the importance of this signaling pathway for the generation of cushion mesenchymal cells, which ultimately contribute to the valves and septa of the mature heart. Recent advances in mouse genetics have enabled in vivo investigation into the roles of individual ligands, receptors, and coreceptors of this pathway, including investigation of the tissue specificity of these roles in heart development. This work has revealed that (1) cushion mesenchyme can form in the absence of TGFβ signaling, although mesenchymal cell numbers may be misregulated; (2) TGFβ signaling is essential for correct remodeling of the cushions, particularly those of the outflow tract; (3) TGFβ signaling also has a role in ensuring accurate remodeling of the pharyngeal arch arteries to form the mature aortic arch; and (4) mesenchymal cells derived from the epicardium require TGFβ signaling to promote their differentiation to vascular smooth muscle cells to support the coronary arteries. In addition, a mouse genetics approach has also been used to investigate the disease pathogenesis of Loeys-Dietz syndrome, a familial autosomal dominant human disorder characterized by a dilated aortic root, and associated with mutations in the two TGFβ signaling receptor genes, TGFBR1 and TGFBR2. Further important insights are likely as this exciting work progresses.
Collapse
Affiliation(s)
- Helen M Arthur
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
22
|
Astragaloside IV attenuates myocardial fibrosis by inhibiting TGF-β1 signaling in coxsackievirus B3-induced cardiomyopathy. Eur J Pharmacol 2011; 658:168-74. [DOI: 10.1016/j.ejphar.2011.02.040] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/01/2011] [Accepted: 02/15/2011] [Indexed: 11/16/2022]
|
23
|
He K, Fu Y, Zhang W, Yuan J, Li Z, Lv Z, Zhang Y, Fang X. Single-molecule imaging revealed enhanced dimerization of transforming growth factor β type II receptors in hypertrophic cardiomyocytes. Biochem Biophys Res Commun 2011; 407:313-7. [PMID: 21382347 DOI: 10.1016/j.bbrc.2011.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/02/2011] [Indexed: 12/29/2022]
Abstract
Transforming growth factor β (TGF-β) signaling plays an important role in the pathogenesis of cardiac hypertrophy. However, the molecular mechanism of TGF-β signaling during the process of cardiac remodeling remains poorly understood. In the present study, by employing single-molecule fluorescence imaging approach, we demonstrated that in neonatal rat cardiomyocytes, TGF-β type II receptors (TβRII) existed as monomers at the low expression level, and dimerized upon TGF-β1 stimulation. Importantly, for the first time, we found the increased dimerization of TβRII in hypertrophic cardiomyocytes comparing to the normal cardiomyocytes. The enhanced TβRII dimerization was correlated with the enhanced Smad3 phosphorylation levels. These results provide new information on the mechanism of TGF-β signaling in cardiac remodeling.
Collapse
Affiliation(s)
- Kangmin He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Transforming growth factor beta 1 (TGF-beta 1) in atrial fibrillation and acute congestive heart failure. Clin Res Cardiol 2010; 100:335-42. [PMID: 21069358 DOI: 10.1007/s00392-010-0248-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Atrial fibrillation (AF) and acute congestive heart failure (aCHF) are characterized by an adverse cardiac remodeling. Arrhythmogenic or structural remodeling can be caused by interstitial fibrosis. Transforming growth factor beta 1 (TGF-beta 1) represents a central regulator of cardiac fibrosis. This study investigates serum levels of TGF-beta 1 in patients with AF and aCHF. METHODS 401 patients presenting with symptoms of dyspnea or peripheral edema were prospectively enrolled. Blood samples for measurement of TGF-beta 1 (R&D Systems, Inc.) and amino-terminal pro-brain natriuretic peptide (NT-proBNP) (DadeBehring ltd.) were collected after the initial clinical evaluation. RESULTS Median TGF-beta 1 levels were lower in patients with AF (21.0 ng/ml, interquartile range (IR) 15.4-27.6 ng/ml, n = 107) compared to those without (25.0 ng/ml, IR 18.5-31.6 ng/ml, n = 294) (p = 0.009). Patients with aCHF had lower TGF-beta 1 levels (median 22.0 ng/ml, IR 15.6-27.1 ng/ml, n = 122) than those without (median 24.9 ng/ml, IR 18.1-31.9 ng/ml, n = 279) (p = 0.0005). In logistic regression models TGF-beta 1 was still associated with AF (odds ratio (OR) 3.00, 95% CI 1.37-6.61, p = 0.0001) and aCHF (OR 3.98, 95% CI 1.55-10.19, p = 0.004). TGF-beta 1 inversely correlated with left atrial diameter (r = -0.30, p = 0.007) and NT-proBNP (r = -0.14, p = 0.007). CONCLUSIONS Low serum levels of TGF-beta 1 are associated with AF and aCHF. This decrease may result from a higher consumption of TGF-beta 1 within the impaired myocardium or antifibrotic functions of natriuretic peptides.
