1
|
Lymbery RA, Kennington WJ, Evans JP. The thermal environment of sperm affects offspring success: a test of the anticipatory paternal effects hypothesis in the blue mussel. Biol Lett 2021; 17:20210213. [PMID: 34228940 PMCID: PMC8260270 DOI: 10.1098/rsbl.2021.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
There has been an explosion of recent evidence that environments experienced by fathers or their ejaculates can influence offspring phenotypes (paternal effects). However, little is known about whether such effects are adaptive, which would have far-reaching implications for the many species facing rapidly changing environments. For example, some arguments suggest paternal effects might be a source of cross-generational plasticity, preparing offspring to face similar conditions to their father (anticipatory hypothesis). Alternatively, ejaculate-mediated effects on offspring may be non-adaptive by-products of stress. Here, we conduct an experiment to distinguish between these predictions, exposing ejaculates of the externally fertilizing mussel Mytilus galloprovincialis to ambient (19°C) and high (24°C) temperatures, then rearing offspring groups in temperatures that match and mismatch those of sperm. We find that, overall, high temperature-treated sperm induced higher rates of normal offspring development and higher success in transitioning to second-stage larvae, which may represent adaptive epigenetic changes or selection on sperm haplotypes. However, the progeny of high temperature-treated sperm did not perform better than those of ambient temperature-treated sperm when rearing temperatures were high. Overall, these findings offer little support for the anticipatory hypothesis and suggest instead that beneficial paternal effects may be eroded when offspring develop under stressful conditions.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Australia
| | - W. J. Kennington
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Australia
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Australia
| |
Collapse
|
2
|
Iannello M, Bettinazzi S, Breton S, Ghiselli F, Milani L. A Naturally Heteroplasmic Clam Provides Clues about the Effects of Genetic Bottleneck on Paternal mtDNA. Genome Biol Evol 2021; 13:6130822. [PMID: 33555290 PMCID: PMC7936021 DOI: 10.1093/gbe/evab022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies within an organism. Since these copies are not identical, a single individual carries a heterogeneous population of mtDNAs, a condition known as heteroplasmy. Several factors play a role in the dynamics of the within-organism mtDNA population: among them, genetic bottlenecks, selection, and strictly maternal inheritance are known to shape the levels of heteroplasmy across mtDNAs. In Metazoa, the only evolutionarily stable exception to the strictly maternal inheritance of mitochondria is the doubly uniparental inheritance (DUI), reported in 100+ bivalve species. In DUI species, there are two highly divergent mtDNA lineages, one inherited through oocyte mitochondria (F-type) and the other through sperm mitochondria (M-type). Having both parents contributing to the mtDNA pool of the progeny makes DUI a unique system to study the dynamics of mtDNA populations. Since, in bivalves, the spermatozoon has few mitochondria (4–5), M-type mtDNA faces a tight bottleneck during embryo segregation, one of the narrowest mitochondrial bottlenecks investigated so far. Here, we analyzed the F- and M-type mtDNA variability within individuals of the DUI species Ruditapes philippinarum and investigated for the first time the effects of such a narrow bottleneck affecting mtDNA populations. As a potential consequence of this narrow bottleneck, the M-type mtDNA shows a large variability in different tissues, a condition so pronounced that it leads to genotypes from different tissues of the same individual not to cluster together. We believe that such results may help understanding the effect of low population size on mtDNA bottleneck.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Stefano Bettinazzi
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
3
|
