1
|
Marques SM, Melo MR, Zoccal DB, Menani JV, Colombari DSA, Ferreira-Neto ML, Xavier CH, Colombari E, Pedrino GR. Acute inhibition of nicotinamide adenine dinucleotide phosphate oxidase in the commissural nucleus of the solitary tract reduces arterial pressure and renal sympathetic nerve activity in renovascular hypertension. J Hypertens 2023; 41:1634-1644. [PMID: 37466439 DOI: 10.1097/hjh.0000000000003516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND A growing body of evidence suggests that oxidative stress plays a role in the pathophysiology of hypertension. However, the involvement of the reactive oxygen species (ROS) in the commissural nucleus of the solitary tract (commNTS) in development the of hypertension remains unclear. METHOD We evaluated the hemodynamic and sympathetic responses to acute inhibition of NADPH oxidase in the commNTS in renovascular hypertensive rats. Under anesthesia, male Holtzman rats were implanted with a silver clip around the left renal artery to induce 2-kidney 1-clip (2K1C) hypertension. After six weeks, these rats were anesthetized and instrumented for recording mean arterial pressure (MAP), renal blood flow (RBF), renal vascular resistance (RVR), and renal sympathetic nerve activity (RSNA) during baseline and after injection of apocynin (nicotinamide adenine dinucleotide phosphate oxidase inhibitor), NSC 23766 (RAC inhibitor) or saline into the commNTS. RESULTS Apocynin into the commNTS decreased MAP, RSNA, and RVR in 2K1C rats. NSC 23766 into the commNTS decreased MAP and RSNA, without changing RVR in 2K1C rats. CONCLUSION These results demonstrate that the formation of ROS in the commNTS is important to maintain sympathoexcitation and hypertension in 2K1C rats and suggest that NADPH oxidase in the commNTS could be a potential target for therapeutics in renovascular hypertension.
Collapse
Affiliation(s)
- Stefanne M Marques
- Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, GO
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mariana R Melo
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcos L Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia
| | - Carlos H Xavier
- Systems Neurobiology Laboratory. Department of Physiological Sciences, Institute of Biological Science, Federal University of Goias, Goiania, GO, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, GO
| |
Collapse
|
2
|
Effects of Voluntary Sodium Consumption during the Perinatal Period on Renal Mechanisms, Blood Pressure, and Vasopressin Responses after an Osmotic Challenge in Rats. Nutrients 2023; 15:nu15020254. [PMID: 36678125 PMCID: PMC9860675 DOI: 10.3390/nu15020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular control is vulnerable to forced high sodium consumption during the per-inatal period, inducing programming effects, with anatomical and molecular changes at the kidney, brain, and vascular levels that increase basal and induce blood pressure. However, the program- ming effects of the natriophilia proper of the perinatal period on blood pressure control have not yet been elucidated. In order to evaluate this, we studied the effect of a sodium overload challenge (SO) on blood pressure response and kidney and brain gene expression in adult offspring exposed to voluntary hypertonic sodium consumption during the perinatal period (PM-NaCl group). Male PM-NaCl rats showed a more sustained increase in blood pressure after SO than controls (PM-Ctrol). They also presented a reduced number of glomeruli, decreased expression of TRPV1, and increased expression of At1a in the kidney cortex. The relative expression of heteronuclear vaso- pressin (AVP hnRNA) and AVP in the supraoptic nucleus was unchanged after SO in PM-NaCl in contrast to the increase observed in PM-Ctrol. The data indicate that the availability of a rich source of sodium during the perinatal period induces a long-term effect modifying renal, cardiovascular, and neuroendocrine responses implicated in the control of hydroelectrolyte homeostasis.