Collapse
|
25
|
Jing-bin H, Ying-long L, Pei-wu S, Xiao-dong L, Ming D, Xiang-ming F. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol 2010; 19:e183-93. [DOI: 10.1016/j.carpath.2009.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/21/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022] Open
|
26
|
Huang H, Tang QZ, Wang AB, Chen M, Yan L, Liu C, Jiang H, Yang Q, Bian ZY, Bai X, Zhu LH, Wang L, Li H. Tumor suppressor A20 protects against cardiac hypertrophy and fibrosis by blocking transforming growth factor-beta-activated kinase 1-dependent signaling. Hypertension 2010; 56:232-9. [PMID: 20585109 DOI: 10.1161/hypertensionaha.110.149963] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A20 or tumor necrosis factor-induced protein 3 is a negative regulator of nuclear factor kappaB signaling. A20 has been shown previously to attenuate cardiac hypertrophy in vitro and postmyocardial infarction remodeling in vivo. In the present study, we tested the hypothesis that overexpression of A20 in the murine heart would protect against cardiac hypertrophy in vivo. The effects of constitutive human A20 expression on cardiac hypertrophy were investigated using in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding in A20 transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by echocardiography, as well as by pathological and molecular analyses of heart samples. Constitutive overexpression of human A20 in the murine heart attenuated the hypertrophic response and markedly reduced inflammation, apoptosis, and fibrosis. Cardiac function was also preserved in hearts with increased A20 levels in response to hypertrophic stimuli. Western blot experiments further showed A20 expression markedly blocked transforming growth factor-beta-activated kinase 1-dependent c-Jun N-terminal kinase/p38 signaling cascade but with no difference in either extracellular signal-regulated kinase 1/2 or AKT activation in vivo and in vitro. In cultured neonatal rat cardiac myocytes, [3H]proline incorporation and Western blot assays revealed that A20 expression suppressed transforming growth factor-beta-induced collagen synthesis and transforming growth factor-beta-activated kinase 1-dependent Smad 2/3/4 activation. In conclusion, A20 improves cardiac functions and inhibits cardiac hypertrophy, inflammation, apoptosis, and fibrosis by blocking transforming growth factor-beta-activated kinase 1-dependent signaling.
Collapse
Affiliation(s)
- He Huang
- Department of Cardiology of Renmin Hospital, Wuhan University, Wuhan 430060, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
TGF-β1 improves cardiac performance via up-regulation of laminin receptor 37/67 in adult ventricular cardiomyocytes. Basic Res Cardiol 2010; 105:621-9. [DOI: 10.1007/s00395-010-0108-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/19/2010] [Accepted: 05/28/2010] [Indexed: 12/17/2022]
|
28
|
Ricci M, Mohapatra B, Urbiztondo A, Birusingh RJ, Morgado M, Rodriguez MM, Lincoln J, Vatta M. Differential changes in TGF-β/BMP signaling pathway in the right ventricular myocardium of newborns with hypoplastic left heart syndrome. J Card Fail 2010; 16:628-34. [PMID: 20670841 DOI: 10.1016/j.cardfail.2010.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/17/2010] [Accepted: 03/10/2010] [Indexed: 01/28/2023]
Abstract
BACKGROUND Hypoplastic left heart syndrome (HLHS) is characterized by underdevelopment of the left ventricle (LV) and increased biomechanical stress on the right ventricle (RV) from single ventricle physiology. Despite the clinical significance, the signaling pathways active during RV remodeling and disease progression are not known. To address this, we examined differential changes in expression of genes associated with transforming growth factor-beta (TGF-beta)/bone morphogenetic protein (BMP) signaling in RV tissue isolated from HLHS patients relative to RV and LV tissue from control subjects. METHODS AND RESULTS Quantitative real-time polymerase chain reaction was used to detect changes in expression of 84 genes involved in TGF-beta/BMP-mediated cardiac development, cell growth, and differentiation in RV tissue collected from 6 neonates with HLHS undergoing stage 1 Norwood procedure (age, 1-7 days; mean, 4 days) and RV and LV tissue obtained from 5 infants with noncardiac pathology (age range, 1-135 days: mean, 85 days) that served as controls. Analysis of gene expression profiles between control-LV and control-RV revealed significant depression of TGF-beta/BMP signaling in RV compared with LV. Of the 84 genes analyzed, 38 were differentially expressed between HLHS-RV and control-RV, whereas only 22 compared with control-LV. Significant changes were observed in: tissue remodeling genes including Activin receptor type IIA (ACVR2A) (+2.13) and Activin receptor-like kinase 1 (ACVRL1) (+2.22); and cell survival, growth, and differentiation genes including CDC25A (+2.18), p21 (-3.64), p15 (+2.15), BMP5 (+4.58), BMP3 (+2.16), GDF3 (+8.59), NODAL (+2.32), and BMP binding endothelial regulator (BMPER) (+4.58). The most significant changes common to HLHS-RV versus control-RV and control-LV sample groups is observed for Anti müllerian hormone receptor 2 (AMHR2) (+18.79 control-RV, +3.38 control-LV), and the BMP antagonist Inhibin alpha (INHA) (+11.47 control-RV, +5.73 control-LV). CONCLUSIONS Although this descriptive study does not allow cause-effect inferences, our results suggest changes in cardiac development pathways and upregulation of genes associated with cell growth and differentiation in the neonatal RV of children with HLHS. These molecular profiles are more closely related to those observed in the normal LV rather than normal RV at similar maturational age. This work provides the basis for future mechanistic studies to elucidate the molecular mechanisms regulating RV remodeling in HLHS.