Lymbery RA, Evans JP, Kennington WJ. Post-ejaculation thermal stress causes changes to the RNA profile of sperm in an external fertilizer. Proc Biol Sci 2020; 287:20202147. [PMID: 33171088 PMCID: PMC7735278 DOI: 10.1098/rspb.2020.2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Sperm cells experience considerable post-ejaculation environmental variation. However, little is known about whether this affects their molecular composition, probably owing to the assumption that sperm are transcriptionally quiescent. Nevertheless, recent evidence shows sperm have distinct RNA profiles that affect fertilization and embryo viability. Moreover, RNAs are expected to be highly sensitive to extracellular changes. One such group of RNAs are heat shock protein (hsp) transcripts, which function in stress responses and are enriched in sperm. Here, we exploit the experimental tractability of the mussel Mytilus galloprovincialis by exposing paired samples of ejaculated sperm to ambient (19°C) and increased (25°C) temperatures, then measure (i) sperm motility phenotypes, and (ii) messenger RNA (mRNA) levels of two target genes (hsp70 and hsp90) and several putative reference genes. We find no phenotypic changes in motility, but reduced mRNA levels for hsp90 and the putative reference gene gapdh at 25°C. This could reflect either decay of specific RNAs, or changes in translation and degradation rates of transcripts to maintain sperm function under stress. These findings represent, to our knowledge, the first evidence for changes in sperm RNA profiles owing to post-ejaculation environments, and suggest that sperm may be more vulnerable to stress from rising temperatures than currently thought.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | | |
Collapse
|
4
|
Lubośny M, Przyłucka A, Śmietanka B, Burzyński A. Semimytilus algosus: first known hermaphroditic mussel with doubly uniparental inheritance of mitochondrial DNA. Sci Rep 2020; 10:11256. [PMID: 32647112 PMCID: PMC7347871 DOI: 10.1038/s41598-020-67976-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA is a rare phenomenon occurring in some freshwater and marine bivalves and is usually characterized by the mitochondrial heteroplasmy of male individuals. Previous research on freshwater Unionida mussels showed that hermaphroditic species do not have DUI even if their closest gonochoristic counterparts do. No records showing DUI in a hermaphrodite have ever been reported. Here we show for the first time that the hermaphroditic mussel Semimytilus algosus (Mytilida), very likely has DUI, based on the complete sequences of both mitochondrial DNAs and the distribution of mtDNA types between male and female gonads. The two mitogenomes show considerable divergence (34.7%). The presumably paternal M type mitogenome dominated the male gonads of most studied mussels, while remaining at very low or undetectable levels in the female gonads of the same individuals. If indeed DUI can function in the context of simultaneous hermaphroditism, a change of paradigm regarding its involvement in sex determination is needed. It is apparently associated with gonadal differentiation rather than with sex determination in bivalves.
Collapse
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
5
|
Kenchington EL, MacDonald BW, Cogswell A, Hamilton LC, Diz AP. Sex‐specific effects of hybridization on reproductive fitness in Mytilus. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ellen L. Kenchington
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Barry W. MacDonald
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Andrew Cogswell
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Lorraine C. Hamilton
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Angel P. Diz
- Department of Biochemistry, Genetics and Immunology University of Vigo Vigo Spain
| |
Collapse
|
6
|
Passamonti M, Plazzi F. Doubly Uniparental Inheritance and beyond: The contribution of the Manila clamRuditapes philippinarum. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| |
Collapse
|
7
|
Ghiselli F, Maurizii MG, Reunov A, Ariño-Bassols H, Cifaldi C, Pecci A, Alexandrova Y, Bettini S, Passamonti M, Franceschini V, Milani L. Natural Heteroplasmy and Mitochondrial Inheritance in Bivalve Molluscs. Integr Comp Biol 2020; 59:1016-1032. [PMID: 31120503 DOI: 10.1093/icb/icz061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heteroplasmy is the presence of more than one type of mitochondrial genome within an individual, a condition commonly reported as unfavorable and affecting mitonuclear interactions. So far, no study has investigated heteroplasmy at protein level, and whether it occurs within tissues, cells, or even organelles. The only known evolutionarily stable and natural heteroplasmic system in Metazoa is the Doubly Uniparental Inheritance (DUI)-reported so far in ∼100 bivalve species-in which two mitochondrial lineages are present: one transmitted through eggs (F-type) and the other through sperm (M-type). Because of such segregation, mitochondrial oxidative phosphorylation proteins reach a high amino acid sequence divergence (up to 52%) between the two lineages in the same species. Natural heteroplasmy coupled with high sequence divergence between F- and M-type proteins provides a unique opportunity to study their expression and assess the level and extent of heteroplasmy. Here, for the first time, we