Collapse
|
3
|
da Silva EF, Bassi M, Menani JV, Colombari DSA, Zoccal DB, Pedrino GR, Colombari E. Carotid bodies contribute to sympathoexcitation induced by acute salt overload. Exp Physiol 2018; 104:15-27. [PMID: 30370945 DOI: 10.1113/ep087110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/12/2018] [Indexed: 01/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does carotid body input contribute to the hyperosmotic responses? What is the main finding and its importance? The response to NaCl overload is sympathorespiratory excitation. Eliminating the carotid body input reduced sympathoexcitation but did not affect the increase in phrenic burst frequency, whereas eliminating the hypothalamus prevented the tachypnoea and sympathoexcitation. We conclude that the carotid body inputs are essential for the full expression of the sympathetic activity during acute NaCl overload, whereas the tachypnoea depends on hypothalamic mechanisms. ABSTRACT Acute salt excess activates central osmoreceptors, which trigger an increase in sympathetic and respiratory activity. The carotid bodies also respond to hyperosmolality of the extracellular compartment, but their contribution to the sympathoexcitatory and ventilatory responses to NaCl overload remains unknown. To evaluate their contribution to acute NaCl overload, we recorded thoracic sympathetic (tSNA), phrenic (PNA) and carotid sinus nerve activities in decorticate in situ preparations of male Holtzman rats (60-100 g) while delivering intra-arterial infusions of hyperosmotic NaCl (0.17, 0.3, 0.7, 1.5 and 2.0 mol l-1 ; 200 μl infusion over 25-30 s, with a 10 min time interval between solutions) or mannitol (0.3, 0.5, 1.0, 2.7 and 3.8 mol l-1 ) progressively. The cumulative infusions of hyperosmotic NaCl increased the perfusate osmolality to 341 ± 5 mosmol (kg water)-1 and elicited an immediate increase in PNA and tSNA (n = 6, P < 0.05) in sham-denervated rats. Carotid body removal attenuated sympathoexcitation (n = 5, P < 0.05) but did not affect the tachypnoeic response. A precollicular transection disconnecting the hypothalamus abolished the sympathoexcitatory and tachypnoeic responses to NaCl overload (n = 6, P < 0.05). Equi-osmolar infusions of mannitol did not alter the PNA and tSNA in sham-denervated rats (n = 5). Sodium chloride infusions increased carotid sinus nerve activity (n = 10, P < 0.05), whereas mannitol produced negligible changes (n = 5). The results indicate that carotid bodies are activated by acute NaCl overload, but not by mannitol. We conclude that the carotid bodies contribute to the increased sympathetic activity during acute NaCl overload, whereas the ventilatory response is mainly mediated by hypothalamic mechanisms.
Collapse
Affiliation(s)
- Elaine Fernanda da Silva
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Débora Simões Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Daniel Breseghello Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiânia, Goias, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
4
|
Naves LM, Marques SM, Mourão AA, Fajemiroye JO, Xavier CH, de Castro CH, Rebelo ACS, Rosa DA, Gomes RM, Colombari E, Pedrino GR. Involvement of median preoptic nucleus and medullary noradrenergic neurons in cardiovascular and sympathetic responses of hemorrhagic rats. Sci Rep 2018; 8:11276. [PMID: 30050041 PMCID: PMC6062576 DOI: 10.1038/s41598-018-29310-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
The infusion of hypertonic saline solution (HSS) is known to be beneficial to the treatment of hypovolemic hemorrhage (HH). The central mechanism of HSS-induced cardiovascular and autonomic recovery of animals subjected to HH remains unclear. Hence, the present study evaluated the involvement of median preoptic nucleus (MnPO) and medullary noradrenergic neurons (A1 and A2) in HSS-induced cardiovascular and sympathetic responses in hemorrhagic rats. The wistar rats were subjected to specific lesion of noradrenergic neurons through the nanoinjections of anti-DβH-saporin into caudal ventrolateral medulla (A1 neurons) and nucleus of the solitary tract (A2 neurons). After recovery, mean arterial pressure (MAP) and renal sympathetic nervous activity were recorded. The HH was performed through blood withdrawal until a MAP of 60 mmHg was attained. In sham rats, HSS infusion (3M NaCl) reestablished MAP without change in HH-induced sympathoinhibition. The muscimol (agonist of GABAA receptor) was nanoinjected in MnPO during HH and MnPO inhibition abolished the recovery of MAP and HSS-induced sympathoinhibition. Simultaneous lesions of A1 and A2 abolished MAP restoration and sympathoinhibition after HSS infusion. These results suggest that the recovery of MAP and HSS-induced sympathoinhibition in hemorrhaged rats depend on intact neural projections from A1 and A2 to MnPO.
