Chan D, Thomas CJ, Taylor VJ, Burke RD. Integrins on eggs: focal adhesion kinase is activated at fertilization, forms a complex with integrins, and is necessary for cortex formation and cell cycle initiation.
Mol Biol Cell 2013;
24:3472-81. [PMID:
23985318 PMCID:
PMC3814141 DOI:
10.1091/mbc.e13-03-0148]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022] Open
Abstract
We investigate the proposal that integrins and focal adhesion kinase (FAK) form a complex that has structural and signaling functions in eggs. FAK protein is present in eggs and is phosphorylated at fertilization. pY(397)FAK localizes to the membrane 30 min after fertilization, which correlates with the expression of βC integrins and egg cortex development. The βC integrin and pY(397)FAK coimmunoprecipitate from egg cortex lysates. PF573 228 and Y11, inhibitors of FAK, interfere with pronuclear fusion and reduce the abundance of pY(397)FAK and cortical actin without affecting microvillar actin. Cyclin E normally accumulates in the nucleus 15 min after fertilization, then returns to background levels. PF573 228- or Y11-treated eggs accumulate cyclin E in the nucleus; however, levels remain high. In addition, PF573 228 interferes with the accumulation of pERK1/2 in the nucleus and in eggs initiating mitosis. Injection of eggs with a fusion protein consisting of the focal adhesion-targeting domain of FAK fused to green fluorescent protein interferes with cortex formation and produces abnormal nuclei. These data indicate that an integrin-FAK adhesion complex forms at the egg surface that functions in formation of actin arrays in the egg cortex and provides signaling inputs for cell cycle initiation.
Collapse