1
|
La Cunza N, Tan LX, Thamban T, Germer CJ, Rathnasamy G, Toops KA, Lakkaraju A. Mitochondria-dependent phase separation of disease-relevant proteins drives pathological features of age-related macular degeneration. JCI Insight 2021; 6:142254. [PMID: 33822768 PMCID: PMC8262309 DOI: 10.1172/jci.insight.142254] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
Age-related macular degeneration (AMD) damages the retinal pigment epithelium (RPE), the tissue that safeguards photoreceptor health, leading to irreversible vision loss. Polymorphisms in cholesterol and complement genes are implicated in AMD, yet mechanisms linking risk variants to RPE injury remain unclear. We sought to determine how allelic variants in the apolipoprotein E cholesterol transporter modulate RPE homeostasis and function. Using live-cell imaging, we show that inefficient cholesterol transport by the AMD risk-associated ApoE2 increases RPE ceramide, leading to autophagic defects and complement-mediated mitochondrial damage. Mitochondrial injury drives redox state–sensitive cysteine-mediated phase separation of ApoE2, forming biomolecular condensates that could nucleate drusen. The protective ApoE4 isoform lacks these cysteines and is resistant to phase separation and condensate formation. In Abca–/– Stargardt macular degeneration mice, mitochondrial dysfunction induces liquid-liquid phase separation of p62/SQSTM1, a multifunctional protein that regulates autophagy. Drugs that decrease RPE cholesterol or ceramide prevent mitochondrial injury and phase separation in vitro and in vivo. In AMD donor RPE, mitochondrial fragmentation correlates with ApoE and p62 condensates. Our studies demonstrate that major AMD genetic and biological risk pathways converge upon RPE mitochondria, and identify mitochondrial stress-mediated protein phase separation as an important pathogenic mechanism and promising therapeutic target in AMD.
Collapse
Affiliation(s)
- Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, and.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, Graduate Division, University of California, San Francisco, California, USA
| | - Li Xuan Tan
- Department of Ophthalmology, School of Medicine, and
| | | | - Colin J Germer
- Department of Ophthalmology, School of Medicine, and.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, Graduate Division, University of California, San Francisco, California, USA
| | | | - Kimberly A Toops
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, and.,Pharmaceutical Sciences and Pharmacogenomics Graduate Program, Graduate Division, University of California, San Francisco, California, USA.,Department of Anatomy, School of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Li L, Yang F, Jia R, Yan P, Ma L. Velvet antler polypeptide prevents the disruption of hepatic tight junctions via inhibiting oxidative stress in cholestatic mice and liver cell lines. Food Funct 2020; 11:9752-9763. [PMID: 33073799 DOI: 10.1039/d0fo01899f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study aims to examine the protective effects and mechanism of a velvet antler polypeptide (VAP) against lithocholic acid (LCA)-induced cholestatic liver injury in mice. A 7.0 kDa VAP was orally administered at doses of 10 and 20 mg kg-1 day-1. Hematoxylin and eosin (H&E) staining of the liver showed that VAP7.0 reduced LCA-induced infiltration of inflammatory cells and areas of necrotic hepatocytes. In addition, VAP7.0 greatly reduced the levels of alanine aminotransferase (ALT), total bile acid (TBA) and total bilirubin (TBIL) in LCA mouse serum and prolonged the survival time of mice with LCA. VAP7.0 reduced the production of reactive oxygen species (ROS), decreased malondialdehyde (MDA) and increased the superoxide dismutase (SOD) levels in LCA mice. VAP7.0 also reduced OGG1 expression, which is a biochemical indicator of oxidative stress. Mechanistic analysis revealed that VAP7.0 significantly inhibited LCA-induced disruption of tight junction integrity, as determined by observing the morphology of the bile canaliculus, and this finding was confirmed by observation of the bile canalicular structure and tight junction proteins Occludin and ZO-1 expression. Moreover, we also found that VAP7.0 maintained the stability of hepatic paracellular permeability, as determined by Evans blue dye assays and horseradish peroxidase (HRP) tracer distribution through inhibiting the activation of the PI3K pathway in LCA mouse livers. In addition, VAP7.0 ameliorated H2O2-induced barrier dysfunction and tight junction disruption via inhibiting the PI3K activity in human HepG2 and SMMC7721 cells, which was confirmed by the PI3K activator 740Y-P. H2O2 disturbed the localization of the tight junction proteins ZO-1 and Occludin, resulting in the transfer of these proteins from the membrane to the cytoplasm of cells, whereas pretreatment of cells with VAP7.0 prevented the disruption of the localization of these proteins, as determined by immunofluorescence staining and western blot analysis. These results demonstrate that VAP7.0 reduces liver injury by inhibiting oxidative stress and maintains the stability of hepatic tight junctions via suppressing the activation of the intracellular signaling molecule PI3K in LCA mice and hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Lihua Li
- Department of Cell Biology, Taizhou University, Taizhou, PR China.