Collapse
Affiliation(s)
- Lara Marques Naves
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil
| | - Stefanne Madalena Marques
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil
| | - Aline Andrade Mourão
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil
| | | | - Carlos Henrique Xavier
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil
| | - Carlos Henrique de Castro
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil
| | - Ana Cristina Silva Rebelo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil
| | - Daniel Alves Rosa
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil
| | - Rodrigo Mello Gomes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil
| | - Eduardo Colombari
- Departamento de Fisiologia e Patologia, Faculdade de odontologia, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Gustavo Rodrigues Pedrino
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Estrada do Campus, s/n, 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
5
|
Mourão AA, de Mello ABS, Dos Santos Moreira MC, Rodrigues KL, Lopes PR, Xavier CH, Gomes RM, Freiria-Oliveira AH, Blanch GT, Colombari E, Pedrino GR. Median preoptic nucleus excitatory neurotransmitters in the maintenance of hypertensive state. Brain Res Bull 2018; 142:207-215. [PMID: 29944948 DOI: 10.1016/j.brainresbull.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
The crucial role of the median preoptic nucleus (MnPO) in the maintenance of hydroelectrolytic balance and autonomic regulation have been highlighted. Recently, the participation of the MnPO in the control of sympathetic nerve activity was demonstrated in essential hypertension model. However, peculiarities on the neurochemical changes underlying the differential role of MnPO during hypertension remain to be clarified. Therefore, this study aimed to investigate the main excitatory pathways that modulate MnPO neurons in hypertensive rats. Spontaneously hypertensive rats (SHR) and rats submitted previously to the Goldblatt protocol (two kidneys; one clip; 2K1C) were used. Rats of both groups (250 to 350 g, n = 6) were anesthetized with urethane (1.2 g/kg,i.v.) and instrumented to record mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA). Nanoinjection (100 nl) of saline (NaCl, 150 mM), losartan (AT1 receptor antagonist; 10 mM) and kynurenic acid (glutamate receptor antagonist; 50 mM) into the MnPO were performed. In 2K1C rats, glutamatergic blockade promoted decreases in MAP and RSNA (-19.1 ± 0.9 mmHg, -21.6 ± 2.8%, p < 0.05) when compared to saline (-0.4 ± 0.6 mmHg, 0.2 ± 0.7%, p < 0.05). Angiotensinergic inhibition also reduced these parameters (-11.5 ± 1.2 mmHg, -10.5 ± 1.0%, p < 0.05) in 2K1C. In SHR, Kynurenic acid nanoinjections produced hypotension and sympathoinhibition (-21.0 ± 2.5 mmHg, -24.7 ± 2.4%, p < 0.05), as well losartan nanoinjections (-9.7 ± 1.2 mmHg; p < 0.05) and RSNA (-12.0 ± 2.4%, p < 0.05). These findings support the conclusion that a tonic excitatory neurotransmission exerted by angiotensin II, and mostly by glutamate in the MnPO could participate in the modulation of blood pressure and RSNA independent on whether hypertension is primarily neurogenic or is secondary to stenosis in renal artery.
Collapse
Affiliation(s)
- Aline A Mourão
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Aryanne B Soares de Mello
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Marina C Dos Santos Moreira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Karla L Rodrigues
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Carlos H Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Rodrigo M Gomes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - André H Freiria-Oliveira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Graziela T Blanch
- School of Medicine, Pharmacy and Biomedicine, Pontifical Catholic University of Goias, Goiania, GO, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiania, GO, Brazil.
| |
Collapse
|
6
|
Dos Santos Moreira MC, Naves LM, Marques SM, Silva EF, Rebelo AC, Colombari E, Pedrino GR. Neuronal circuits involved in osmotic challenges. Physiol Res 2017; 66:411-423. [PMID: 28248529 DOI: 10.33549/physiolres.933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that perceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion homeostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we expose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges.
