Shimizu T. Reorganization of the cortical actin cytoskeleton during maturation division in the Tubifex egg: possible involvement of protein kinase C.
Dev Biol 1997;
188:110-21. [PMID:
9245516 DOI:
10.1006/dbio.1997.8606]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tubifex eggs undergo a drastic reorganization of the cortical actin cytoskeleton during metaphase of the second meiosis. At the end of the first meiosis, the egg cortex displays only scattered actin filaments and tiny dots of F-actin; during the following 90 min, cortical F-actin gradually increases in amount, becomes organized into foci that are interlinked by actin bundles, and generates a geodesic dome-like organization. In this study, we have characterized this reorganization of the cortical actin cytoskeleton. In living eggs injected with rhodamine-phalloidin at the beginning of the second meiosis, cortical actin assembly (i.e., formation of actin foci and bundles) proceeds normally, but labeled F-actin is not found to be included significantly in the formed cortical actin network, suggesting that the increase in cortical F-actin is not simply ascribable to the recruitment of preexisting actin filaments. Cortical actin assembly can be induced precociously not only by calcium ionophore A23187 but also by a phorbol ester PMA, an agonist of protein kinase C (PKC). Conversely, the formation of actin foci and bundles is inhibited by PKC antagonists, although cortical F-actin increases to some extent in the presence of these inhibitors. Similar inhibition of the cortical reorganization is elicited in eggs whose intracellular free calcium level ([Ca2+]i) has been clamped low by microinjection of a calcium chelator BAPTA. The treatment of BAPTA-injected eggs with PMA results in the formation of actin foci and bundles. An experiment with eggs injected with fluo-3 shows that [Ca2+]i increases during metaphase of the second meiosis. These results suggest that the reorganization of cortical actin during metaphase of the second meiosis requires activation of PKC, which depends on increases in [Ca2+]i.
Collapse