Collapse
Affiliation(s)
- Marco Ricci
- Division of Cardiothoracic Surgery, University of Miami Miller School of Medicine and Holtz Children's Hospital, Miami, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Congenital heart disease (CHD) is the most common type of birth defect. Despite the many advances in the understanding of cardiac development and the identification of many genes related to cardiac development, the fundamental etiology for the majority of cases of congenital heart disease remains unknown. This review summarizes normal cardiac development, and outlines the recent discoveries of the genetic causes of congenital heart disease and provides possible strategies for exploring genetic causes.
Collapse
Affiliation(s)
- Jing-Bin Huang
- Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Pediatric Cardiac Center, Bejing, China
| | | | | |
Collapse
|
30
|
Mahmoudabady M, Mathieu M, Touihri K, Hadad I, Da Costa AM, Naeije R, Mc Entee K. Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy. BMC Cardiovasc Disord 2009; 9:49. [PMID: 19818143 PMCID: PMC2763849 DOI: 10.1186/1471-2261-9-49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/09/2009] [Indexed: 01/18/2023] Open
Abstract
Background Insulin-like growth factor-1 (IGF-1), transforming growth factor β (TGFβ) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Methods Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFβ and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Results Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFβ, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. Conclusion These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies.
Collapse
Affiliation(s)
- Maryam Mahmoudabady
- Laboratory of Physiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
The effect of tanshinone IIA upon the TGF-beta1/Smads signaling pathway in hypertrophic myocardium of hypertensive rats. ACTA ACUST UNITED AC 2009; 29:476-80. [PMID: 19662366 DOI: 10.1007/s11596-009-0417-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Indexed: 10/19/2022]
Abstract
To investigate the molecular mechanism by which Tanshinone IIA (TSN IIA) prevents left ventricular hypertrophy (LVH), we examined the expression of AT1R, TGF-beta1 and Smads gene in the hypertrophic myocardium of hypertensive rats with abdominal aorta constriction. LVH model was established by creating abdominal aorta constriction. Four weeks later, animals were randomly divided into 4 groups with 8 animals in each. One group was used as model control, the other three groups were treated with TSN IIA (20 mg/kg), TSN IIA (10 mg/kg) and valsartan (10 mg/kg), respectively. Another 8 SD rats were subjected to sham surgery and served as blank control. After 8-week treatment, the caudal artery pressure of the animals was measured. The tissues of left ventricle were taken for the measurement of the left ventricular mass index (LVMI) and pathological sectioning and HE-staining were used for determining the myocardial fiber dimension (MFD). The mRNA expression of AT1R, protein expression of TGF-beta1 and activity of Smad-2, 4, 7 were detected by RT-PCR and Western blotting, respectively. Our results showed that (1) the blood pressure of rats treated with TSN IIA, either at high or low dose, was significantly higher than those in the control and valsartan-treated group (P<0.01, P<0.05); (2) LVMI and MFD in TSN IIA and valsartan-treated rats were higher than those in the control group (P<0.05) but significantly lower than those in the model control (P<0.01); (3) the high doses of TSN IIA and valsartan significantly down-regulated the mRNA expression of AT1R and protein expression of TGF-beta1 and Smad-3 in the hypertrophic myocardium (P<0.01), and TGF-beta1 in valsartan-treated animals was more significantly lower than that in rats treated with TSN IIA; (4) the two doses of TSN IIA and valsartan significantly up-regulated the protein expression of Smad-7 in the hypertrophic myocardium (P<0.01), and Smad-7 in the animals treated with high-dose TSN IIA was significantly higher than that in rats treated with valsartan. It is concluded that inhibition of myocardial hypertrophy induced by TSN IIA independent of blood pressure. The underlying mechanism might be the down-regulated expression of AT1R mRNA and Smad-3, increased production of Smad-7, and blocking effect of TSN IIA on TGF beta1/Smads signal pathway in local myocardium.