Collapse
Affiliation(s)
- M C Dos Santos Moreira
- Department of Physiological Science, Federal University of Goiás, Goiânia - GO - Brazil. or
| | | | | | | | | | | | | |
Collapse
|
7
|
Pedrino GR, Mourão AA, Moreira MCS, da Silva EF, Lopes PR, Fajemiroye JO, Schoorlemmer GHM, Sato MA, Reis ÂAS, Rebelo ACS, Cravo SL. Do the carotid body chemoreceptors mediate cardiovascular and sympathetic adjustments induced by sodium overload in rats? Life Sci 2016; 153:9-16. [PMID: 27060222 DOI: 10.1016/j.lfs.2016.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Acute plasma hypernatremia induces several cardiovascular and sympathetic responses. It is conceivable that these responses contribute to rapid sodium excretion and restoration of normal conditions. Afferent pathways mediating these responses are not entirely understood. The present study analyses the effects of acute carotid chemoreceptor inactivation on cardiovascular and sympathetic responses induced by infusion of hypertonic saline (HS). All experiments were performed on anesthetized male Wistar rats instrumented for recording of arterial blood pressure (ABP), renal blood flow (RBF) and renal sympathetic nerve activity (RSNA). Animals were subjected to sham surgery or carotid chemoreceptor inactivation by bilateral ligation of the carotid body artery (CBA). In sham rats (n=8), intravenous infusion of HS (3 M NaCl, 1.8 ml/kg b.wt.) elicited a transient increase (9±2mmHg) in ABP, and long lasting (30 min) increases in RBF (138±5%) and renal vascular conductance (RVC) (128±5%) with concurrent decrease in RSNA (-19±4%). In rats submitted to CBA ligation (n=8), the pressor response to HS was higher (24±2mmHg; p<0.05). However, RBF and RVC responses to HS infusion were significantly reduced (113±5% and 93±4%, respectively) while RSNA was increased (13±2%). When HS (3M NaCl, 200μl) was administrated into internal carotid artery (ICA), distinct sympathetic and cardiovascular responses were observed. In sham-group, HS infusion (3M NaCl, 200μl) into ICA promoted an increase in ABP (26±8mmHg) and RSNA (29±13%). In CBA rats, ABP (-3±5.6mmHg) remained unaltered despite sympathoinhibition (-37.6±5.4%). These results demonstrate that carotid body chemoreceptors play a role in the development of hemodynamic and sympathetic responses to acute HS infusion.
Collapse
Affiliation(s)
- Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | - Aline A Mourão
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marina C S Moreira
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Elaine F da Silva
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - James O Fajemiroye
- Department of Pharmacology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guss H M Schoorlemmer
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Mônica A Sato
- Department of Morphology and Physiology, Faculty of Medicine of ABC, Santo Andre, SP, Brazil
| | - Ângela A S Reis
- Department of Biochemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana C S Rebelo
- Department of Morphology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sergio L Cravo
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Does the median preoptic nucleus contribute to sympathetic hyperactivity in spontaneously hypertensive rats? Auton Neurosci 2016; 195:29-33. [DOI: 10.1016/j.autneu.2016.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/08/2015] [Accepted: 02/16/2016] [Indexed: 02/04/2023]
|
9
|
Silva EF, Sera CTN, Mourão AA, Lopes PR, Moreira MCS, Ferreira-Neto ML, Colombari DAS, Cravo SLD, Pedrino GR. Involvement of sinoaortic afferents in renal sympathoinhibition and vasodilation induced by acute hypernatremia. Clin Exp Pharmacol Physiol 2015; 42:1135-41. [DOI: 10.1111/1440-1681.12475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Elaine F Silva
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Celisa TN Sera
- Department of Physiology; Federal University of São Paulo; São Paulo São Paulo Brazil
| | - Aline A Mourão
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Paulo R Lopes
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Marina CS Moreira
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Marcos L Ferreira-Neto
- Laboratory of Experimental Physiology; Faculty of Physical Education; Federal University of Uberlândia; Uberlândia Minas Gerais Brazil
| | - Débora AS Colombari
