Hossein MS, Kim MK, Jang G, Oh HJ, Koo O, Kim JJ, Kang SK, Lee BC, Hwang WS. Effects of thiol compounds on in vitro maturation of canine oocytes collected from different reproductive stages.
Mol Reprod Dev 2007;
74:1213-20. [PMID:
17595010 DOI:
10.1002/mrd.20674]
[Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Various thiol compounds are known to improve cytoplasmic and/or nuclear maturation of oocytes in vitro. The present study examined the effects of two thiol compounds, cysteine (0.1, 0.5, and 1.0 mM) and cysteamine (50, 100, and 200 microM), on cytoplasmic and nuclear maturation of canine oocytes. Oocytes collected from different reproductive stages were cultured in TCM-199 supplemented with 10% fetal bovine serum, 2.2 mg/ml sodium carbonate, 2.0 microg/ml estrogen, 0.5 microg/ml FSH, 0.03 IU/ml hCG, and 1% penicillin-streptomycin solution for 72 h. Data were analyzed by two-way ANOVA after arcscine transformation and protected by Bonferroni post hoc test. The effects of cysteine and cysteamine on canine IVM were varied depending on the reproductive stage of oocyte donor bitches. In the follicular stage, significantly more oocytes reached the metaphase II (M II) stage when cultured with 0.5 or 1.0 mM cysteine (16.7% and 16.9%, respectively) compared to the control (6.2%). In the follicular stage, cysteamine increased oocyte maturation rate upto the M II stage (15.1% to 17.0%) compared to the control (4.4%). Both the 0.5 mM cysteine and 100 microM cysteamine, alone or together, increased the intracellular GSH level of canine oocytes compared to the control. Irrespective of reproductive stage, no further beneficial effects on nuclear or cytoplasmic maturation were observed when 0.5 mM cysteine and 100 microM cysteamine were supplemented together. In conclusion, addition of 0.5 mM cysteine and 100 microM cysteamine to the maturation medium improved IVM of canine oocytes.
Collapse