1
|
Hajri L, Ghodbane S, Othman H, Sakly M, Abdelmelek H, Ben Rhouma K, Ammari M. Ameliorative Effects of Pearl Millet ( Pennisetum glaucum L.) Against Hydrogen Peroxide Induced Cognitive Impairment and Oxidative Stress in Rats. J Med Food 2024; 27:1210-1218. [PMID: 39562765 DOI: 10.1089/jmf.2023.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Pearl millet (PM) (Pennisetum glaucum L.) contains a wide variety of bioactive compounds, such as polyphenols, mostly flavonoids and phenolic acids. In the present study, we investigated the effects of PM activity against hydrogen peroxide (H2O2)-induced behavior impairment and oxidative damage in rats. The rats were divided into four groups based on the treatments they received over 30 days: Control, H2O2, PM + H2O2, and PM. The phytochemical screening, total polyphenols content (TFC), and total flavonoid content (TFC) were determined using colorimetric analysis. All animals were subjected to behavioral test (elevated plus maze test). Thereafter, oxidative stress response (malondialdehyde [MDA], H2O2, and Thiol groups [-SH]) contents and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) were estimated in brain, liver, and kidney tissues. We evaluated the levels of liver enzymes, such as alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT). Our investigation showed that PM is rich in total phenolic content and TFC and exhibited an important in vitro antioxidant activity. In vivo, we first found that H2O2-treated rat exhibited anxiogenic behavior in the elevated plus maze test and the genesis of oxidative stress in the brain, liver, and kidney was measured by an increase of MDA and antioxidant enzyme activity depletion, such as SOD and CAT. Moreover, H2O2 increased levels of liver enzymes (ALAT and ASAT). Pearl Mille administration improved emotional behavior impairments and significantly reversed H2O2-induced biochemical alterations. Thus, we suggest that the Pearl Mille may have an anxiolytic-like effect and prevent biochemical disorders associated from the oxidative stress (H2O2), confirming its potential therapeutic capability.
Collapse
Affiliation(s)
- Latifa Hajri
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Soumaya Ghodbane
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Haifa Othman
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Hafedh Abdelmelek
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Khemais Ben Rhouma
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Mohamed Ammari
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
2
|
Chen Z, Xing T, Li J, Zhang L, Jiang Y, Gao F. Hydrogen peroxide-induced oxidative stress impairs redox status and damages aerobic metabolism of breast muscle in broilers. Poult Sci 2020; 100:918-925. [PMID: 33518145 PMCID: PMC7858176 DOI: 10.1016/j.psj.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/25/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress has always been a hot topic in poultry science. However, studies concerning the effects of redox status and glucose metabolism induced by hydrogen peroxide (H2O2) in the breast muscle of broilers have been rarely reported. This study was aimed to evaluate the impact of intraperitoneal injection of H2O2 on oxidative damage and glycolysis metabolism of breast muscle in broilers. We also explored the activation of the nuclear factor erythroid 2–related factor 2 (Nrf2) signaling pathway to provide possible mechanism of the redox imbalance. Briefly, a total of 320 one-day-old Arbor Acres chicks were randomly divided into 5 treatments with 8 replicates of 8 birds each (noninjected control, 0.75% saline-injected, 2.5, 5.0, and 10.0% H2O2-injected treatments). Saline group was intraperitoneally injected with physiological saline (0.75%) and H2O2 groups received an intraperitoneal injection of H2O2. The dosage of the injection was 1.0 mL/kg BW. All birds in the saline and H2O2 groups were injected on days 16 and 37 of the experimental period. At 42 d of age, 40 birds (8 cages per group and one chicken per cage) were selected to be stunned electrically (50 V, alternating current, 400 Hz for 5 s each one), and then immediately slaughtered via exsanguination. The results showed that broilers in the H2O2 injection group linearly exhibited higher contents of reactive oxygen species, carbonyl and malondialdehyde, and lower total antioxidant capacity and glutathione peroxidase activities. With the content of H2O2 increased, the H2O2 groups linearly downregulated the mRNA expressions of GPX, CAT, HMOX1, NQO1, and Nrf2 and its downstream target genes. In addition, H2O2 increased serum activities of creatine kinase and lactate dehydrogenase. Meanwhile, in the pectoral muscle, the glycogen content was linearly decreased, and the lactate content was linearly increased in muscle of broilers injected with H2O2. In addition, the activities of glycolytic enzymes including pyruvate kinase, hexokinase, and lactate dehydrogenase were linearly increased after exposure to H2O2. In conclusion, H2O2 injection could impair antioxidant status and enhance anaerobic metabolism of breast muscle in broilers.