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; Araraquara São Paulo Brazil
| | - Sérgio LD Cravo
- Department of Physiology; Federal University of São Paulo; São Paulo São Paulo Brazil
| | - Gustavo R Pedrino
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| |
Collapse
|
10
|
McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol (Oxf) 2015; 214:8-32. [PMID: 25753944 DOI: 10.1111/apha.12487] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Abstract
Located in the midline anterior wall of the third cerebral ventricle (i.e. the lamina terminalis), the median preoptic nucleus (MnPO) receives a unique set of afferent neural inputs from fore-, mid- and hindbrain. These afferent connections enable it to receive neural signals related to several important aspects of homeostasis. Included in these afferent projections are (i) neural inputs from two adjacent circumventricular organs, the subfornical organ and organum vasculosum laminae terminalis, that respond to hypertonicity, circulating angiotensin II or other humoural factors, (ii) signals from cutaneous warm and cold receptors that are relayed to MnPO, respectively, via different subnuclei in the lateral parabrachial nucleus and (iii) input from the medulla associated with baroreceptor and vagal afferents. These afferent signals reach appropriate neurones within the MnPO that enable relevant neural outputs, both excitatory and inhibitory, to be activated or inhibited. The efferent neural pathways that proceed from the MnPO terminate on (i) neuroendocrine cells in the hypothalamic supraoptic and paraventricular nuclei to regulate vasopressin release, while polysynaptic pathways from MnPO to cortical sites may drive thirst and water intake, (ii) thermoregulatory pathways to the dorsomedial hypothalamic nucleus and medullary raphé to regulate shivering, brown adipose tissue and skin vasoconstriction, (iii) parvocellular neurones in the hypothalamic paraventricular nucleus that drive autonomic pathways influencing cardiovascular function. As well, (iv) other efferent pathways from the MnPO to sites in the ventrolateral pre-optic nucleus, perifornical region of the lateral hypothalamic area and midbrain influence sleep mechanisms.
Collapse
Affiliation(s)
- M. J. McKinley
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| | - S. T. Yao
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
| | - A. Uschakov
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
| | - R. M. McAllen
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne Vic. Australia
| | - M. Rundgren
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - D. Martelli
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne Vic. Australia
- Department of Biomedical and Neuromotor Science; University of Bologna; Bologna Italy
| |
Collapse
|
11
|
Vasorelaxant and Hypotensive Effects of Jaboticaba Fruit (Myrciaria cauliflora) Extract in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:696135. [PMID: 25960756 PMCID: PMC4413038 DOI: 10.1155/2015/696135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 11/18/2022]
Abstract
This study's aim was to determine the effect of hydroalcoholic extract of M. cauliflora (HEMC) on vascular tension and blood pressure in rats. In our in vitro studies using precontracted isolated aortas from rats, HEMC and acetylcholine (positive control) induced relaxation only in vessels with endothelium. Pretreatment with L-NAME (NO synthase inhibitor) or ODQ (soluble guanylyl cyclase (sGC) inhibitor) abolished the HEMC-induced relaxation. The treatment with MDL-12,330A (adenylyl cyclase (AC) inhibitor) or diclofenac (COX inhibitor) reduced HEMC-induced vasorelaxation. The blockade of muscarinic and β-adrenergic receptors (by atropine and propranolol, resp.) did not promote changes in HEMC-induced vasorelaxation. In our in vivo studies, catheters were inserted into the right femoral vein and artery of anesthetized rats for HEMC infusion and the measurement of blood pressure, heart rate, and aortic blood flow. The intravenous infusion of HEMC produced hypotension and increased aortic blood flow with no changes in heart rate. These findings showed that HEMC induces endothelium-dependent vascular relaxation and hypotension with no alteration in heart rate. The NO/sGC/cGMP pathway seems to be the main cellular route involved in the vascular responsiveness.
