1
|
Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res 2012; 25:14-27. [PMID: 21834848 PMCID: PMC3242935 DOI: 10.1111/j.1755-148x.2011.00898.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is evidence that L-tyrosine and L-dihydroxyphenylalanine (L-DOPA), besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor-mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as regulate the melanocyte functions through the activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate-induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate an older theory proposing that receptors for amino acid-derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN, USA.
| | | | | |
Collapse
|
2
|
Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84:1155-228. [PMID: 15383650 DOI: 10.1152/physrev.00044.2003] [Citation(s) in RCA: 1382] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.
Collapse
Affiliation(s)
- Andrzej Slominski
- Dept. of Pathology, Suite 599, University of Tennessee Health Science Center, 930 Madison Avenue, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
3
|
Thibaudeau G, Holder S, Gerard P. Anterior/posterior influences on neural crest-derived pigment cell differentiation. PIGMENT CELL RESEARCH 1998; 11:189-97. [PMID: 9711533 DOI: 10.1111/j.1600-0749.1998.tb00729.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The neural crest of vertebrate embryos has been used to elucidate steps involved in early embryonic cellular processes such as differentiation and migration. Neural crest cells form a ridge along the dorsal midline and subsequently they migrate throughout the embryo and differentiate into a wide variety of cell types. Intrinsic factors and environmental cues distributed along the neural tube, along the migratory pathways, and/or at the location of arrest influence the fate of neural crest cells. Although premigratory cells of the cranial and trunk neural crest exhibit differences in their differentiation potentials, premigratory trunk neural crest cells are generally assumed to have equivalent developmental potentials. Axolotl neural crest cells from different regions of origin, different stages of development, and challenged with different culture media have been analyzed for differentiation preferences pertaining to the pigment cell lineages. We report region-dependent differentiation of chromatophores from trunk neural crest at two developmental stages. Also, dosage with guanosine produces region-specific influences on the production of xanthophores from wild-type embryos. Our results support the hypothesis that spatial and temporal differences among premigratory trunk neural crest cells found along the anteroposterior axis influence developmental potentials and diminish the equivalency of axolotl neural crest cells.
Collapse
Affiliation(s)
- G Thibaudeau
- Department of Biological Sciences, Mississippi State University, Mississippi State.
| | | | | |
Collapse
|
4
|
Thibaudeau G, Holder S. Cellular plasticity among axolotl neural crest-derived pigment cell lineages. PIGMENT CELL RESEARCH 1998; 11:38-44. [PMID: 9523334 DOI: 10.1111/j.1600-0749.1998.tb00709.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many of the factors and mechanisms guiding the migration/differentiation of neural crest cells that give rise to a number of distinguishable cell types, including all dermal and epidermal pigment cells, remain unknown. The axolotl possesses three pigment cell types that differentiate according to specific developmentally programmed sequences and contribute to pigment pattern in the adult. A single lineage of the crest that becomes restricted to one of three pigment cell types gives us the opportunity to examine the existence of a neural crest stem cell population and the potential for trans-differentiation events. Interpretations of experiments involving drug-treated and mutant axolotls implicate cellular plasticity leading to observed phenotypes. We present results from recent in vitro studies designed to identify parameters influencing differentiation events of individual neural crest-derived pigment cell lineages. We demonstrate that the differentiation of xanthophores is enhanced, while that of the melanophores are inhibited in guanosine-supplemented neural crest cell cultures. Data suggest that the increase in one pigment cell population is at the expense of another, indicative of cellular plasticity. Videomicroscopy used in this study agrees with an abundance of correlative evidence supporting the hypothesis of transdifferentiation events among neural crest-derived pigment cell populations. The embryonic neural crest-derived pigment cell system is an ideal model to study differentiation of multipotential stem cells that play critical roles in patterning.
Collapse
Affiliation(s)
- G Thibaudeau
- Department of Biological Sciences, Mississippi State University, Mississippi State 39762, USA
| | | |
Collapse
|
5
|
Fukuzawa T, Obika M. N-CAM and N-cadherin are specifically expressed in xanthophores, but not in the other types of pigment cells, melanophores, and iridiphores. PIGMENT CELL RESEARCH 1995; 8:1-9. [PMID: 7792250 DOI: 10.1111/j.1600-0749.1995.tb00768.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Little is known about cell-cell communication in pigment cells, whereas a number of signalling molecules have been implicated to control their migration, differentiation, and proliferation. We set out to investigate the expression of cell adhesion molecules (CAMs) in the three different types of pigment cells in poikilotherms, Oryzias latipes and Xenopus laevis. In the present experiments, the expression of N-CAM and N-cadherin in the pigment cells in vitro was examined by immunocytochemistry. Melanophores and xanthophores were isolated and cultured from scales or skins, while iridophores were harvested from skins or peritoneum. The results showed that N-CAM and N-cadherin were specifically expressed in xanthophores, but not in melanophores or iridophores in both O. latipes and X. laevis. N-CAM and N-cadherin basically colocalized in the restricted regions of xanthophores, although the N-caderin-expressed region was broader than the N-CAM-expressed region in the same cell. The incidence of N-cadherin expression was higher than that of N-CAM expression. N-CAM and N-cadherin were expressed at the tip or the base of dendrites, or at the edge between dendrites in dendritic xanthophores. N-CAM and N-cadherin usually localized in small and narrow regions of xanthophores. This distribution pattern was essentially similar in xanthophores with round morphology, which exhibited spot, band, or semicircular immunoreactive regions on the peripheral edge of the cells. The difference in the distribution of pigment granules within the cells, culture period, fixatives, or immunofluorescent markers used in the experiments did not alter the immunostaining pattern.