Collapse
Affiliation(s)
- Zuodong Chen
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Tong Xing
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China.
| |
Collapse
|
3
|
Induction of nuclear factor-κB signal-mediated apoptosis and autophagy by reactive oxygen species is associated with hydrogen peroxide-impaired growth performance of broilers. Animal 2018; 12:2561-2570. [PMID: 29720292 DOI: 10.1017/s1751731118000903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The oxidative study has always been particularly topical in poultry science. However, little information about the occurrence of cellular apoptosis and autophagy through the reactive oxygen species (ROS) generation in nuclear factor-κB (NF-κB) signal pathway was reported in the liver of broilers exposed to hydrogen peroxide (H2O2). So we investigated the change of growth performance of broilers exposed to H2O2 and further explored the occurrence of apoptosis and autophagy, as well as the expression of NF-κB in these signaling pathways in the liver. A total of 320 1-day-old Arbor Acres male broiler chickens were raised on a basal diet and randomly divided into five treatments which were arranged as non-injected treatment (Control), physiological saline (0.75%) injected treatment (Saline) and H2O2 treatments (H2O2(0.74), H2O2(1.48) and H2O2(2.96)) received an intraperitoneal injection of H2O2 with 0.74, 1.48 and 2.96 mM/kg BW. The results showed that compared to those in the control and saline treatments, 2.96 mM/kg BW H2O2-treated broilers exhibited significantly higher feed/gain ratio at 22 to 42 days and 1 to 42 days, ROS formation, the contents of oxidation products, the mRNA expressions of caspases (3, 6, 8), microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I, autophagy-related gene 6, Bcl-2 associated X and protein expressions of total caspase-3 and total LC3-II, and significantly lower BW gain at 22 to 42 days and 1 to 42 days, the activities of total superoxide dismutase and glutathione peroxidase, the expression of NF-κB in the liver. Meanwhile, significantly higher feed/gain ratio at 1 to 42 days, ROS formation, the contents of protein carbonyl and malondialdehyde, the mRNA expression of caspase-3 and the protein expressions of total caspase-3 and total LC3-II, as well as significantly lower BW gain at 22 to 42 days and 1 to 42 days were observed in broilers received 1.48 mM/kg BW H2O2 treatment than those in control and saline treatments. These results indicated that oxidative stress induced by H2O2 had a negative effect on histomorphology and redox status in the liver of broilers, which was associated with a decline in growth performance of broilers. This may attribute to apoptosis and autophagy processes triggered by excessive ROS that suppress the NF-κB signaling pathway.
Collapse
|
4
|
Yin J, Wu M, Li Y, Ren W, Xiao H, Chen S, Li C, Tan B, Ni H, Xiong X, Zhang Y, Huang X, Fang R, Li T, Yin Y. Toxicity assessment of hydrogen peroxide on Toll-like receptor system, apoptosis, and mitochondrial respiration in piglets and IPEC-J2 cells. Oncotarget 2018; 8:3124-3131. [PMID: 27966452 PMCID: PMC5356869 DOI: 10.18632/oncotarget.13844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, expressions of toll-like receptors (TLRs) and apoptosis-related genes in piglets and mitochondrial respiration in intestinal porcine epithelial cells were investigated after hydrogen peroxide (H2O2) exposure. The in vivo results showed that H2O2 influenced intestinal expressions of TLRs and apoptosis related genes. H2O2 treatment (5% and 10%) downregulated uncoupling protein 2 (UCP2) expression in the duodenum (P < 0.05), while low dosage of H2O2 significantly increased UCP2 expression in the jejunum (P < 0.05). In IPEC-J2 cells, H2O2 inhibited cell proliferation (P < 0.05) and caused mitochondrial dysfunction via reducing maximal respiration, spare respiratory, non-mitochondrial respiratory, and ATP production (P < 0.05). However, 50 uM H2O2 significantly enhanced mitochondrial proton leak (P < 0.05). In conclusion, H2O2 affected intestinal TLRs system, apoptosis related genes, and mitochondrial dysfunction in vivo and in vitro models. Meanwhile, low dosage of H2O2 might exhibit a feedback regulatory mechanism against oxidative injury via increasing UCP2 expression and mitochondrial proton leak.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Miaomiao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yuying Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Xiao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Shuai Chen
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunyong Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Hengjia Ni
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xia Xiong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yuzhe Zhang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xingguo Huang
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China
| | - Rejun Fang