Collapse
|
12
|
Median preoptic nucleus mediates the cardiovascular recovery induced by hypertonic saline in hemorrhagic shock. ScientificWorldJournal 2014; 2014:496121. [PMID: 25485300 PMCID: PMC4251084 DOI: 10.1155/2014/496121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022] Open
Abstract
Changes in plasma osmolarity, through central and peripheral osmoreceptors, activate the median preoptic nucleus (MnPO) that modulates autonomic and neuroendocrine adjustments. The present study sought to determine the participation of MnPO in the cardiovascular recovery induced by hypertonic saline infusion (HSI) in rats submitted to hemorrhagic shock. The recordings of mean arterial pressure (MAP) and renal vascular conductance (RVC) were carried out on male Wistar rats (250–300 g). Hemorrhagic shock was induced by blood withdrawal over 20 min until the MAP values of approximately 60 mmHg were attained. The nanoinjection (100 nL) of GABAA agonist (Muscimol 4 mM; experimental group (EXP)) or isotonic saline (NaCl 150 mM; control (CONT)) into MnPO was performed 2 min prior to intravenous overload of sodium through HSI (3 M NaCl, 1.8 mL/kg, b.wt.). Hemorrhagic shock reduced the MAP in control (62 ± 1.1 mmHg) and EXP (61 ± 0.4 mmHg) equipotently. The inhibition of MnPO impaired MAP (CONT: 104 ± 4.2 versus EXP: 60 ± 6.2 mmHg) and RVC (CONT: 6.4 ± 11.4 versus EXP: -53.5 ± 10.0) recovery 10 min after HSI. The overall results in this study demonstrated, for the first time, that the MnPO plays an essential role in the HSI induced resuscitation during hypovolemic hemorrhagic shock.
Collapse
|
13
|
High sodium intake during postnatal phases induces an increase in arterial blood pressure in adult rats. Br J Nutr 2014; 112:1923-32. [DOI: 10.1017/s0007114514002918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epigenetic studies suggest that diseases that develop in adulthood are related to certain conditions to which the individual is exposed during the initial stages of life. Experimental evidence has demonstrated that offspring born to mothers maintained on high-Na diets during pregnancy have higher mean arterial pressure (MAP) in adulthood. Although these studies have demonstrated the importance of prenatal phases to hypertension development, no evidence regarding the role of high Na intake during postnatal phases in the development of this pathology has been reported. Therefore, in the present study, the effects of Na overload during childhood on induced water and Na intakes and on cardiovascular parameters in adulthood were evaluated. Experiments were carried out in two groups of 21-d-old rats: experimental group, maintained on hypertonic saline (0·3 m-NaCl) solution and food for 60 d, and control group, maintained on tap water and food. Later, both groups were given water and food for 15 d (recovery period). After the recovery period, chronic cannulation of the right femoral artery was performed in unanaesthetised rats to record baseline MAP and heart rate (HR). The experimental group was found to have increased basal MAP (98·6 (sem 2·6) v. 118·3 (sem 2·7) mmHg, P< 0·05) and HR (365·4 (sem 12·2) v. 398·2 (sem 7·5) beats per min, P< 0·05). There was a decrease in the baroreflex index in the experimental group when compared with that in the control group. A water and Na intake test was performed using furosemide. Na depletion was found to induce an increase in Na intake in both the control and experimental groups (12·1 (sem 0·6) ml and 7·8 (sem 1·1), respectively, P< 0·05); however, this increase was of lower magnitude in the experimental group. These results demonstrate that postnatal Na overload alters behavioural and cardiovascular regulation in adulthood.
Collapse
|
14
|
Amaral NO, de Oliveira TS, Naves LM, Filgueira FP, Ferreira-Neto ML, Schoorlemmer GHM, de Castro CH, Freiria-Oliveira AH, Xavier CH, Colugnati DB, Rosa DA, Blanch GT, Borges CL, Soares CMA, Reis AAS, Cravo SL, Pedrino GR. Efferent pathways in sodium overload-induced renal vasodilation in rats. PLoS One 2014; 9:e109620. [PMID: 25279805 PMCID: PMC4184892 DOI: 10.1371/journal.pone.0109620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/11/2014] [Indexed: 11/19/2022] Open
Abstract
Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280–350 g) were anesthetized with sodium thiopental (40 mg. kg−1, i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6), OT infusion (0.03 µg • kg−1, i.v.) induced renal vasodilation. Consistent with this result, exvivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg−1 b.wt., i.v.) was infused over 60 s. In sham rats (n = 6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg−1 • h−1, i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.