Collapse
Affiliation(s)
- T Fukuzawa
- Department of Biology, Keio University, Yokohama, Japan
| | | |
Collapse
|
6
|
Process of pigment cell differentiation in skin on the left and right sides of the Japanese flounder,Paralichthys olivaceus, during metamorphosis. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf02905636] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Dean AD, Frost-Mason SK. Effects of fetal bovine serum and serum-free conditions on white and dark axolotl neural crest explants. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:402-8. [PMID: 2071543 DOI: 10.1007/bf02630960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neural crest cells from both white mutant and dark (wildtype) axolotls (Ambystoma mexicanum) were cultured in increasing concentrations of fetal bovine serum (FBS; 2 to 20%). For each explant, the total number of cells that migrated and the percent of differentiated melanophores were recorded. At concentrations of FBS above 2% melanophore differentiation was essentially equivalent (32 to 59%) for both the white and dark neural crest cultures, but subtle differences in cell behavior and differentiation were found between the two phenotypes. By contrast there was a significant difference in the percent melanization of cells in serum-free control cultures, wherein melanophore differentiation in dark neural crest cultures was, on average, 18% compared to 5% in white cultures. Thus, contrary to all previously published work, white and dark neural crest cells are not intrinsically equivalent. Our culture results are discussed with regard to the probable in vivo conditions that cause the white phenotype.
Collapse
Affiliation(s)
- A D Dean
- Department of Physiology and Cell Biology, University of Kansas, Lawrence 66045
| | | |
Collapse
|
8
|
Abstract
Some amino acids have bioregulatory functions, which far exceed those of precursors for proteins or of substrates for specific enzymes. Two of these amino acids, L-tyrosine and L-dopa, are precursors to melanin and catecholamines. In vertebrates, they can act as inducers and regulators of the melanogenic apparatus and of MSH receptors--two quite complex functions that could hardly be performed by mere substrates. Focussing on the pigmentary system as a study model, we therefore explore the hypothesis that L-tyrosine and L-dopa act as hormone-like bioregulators in mammals, with melanocytes regulating tyrosine and dopa activity via their metabolic consumption.
Collapse
Affiliation(s)
- A Slominski
- Toolan Institute for Medical Research, Bennington, VT 05201
| | | |
Collapse
|
9
|
Fukuzawa T, Bagnara JT. Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor. PIGMENT CELL RESEARCH 1989; 2:171-81. [PMID: 2549532 DOI: 10.1111/j.1600-0749.1989.tb00183.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A ventrally localized melanization inhibiting factor (MIF) has been suggested to play an important role in the establishment of the dorsal-ventral pigment pattern in Xenopus laevis [Fukuzawa and Ide:Dev. Biol., 129:25-36, 1988]. To examine the possibility that melanoblast expression might be controlled by local putative MIF and melanogenic factors, the effects of alpha-melanocyte stimulating hormone (alpha-MSH), a serum melanization factor (SMF) from X. laevis or Rana pipiens, and MIF on the "outgrowth" and "melanization" of Xenopus neural crest cells were studied. Outgrowth represents the number of neural crest cells emigrating from cultured neural tubes, and melanization concerns the percentage of differentiated melanophores among the emigrated cells. MSH or SMF stimulate both outgrowth and melanization. The melanogenic effect of Xenopus serum in this system is more than twice that of Rana serum. The actions of MSH and Xenopus serum on melanization seem to be different: 1) Stronger melanization is induced by Xenopus serum than by MSH, and the onset of melanization occurs earlier with Xenopus serum; 2) MSH stimulates melanization only in the presence of added tyrosine; and 3) MSH causes young melanophores to assume a prominent state of melanophore dispersion during culture, while Xenopus serum (10%) had only a slight dispersing effect and not until day 3. A fraction of Xenopus serum presumably containing molecules of a smaller molecular weight (MW less than 30 kDa) than that of a pigment promoting factor reported in calf serum [Jerdan et al.: J. Cell Biol., 100:1493-1498, 1985] produces the same remarkable melanogenic effects as does intact serum. While this fraction stimulates outgrowth, another fraction presumably containing larger molecules (MW greater than 100 kDa) does not. MIF contained in Xenopus ventral skin conditioned medium (VCM) inhibits both outgrowth and melanization dose dependently. When VCM is used in combination with MSH, the stimulating effects of MSH on both outgrowth and melanization are completely inhibited. In contrast, the stimulatory effects of Xenopus serum are not completely inhibited when combined with VCM, although melanization is reduced to approximately 40% that of controls. MIF activity was also found to be present in ventral, but not in dorsal, skin conditioned media of R. pipiens when tested in the Xenopus neural crest system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Fukuzawa
