1
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
2
|
Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F. Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2015; 119:1233-42. [PMID: 26183480 DOI: 10.1152/japplphysiol.00374.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 01/09/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is the most common myocardial structural abnormality associated with heart failure with preserved ejection fraction (HFpEF). LVH is driven by neurohumoral activation, increased mechanical load, and cytokines associated with arterial hypertension, chronic kidney disease, diabetes, and other comorbidities. Here we discuss the experimental and clinical evidence that links LVH to diastolic dysfunction and qualifies LVH as one diagnostic marker for HFpEF. Mechanisms leading to diastolic dysfunction in LVH are incompletely understood, but may include extracellular matrix changes, vascular dysfunction, as well as altered cardiomyocyte mechano-elastical properties. Beating cardiomyocytes from HFpEF patients have not yet been studied, but we and others have shown increased Ca(2+) turnover and impaired relaxation in cardiomyocytes from hypertrophied hearts. Structural myocardial remodeling can lead to heterogeneity in regional myocardial contractile function, which contributes to diastolic dysfunction in HFpEF. In the clinical setting of patients with compound comorbidities, diastolic dysfunction may occur independently of LVH. This may be one explanation why current approaches to reduce LVH have not been effective to improve symptoms and prognosis in HFpEF. Exercise training, on the other hand, in clinical trials improved exercise tolerance and diastolic function, but did not reduce LVH. Thus current clinical evidence does not support regression of LVH as a surrogate marker for (short-term) improvement of HFpEF.
Collapse
Affiliation(s)
- Frank R Heinzel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany;
| | - Felix Hohendanner
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Ge Jin
- Cardiology Department, The Second Affiliated Hospital & YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China; and Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Frank Edelmann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
4
|
Bisping E, Ikeda S, Sedej M, Wakula P, McMullen JR, Tarnavski O, Sedej S, Izumo S, Pu WT, Pieske B. Transcription factor GATA4 is activated but not required for insulin-like growth factor 1 (IGF1)-induced cardiac hypertrophy. J Biol Chem 2012; 287:9827-9834. [PMID: 22228770 DOI: 10.1074/jbc.m111.338749] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) promotes a physiological type of cardiac hypertrophy and has therapeutic effects in heart disease. Here, we report the relationship of IGF1 to GATA4, an essential transcription factor in cardiac hypertrophy and cell survival. In cultured neonatal rat ventricular myocytes, we compared the responses to IGF1 (10 nmol/liter) and phenylephrine (PE, 20 μmol/liter), a known GATA4 activator, in concentrations promoting a similar extent of hypertrophy. IGF1 and PE both increased nuclear accumulation of GATA4 and phosphorylation at Ser(105) (PE, 2.4-fold; IGF1, 1.8-fold; both, p < 0.05) and increased GATA4 DNA binding activity as indicated by ELISA and by chromatin IP of selected promoters. Although IGF1 and PE each activated GATA4 to the same degree, GATA4 knockdown by RNA interference only blocked hypertrophy by PE but not by IGF1. PE induction of a panel of GATA4 target genes (Nppa, Nppb, Tnni3, Myl1, and Acta1) was inhibited by GATA4 knockdown. In contrast, IGF1 regulated only Acta1 in a GATA4-dependent fashion. Consistent with the in vitro findings, Gata4 haploinsufficiency in mice did not alter cardiac structure, hyperdynamic function, or antifibrotic effects induced by myocardial overexpression of the IGF1 receptor. Our data indicate that GATA4 is activated by the IGF1 pathway, but although it is required for responses to pathological stimuli, it is not necessary for the effects of IGF1 on cardiac structure and function.
Collapse
Affiliation(s)
- Egbert Bisping
- Department of Cardiology, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria,; Department of Cardiology and Pneumology, Georg August University, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Sadakatsu Ikeda
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts 02115
| | - Miriam Sedej
- Department of Cardiology and Pneumology, Georg August University, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Paulina Wakula
- Department of Cardiology, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Julie R McMullen
- Baker IDI Heart and Diabetes Research Institute, 6492 St. Kilda Road Central, Melbourne, Victoria 8008, Australia
| | - Oleg Tarnavski
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139, and
| | - Simon Sedej
- Department of Cardiology, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Seigo Izumo
- CVM Consulting, Brookline, Massachusetts 02445
| | - William T Pu
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts 02115
| | - Burkert Pieske
- Department of Cardiology, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria,; Department of Cardiology and Pneumology, Georg August University, Robert Koch Str. 40, 37075 Göttingen, Germany,.
| |
Collapse
|
5
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 635] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|