Collapse
Affiliation(s)
- Nathalia O. Amaral
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiago S. de Oliveira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lara M. Naves
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernando P. Filgueira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcos L. Ferreira-Neto
- Faculty of Physical Education, Biological Sciences Institute, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Carlos H. de Castro
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - André H. Freiria-Oliveira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos H. Xavier
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Diego B. Colugnati
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Daniel A. Rosa
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Graziela T. Blanch
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Clayton L. Borges
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Célia M. A. Soares
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Angela A. S. Reis
- Department of Biochemistry and Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sergio L. Cravo
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo R. Pedrino
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
- * E-mail:
| |
Collapse
|
15
|
Fajemiroye JO, Amaral NO, da Silva EF, Galdino PM, de Oliveira TS, Ghedini PC, Zjawiony JK, Costa EA, Pedrino GR, Menegatti R. Hypotensive and antihypertensive potential of 4-[(1-phenyl-1H-pyrazol-4-yl) methyl]1-piperazine carboxylic acid ethyl ester: a piperazine derivative. Life Sci 2014; 112:90-6. [PMID: 25072354 DOI: 10.1016/j.lfs.2014.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 01/18/2023]
Abstract
AIMS Clinical complaints on the first-line of cardiovascular medications make continuous search for new drugs a necessity. This study evaluated the cardiovascular effects and mechanism of 4-[(1-phenyl-1H-pyrazol-4-yl)methyl]1-piperazine carboxylic acid ethyl ester (LQFM008). MAIN METHODS Normotensive male Wistar or spontaneously hypertensive rats (anesthetized or conscious) were used to evaluate the effect of LQFM008 on the mean arterial pressure (MAP), heart rate (HR), arterial blood flow (ABF), arterial vascular conductance (AVC), baroreflex effectiveness index (BI), systolic blood pressure (SBP), diastolic blood pressure (DBP) and vascular function. KEY FINDINGS In anesthetized normotensive rats, LQFM008 (7.3, 14.3 or 28.6 μmol/kg, i.v.) reduced MAP (-21.1±2.7; -23.9±4.7 or -32.4±8.3 mmHg, respectively) and AVC (22%, 32% or 38%) in a dose-dependent manner. LQFM008 elicited a temporal reduction in the SBP and DBP without changes to the BI of conscious normotensive rats. In hypertensive rats, LQFM008 (7.3, 14.3 or 28.6 μmol/kg, i.v.) reduced MAP (-2.3±2.6; -29.3±2.7 or -38.4±2.8 mmHg, respectively) and increased HR (1.6±3.7; 15.4±4.9 or 25.5±6.2 bmp, respectively) in a dose-dependent manner. A week of oral administration of LQFM008 47.7 μmol/kg elicited a temporal reduction in SBP of hypertensive rats. Pretreatments with atropine, WAY-100635 or L-NAME blocked the effect of LQFM008. In addition, LQFM008-induced endothelium-dependent vascular relaxation was inhibited by L-NAME. SIGNIFICANCE Our findings showed hypotensive, antihypertensive and vasorelaxant effects of LQFM008 and suggest the participation of nitric oxide, 5-HT1A and muscarinic receptors.
Collapse
Affiliation(s)
| | - Nathalia Oda Amaral
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiâania, GO, Brazil
| | - Elaine Fernanda da Silva
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiâania, GO, Brazil
| | - Pablinny Morreira Galdino
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiâania, GO, Brazil
| | - Thiago Sardinha de Oliveira
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiâania, GO, Brazil
| | - Paulo César Ghedini
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiâania, GO, Brazil
| | - Jordan K Zjawiony
- Department of Pharmacognosy and National Center for Natural Product Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Elson Alves Costa
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiâania, GO, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Federal University of Goiás, Campus Samambaia, 74001-970 Goiâania, GO, Brazil
| | - Ricardo Menegatti
- Pharmacy Faculty, Federal University of Goiás, Setor Universitário, 74000-000, Goiânia, GO, Brazil
| |
Collapse
|
16
|
de Lima Silveira L, da Silva EF, de Andrade AM, Xavier CH, Freiria-Oliveira AH, Colugnati DB, de Castro CH, Colombari E, Pedrino GR. Involvement of the median preoptic nucleus in blood pressure control. Neurosci Lett 2014; 558:91-6. [DOI: 10.1016/j.neulet.2013.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/22/2013] [Accepted: 11/01/2013] [Indexed: 02/07/2023]
|
17
|
da Silva EF, Freiria-Oliveira AH, Custódio CHX, Ghedini PC, Bataus LAM, Colombari E, de Castro CH, Colugnati DB, Rosa DA, Cravo SLD, Pedrino GR. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats. PLoS One 2013; 8:e73187. [PMID: 24039883 PMCID: PMC3769347 DOI: 10.1371/journal.pone.0073187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280-340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL(-1)) or free saporin (sham, 0.021 ng.nL(-1)) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg(-1), b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid.