- Department of Anatomy, College of Medicine, University of Arizona, Tucson 85724
| | | |
Collapse
|
10
|
Frost SK, Borchert M, Carson MK. Drug-induced and genetic hypermelanism: effects on pigment cell differentiation. PIGMENT CELL RESEARCH 1989; 2:182-90. [PMID: 2771877 DOI: 10.1111/j.1600-0749.1989.tb00184.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Allopurinol, a drug that inhibits the enzyme xanthine dehydrogenase (XDH), is known to cause hypermelanism in the axolotl. The hypermelanistic condition that results from allopurinol treatment is similar in most respects to the phenotype that results from the action of the melanoid (m) gene in axolotls. On the basis of structural and biochemical studies, it now seems clear that genetic and drug-induced hypermelanism are the same in the following ways. 1) Both types of melanism result in the production of more than normal amounts of melanin and more melanin-containing cells (melanophores). 2) In both cases the amount of pteridine-associated yellow pigment declines during development, and this is associated directly with fine structural changes that occur within the pigment organelles (pterinosomes) of yellow pigment cells (xanthophores). 3) In both cases the hypermelanistic condition results in the suppression of reflecting pigment cell (iridophore) differentiation. 4) Both conditions have now been linked directly to depressed levels of XDH activity. Thus both genetic and drug-induced hypermelanism result in alterations in the normal differentiation of all three pigment cell types and the subsequent disruption of normal pigment pattern formation. The possible significance of these findings with regard to factors known or suspected to direct the migration and/or differentiation of neural crest-derived pigment cells is discussed.
Collapse
Affiliation(s)
- S K Frost
- Department of Physiology and Cell Biology, University of Kansas, Lawrence 66045
| | | | | |
Collapse
|
11
|
Abstract
Melanophores normally differentiate in dorsal but not in ventral skin of Xenopus laevis. We have sought factors which might regulate this differentiation pattern, and we have obtained a putative melanization inhibiting factor (MIF) from ventral but not from dorsal skin. Preliminary studies reveal that MIF is destroyed by heat or trypsin treatment, indicating its protein composition, and has a molecular weight in the range of 300 kDa. The effects of MIF on the differentiation of neural crest derivatives to melanophores were examined in vitro in the presence of tyrosine and fetal calf serum (FCS). Tyrosine enhances melanophore differentiation in vitro at concentrations equivalent to those estimated in adult Xenopus blood plasma (20 microM). FCS also stimulates melanization, by way of materials other than the tyrosine contained in FCS. MIF strongly inhibits outgrowth and melanization of neural crest cells from neural tube explants. MIF also inhibits the differentiation of melanoblasts contained in cultured explants of ventral skin. Inhibition of melanization or melanophore differentiation by MIF occurs even in the presence of L-tyrosine and/or FCS. We suggest that MIF plays an important role in the establishment of dorso-ventral pigment patterns in amphibia.
Collapse
Affiliation(s)
- T Fukuzawa
- Biological Institute, Tohoku University, Sendai, Japan
| | | |
Collapse
|
12
|
Fukuzawa T, Ide H. Melanophore differentiation in the periodic albino mutant of Xenopus laevis. PIGMENT CELL RESEARCH 1987; 1:197-201. [PMID: 3508277 DOI: 10.1111/j.1600-0749.1987.tb00413.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
That embryonic ventral truck tissue might play a role in expression of the periodic albino mutant phenotype (ap/ap) in Xenopus laevis was suggested from the experiments of MacMillan (1980). In contrast, the present experiments, involving the culture of isolated regions of Xenopus embryos, have demonstrated that both mutant and wild-type melanoblasts differentiate independently of a ventral trunk factor. A similar conclusion, that mutant melanoblasts differentiate independently of a ventral trunk factor, is derived from observations on neural crest cultures, wherein melanization of neural crest cells in both wild-type and mutant cultures occurred in a manner consistent with their genotype.
Collapse
Affiliation(s)
- T Fukuzawa
- Biological Institute, Tohoku University, Sendai, Japan
| | | |
Collapse
|