| | | | | | | | | |
Collapse
|
3
|
Speziali G, Liesinger L, Gindlhuber J, Leopold C, Pucher B, Brandi J, Castagna A, Tomin T, Krenn P, Thallinger GG, Olivieri O, Martinelli N, Kratky D, Schittmayer M, Birner-Gruenberger R, Cecconi D. Myristic acid induces proteomic and secretomic changes associated with steatosis, cytoskeleton remodeling, endoplasmic reticulum stress, protein turnover and exosome release in HepG2 cells. J Proteomics 2018; 181:118-130. [PMID: 29654920 DOI: 10.1016/j.jprot.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
Myristic acid, the 14-carbon saturated fatty acid (C14:0), is associated to an increased cardiovascular disease risk. Since it is found in low concentration in cells, its specific properties have not been fully analyzed. The aim of this study was to explore the cell response to this fatty acid to help explaining clinical findings on the relationship between C14:0 and cardiovascular disease. The human liver HepG2 cell line was used to investigate the hepatic response to C14:0 in a combined proteomic and secretomic approach. A total of 47 intracellular and 32 secreted proteins were deregulated after treatments with different concentrations of C14:0. Data are available via ProteomeXchange (PXD007902). In addition, C14:0 treatment of primary murine hepatocytes confirmed that C14:0 induces lipid droplet accumulation and elevates perilipin-2 levels. Functional enrichment analysis revealed that C14:0 modulates lipid droplet formation and cytoskeleton organization, induce ER stress, changes in exosome and extracellular miRNA sorting in HepG2cells. Our data provide for the first time a proteomic profiling of the effects of C14:0 in human hepatoma cells and contribute to the elucidation of molecular mechanisms through which this fatty acid may cause adverse health effects. BIOLOGICAL SIGNIFICANCE Myristic acid is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. This study is the first example of an integration of proteomic and secretomic analysis of HepG2 cells to investigate the specific properties and functional roles of myristic acid on hepatic cells. Our analyses will lead to a better understanding of the myristic acid induced effects and can elicit new diagnostic and treatment strategies based on altered proteins.
Collapse
Affiliation(s)
- Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Laura Liesinger
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Juergen Gindlhuber
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christina Leopold
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Bettina Pucher
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Tamara Tomin
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Petra Krenn
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Gerhard G Thallinger
- Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias Schittmayer
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy.
| |
Collapse
|
4
|
Dose J, Huebbe P, Nebel A, Rimbach G. APOE genotype and stress response - a mini review. Lipids Health Dis 2016; 15:121. [PMID: 27457486 PMCID: PMC4960866 DOI: 10.1186/s12944-016-0288-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The APOE gene is one of currently only two genes that have consistently been associated with longevity. Apolipoprotein E (APOE) is a plasma protein which plays an important role in lipid and lipoprotein metabolism. In humans, there are three major APOE isoforms, designated APOE2, APOE3, and APOE4. Of these three isoforms, APOE3 is most common while APOE4 was shown to be associated with age-related diseases, including cardiovascular and Alzheimer’s disease, and therefore an increased mortality risk with advanced age. Evidence accumulates, showing that oxidative stress and, correspondingly, mitochondrial function is affected in an APOE isoform-dependent manner. Accordingly, several stress response pathways implicated in the aging process, including the endoplasmic reticulum stress response and immune function, appear to be influenced by the APOE genotype. The investigation and development of treatment strategies targeting APOE4 have not resolved any therapeutic yet that could be entirely recommended. This mini-review provides an overview on the state of research concerning the impact of the APOE genotype on stress response-related processes, emphasizing the strong interconnection between mitochondrial function, endoplasmic reticulum stress and the immune response. Furthermore, this review addresses potential treatment strategies and associated pitfalls as well as lifestyle interventions that could benefit people with an at risk APOE4 genotype.
Collapse
Affiliation(s)
- Janina Dose
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany. .,Institute of Clinical Molecular Biology, Kiel University, Schittenhelmstr. 12, D-24105, Kiel, Germany.
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Schittenhelmstr. 12, D-24105, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany
| |
Collapse
|
5
|
Epidermal growth factor protects the apical junctional complexes from hydrogen peroxide in bile duct epithelium. J Transl Med 2011; 91:1396-409. [PMID: 21606925 PMCID: PMC3162098 DOI: 10.1038/labinvest.2011.73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The tight junctions of bile duct epithelium form a barrier between the toxic bile and liver parenchyma. Disruption of tight junctions appears to have a crucial role in the pathogenesis of various liver diseases. In this study, we investigated the disruptive effect of hydrogen peroxide and the protective effect of epidermal growth factor (EGF) on the tight junctions and adherens junctions in the bile duct epithelium. Oxidative stress in NRC-1 and Mz-ChA-1 cell monolayers was induced by administration of hydrogen peroxide. Barrier function was evaluated by measuring electrical resistance and inulin permeability. Integrity of tight junctions, adherens junctions and the actin cytoskeleton was determined by imunofluorescence microscopy. Role of signaling molecules was determined by evaluating the effect of specific inhibitors. Hydrogen peroxide caused a rapid disruption of tight junctions and adherens junctions leading to barrier dysfunction without altering the cell viability. Hydrogen peroxide rapidly increased the levels of p-MLC (myosin light chain) and c-Src(pY418). ML-7 and PP2 (MLCK and Src kinase inhibitors) attenuated hydrogen peroxide-induced barrier dysfunction, tight junction disruption and reorganization of actin cytoskeleton. Pretreatment of cell monolayers with EGF ameliorated hydrogen peroxide-induced tight junction disruption and barrier dysfunction. The protective effect of EGF was abrogated by ET-18-OCH(3) and the Ro-32-0432 (PLCγ and PKC inhibitors). Hydrogen peroxide increased tyrosine phosphorylation of ZO-1, claudin-3, E-cadherin and β-catenin, and pretreatment of cells with EGF attenuated tyrosine phosphorylation of these proteins. These results demonstrate that hydrogen peroxide disrupts tight junctions, adherens junctions and the actin cytoskeleton by an MLCK and Src kinase-dependent mechanism in the bile duct epithelium. EGF prevents hydrogen peroxide-induced tight junction disruption by a PLCγ and PKC-dependent mechanism.
Collapse
|