Collapse
Affiliation(s)
- Elaine Fernanda da Silva
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | | | | | - Paulo César Ghedini
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Luiz Artur Mendes Bataus
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Carlos Henrique de Castro
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Diego Basile Colugnati
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Daniel Alves Rosa
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Sergio L. D. Cravo
- Department of Physiology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
18
|
Pedrino GR, Freiria-Oliveira AH, Almeida Colombari DS, Rosa DA, Cravo SL. A2 noradrenergic lesions prevent renal sympathoinhibition induced by hypernatremia in rats. PLoS One 2012; 7:e37587. [PMID: 22629424 PMCID: PMC3357396 DOI: 10.1371/journal.pone.0037587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 04/21/2012] [Indexed: 11/11/2022] Open
Abstract
Renal vasodilation and sympathoinhibition are recognized responses induced by hypernatremia, but the central neural pathways underlying such responses are not yet entirely understood. Several findings suggest that A2 noradrenergic neurons, which are found in the nucleus of the solitary tract (NTS), play a role in the pathways that contribute to body fluid homeostasis and cardiovascular regulation. The purpose of this study was to determine the effects of selective lesions of A2 neurons on the renal vasodilation and sympathoinhibition induced by hypertonic saline (HS) infusion. Male Wistar rats (280-350 g) received an injection into the NTS of anti-dopamine-beta-hydroxylase-saporin (A2 lesion; 6.3 ng in 60 nl; n = 6) or free saporin (sham; 1.3 ng in 60 nl; n = 7). Two weeks later, the rats were anesthetized (urethane 1.2 g⋅kg(-1) b.wt., i.v.) and the blood pressure, renal blood flow (RBF), renal vascular conductance (RVC) and renal sympathetic nerve activity (RSNA) were recorded. In sham rats, the HS infusion (3 M NaCl, 1.8 ml⋅kg(-1) b.wt., i.v.) induced transient hypertension (peak at 10 min after HS; 9±2.7 mmHg) and increases in the RBF and RVC (141±7.9% and 140±7.9% of baseline at 60 min after HS, respectively). HS infusion also decreased the RSNA (-45±5.0% at 10 min after HS) throughout the experimental period. In the A2-lesioned rats, the HS infusion induced transient hypertension (6±1.4 mmHg at 10 min after HS), as well as increased RBF and RVC (133±5.2% and 134±6.9% of baseline at 60 min after HS, respectively). However, in these rats, the HS failed to reduce the RSNA (115±3.1% at 10 min after HS). The extent of the catecholaminergic lesions was confirmed by immunocytochemistry. These results suggest that A2 noradrenergic neurons are components of the neural pathways regulating the composition of the extracellular fluid compartment and are selectively involved in hypernatremia-induced sympathoinhibition.
Collapse
|
19
|
Cravo S, Lopes O, Pedrino G. Involvement of catecholaminergic medullary pathways in cardiovascular responses to acute changes in circulating volume. Braz J Med Biol Res 2011; 44:877-82. [DOI: 10.1590/s0100-879x2011007500092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/08/2011] [Indexed: 11/21/2022] Open
Affiliation(s)
- S.L. Cravo
- Universidade Federal de São Paulo, Brasil
| | - O.U Lopes
- Universidade Federal de São Paulo, Brasil
| | | |
Collapse
|