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan 410125, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China.,College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Gomaa AMS, Abd El-Mottaleb NA, Aamer HA. Antioxidant and anti-inflammatory activities of alpha lipoic acid protect against indomethacin-induced gastric ulcer in rats. Biomed Pharmacother 2018; 101:188-194. [PMID: 29486337 DOI: 10.1016/j.biopha.2018.02.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Little is known about the role of tumor necrosis factor-alpha (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and inducible nitric oxide synthase (iNOS) in the gastric ulcer and the effect of alpha lipoic acid (ALA) in their modulation. Hence, this experimental study was designed to assess the possible protective effect of ALA against indomethacin (IND)-induced gastric ulcer in rats, as well as to determine the possible underlying mechanisms with a special focus on TNF-α, PAI-1, and iNOS. Adult male rats (n = 28) were divided into four equal groups: the control group received distilled water, the vehicle group received 0.5% carboxymethylcellulose, the ulcer group received a single oral dose of IND (50 mg/kg) and the ALA-treated group received ALA (100 mg/kg) orally for 3 days before ulcer induction. Four hours after IND administration, all rats were sacrificed. The ulcer index, and gastric tissue homogenate contents of total antioxidant capacity (TAC), malondialdehyde (MDA), TNF-α, and PAI-1 were evaluated. Immunohistochemical evaluation of iNOS protein expression and histopathological examination of gastric tissue were investigated. The results revealed that ALA pretreatment significantly decreased the ulcer index, the gastric levels of MDA, TNF-α, PAI-1, and iNOS protein expression while increased the gastric levels of TAC as well as improved the histopathological appearance of gastric tissues. In conclusion, ALA ameliorated the IND-induced gastric ulceration. This could be attributed to its antioxidant and anti-inflammatory activities via suppression of TNF-α-induced elevation of both PAI-1 level and iNOS expression in the gastric tissue.
Collapse
Affiliation(s)
- Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Hazem A Aamer
- Department of Animal, Poultry and Environment Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
6
|
Chen X, Zhang L, Li J, Gao F, Zhou G. Hydrogen Peroxide-Induced Change in Meat Quality of the Breast Muscle of Broilers Is Mediated by ROS Generation, Apoptosis, and Autophagy in the NF-κB Signal Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3986-3994. [PMID: 28447793 DOI: 10.1021/acs.jafc.7b01267] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated the relationship between meat quality and oxidative damage caused by hydrogen peroxide (H2O2) in the breast muscle of broilers. Moreover, we explored the occurrence of apoptosis and autophagy, as well as the expression of NF-κB in these signaling pathways to provide evidence of possible oxidative damage mechanisms. The broilers received a basal diet and were randomly divided into five treatments (noninjected control, 0.75% saline-injected, and 2.5%, 5.0%, or 10.0% H2O2-injected treatments; 1.0 mL/kg in body weight). The results showed that oxidative stress induced by H2O2 had a negative effect on relative muscle weight, histomorphology, and redox status, while the underlying oxidative damage caused a decline in meat quality (decrease of pH24h, 10% H2O2 treatment; increase of shear force, 5% and 10% H2O2 treatments) of broilers. This could be attributed to the apoptosis and autophagy processes triggered by excessive reactive oxygen species that suppress the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiangxing Chen
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , No. 1 Weigan, Nanjing 210095, P.R. China
| | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , No. 1 Weigan, Nanjing 210095, P.R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , No. 1 Weigan, Nanjing 210095, P.R. China
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , No. 1 Weigan, Nanjing 210095, P.R. China
| | - Guanghong Zhou
- College of Animal Science and Technology, Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University , No. 1 Weigan, Nanjing 210095, P.R. China
| |
Collapse
|
7
|
Yin J, Duan J, Cui Z, Ren W, Li T, Yin Y. Hydrogen peroxide-induced oxidative stress activates NF-κB and Nrf2/Keap1 signals and triggers autophagy in piglets. RSC Adv 2015. [DOI: 10.1039/c4ra13557a] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
H2O2 induces autophagy and activates NF-κB and Nrf2/Keap1 signals in a piglet model.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Zhijie Cui
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central
- Ministry of Agriculture
- Hunan Provincial Engineering Research Center of Healthy Livestock
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
| |
Collapse
|
8
|
Rocha NFM, Oliveira GVD, Araújo FYRD, Rios ERV, Carvalho AMR, Vasconcelos LF, Macêdo DS, Soares PMG, Sousa DPD, Sousa FCFD. (−)-α-Bisabolol-induced gastroprotection is associated with reduction in lipid peroxidation, superoxide dismutase activity and neutrophil migration. Eur J Pharm Sci 2011; 44:455-61. [DOI: 10.1016/j.ejps.2011.08.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 12/15/2022]
|
9
|
du Plessis SS, Hagenaar K, Lampiao F. Thein vitroeffects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia 2010; 42:112-6. [DOI: 10.1111/j.1439-0272.2009.00964.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|