Collapse
|
32
|
Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S, Stallmach A, Kinne RW, Wolf G. TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim Biophys Acta Mol Basis Dis 2009; 1792:746-56. [PMID: 19539753 DOI: 10.1016/j.bbadis.2009.06.004] [Citation(s) in RCA: 463] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 12/25/2022]
Abstract
The action of transforming-growth-factor (TGF)-beta following inflammatory responses is characterized by increased production of extracellular matrix (ECM) components, as well as mesenchymal cell proliferation, migration, and accumulation. Thus, TGF-beta is important for the induction of fibrosis often associated with chronic phases of inflammatory diseases. This common feature of TGF-related pathologies is observed in many different organs. Therefore, in addition to the description of the common TGF-beta-pathway, this review focuses on TGF-beta-related pathogenetic effects in different pathologies/organs, i. e., arthritis, diabetic nephropathy, colitis/Crohn's disease, radiation-induced fibrosis, and myocarditis (including their similarities and dissimilarities). However, TGF-beta exhibits both exacerbating and ameliorating features, depending on the phase of disease and the site of action. Due to its central role in severe fibrotic diseases, TGF-beta nevertheless remains an attractive therapeutic target, if targeted locally and during the fibrotic phase of disease.
Collapse
Affiliation(s)
- Dirk Pohlers
- Experimental Rheumatology Unit, Department of Orthopedics, Waldkrankenhaus Rudolf Elle Eisenberg, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Thakur N, Sorrentino A, Heldin CH, Landström M. TGF-beta uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells. Future Oncol 2009; 5:1-3. [PMID: 19243289 DOI: 10.2217/14796694.5.1.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
34
|
Mayorga M, Finan A, Penn M. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue. Stem Cell Rev Rep 2009; 5:51-60. [PMID: 19184567 DOI: 10.1007/s12015-009-9050-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/08/2009] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.
Collapse
Affiliation(s)
- Maritza Mayorga
- Skirball Laboratory for Cardiovascular Cellular Therapeutics, Center for Cardiovascular Cell Therapy, Departments of Cardiovascular Medicine and Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
35
|
Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 2008; 115:453-95. [PMID: 18841463 DOI: 10.1007/s10549-008-0184-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/02/2008] [Indexed: 12/24/2022]
Abstract
In most human breast cancers, lowering of TGFbeta receptor- or Smad gene expression combined with increased levels of TGFbetas in the tumor microenvironment is sufficient to abrogate TGFbetas tumor suppressive effects and to induce a mesenchymal, motile and invasive phenotype. In genetic mouse models, TGFbeta signaling suppresses de novo mammary cancer formation but promotes metastasis of tumors that have broken through TGFbeta tumor suppression. In mouse models of "triple-negative" or basal-like breast cancer, treatment with TGFbeta neutralizing antibodies or receptor kinase inhibitors strongly inhibits development of lung- and bone metastases. These TGFbeta antagonists do not significantly affect tumor cell proliferation or apoptosis. Rather, they de-repress anti-tumor immunity, inhibit angiogenesis and reverse the mesenchymal, motile, invasive phenotype characteristic of basal-like and HER2-positive breast cancer cells. Patterns of TGFbeta target genes upregulation in human breast cancers suggest that TGFbeta may drive tumor progression in estrogen-independent cancer, while it mediates a suppressive host cell response in estrogen-dependent luminal cancers. In addition, TGFbeta appears to play a key role in maintaining the mammary epithelial (cancer) stem cell pool, in part by inducing a mesenchymal phenotype, while differentiated, estrogen receptor-positive, luminal cells are unresponsive to TGFbeta because the TGFBR2 receptor gene is transcriptionally silent. These same cells respond to estrogen by downregulating TGFbeta, while antiestrogens act by upregulating TGFbeta. This model predicts that inhibiting TGFbeta signaling should drive the differentiation of mammary stem cells into ductal cells. Consequently, TGFbeta antagonists may convert basal-like or HER2-positive cancers to a more epithelioid, non-proliferating (and, perhaps, non-metastatic) phenotype. Conversely, these agents might antagonize the therapeutic effects of anti-estrogens in estrogen-dependent luminal cancers. These predictions need to be addressed prospectively in clinical trials and should inform the selection of patient populations most likely to benefit from this novel anti-metastatic therapeutic approach.
Collapse
Affiliation(s)
- Antoinette R Tan
- Division of Medical Oncology, Department of Internal Medicine, UMDNJ-Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
36
|
|