immunolocalized F- and M-type variants of three mitochondrially-encoded proteins in the DUI species Ruditapes philippinarum, in germline and somatic tissues at different developmental stages. We found heteroplasmy at organelle level in undifferentiated germ cells of both sexes, and in male soma, whereas gametes were homoplasmic: eggs for the F-type and sperm for the M-type. Thus, during gametogenesis, only the sex-specific mitochondrial variant is maintained, likely due to a process of meiotic drive. We examine the implications of our results for DUI proposing a revised model, and we discuss interactions of mitochondria with germ plasm and their role in germline development. Molecular and phylogenetic evidence suggests that DUI evolved from the common Strictly Maternal Inheritance, so the two systems likely share the same underlying molecular mechanism, making DUI a useful system for studying mitochondrial biology.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Arkadiy Reunov
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia.,Department of Biology, St. Francis Xavier University, Antigonish N.S. B2G 2W5, Canada
| | - Helena Ariño-Bassols
- Departamento de Fisiología e Inmunología, Universitat de Barcelona, Barcelona 08028, Spain
| | - Carmine Cifaldi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Andrea Pecci
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Yana Alexandrova
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| |
Collapse
|
8
|
Capt C, Renaut S, Stewart DT, Johnson NA, Breton S. Putative Mitochondrial Sex Determination in the Bivalvia: Insights From a Hybrid Transcriptome Assembly in Freshwater Mussels. Front Genet 2019; 10:840. [PMID: 31572447 PMCID: PMC6754070 DOI: 10.3389/fgene.2019.00840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/13/2019] [Indexed: 11/13/2022] Open
Abstract
Bivalves exhibit an astonishing diversity of sexual systems, with genetic and environmental determinants of sex, and possibly the only example of mitochondrial genes influencing sex determination pathways in animals. In contrast to all other animal species in which strict maternal inheritance (SMI) of mitochondria is the rule, bivalves possess a system known as doubly uniparental inheritance (DUI) of mitochondria in which maternal and paternal mitochondria (and their corresponding female-transmitted or F mtDNA and male-transmitted or M mtDNA genomes) are transmitted within a species. Species with DUI also possess sex-associated mtDNA-encoded proteins (in addition to the typical set of 13), which have been hypothesized to play a role in sex determination. In this study, we analyzed the sex-biased transcriptome in gonads of two closely-related freshwater mussel species with different reproductive and mitochondrial transmission modes: the gonochoric, DUI species, Utterbackia peninsularis, and the hermaphroditic, SMI species, Utterbackia imbecillis. Through comparative analysis with other DUI and non-DUI bivalve transcriptomes already available, we identify common male and female-specific genes, as well as SMI and DUI-related genes, that are probably involved in sex determination and mitochondrial inheritance in this animal group. Our results contribute to the understanding of what could be the first animal sex determination system involving the mitochondrial genome.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Renaut
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.,Centre de la Science de la Biodiversité du Québec, Université de Montréal, Montréal, QC, Canada
| | | | - Nathan A Johnson
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, United States
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
9
|
Milani L, Maurizii MG. Insights into Germline Development and Differentiation in Molluscs and Reptiles: The Use of Molecular Markers in the Study of Non-model Animals. Results Probl Cell Differ 2019; 68:321-353. [PMID: 31598863 DOI: 10.1007/978-3-030-23459-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When shifting research focus from model to non-model species, many differences in the working approach should be taken into account and usually methodological modifications are required because of the lack of genetics/genomics and developmental information for the vast majority of organisms. This lack of data accounts for the largely incomplete understanding of how the two components-genes and developmental programs-are intermingled in the process of evolution. A deeper level of knowledge was reached for a few model animals, making it possible to understand some of the processes that guide developmental changes during evolutionary time. However, it is often difficult to transfer the obtained information to other, even closely related, animals. In this chapter, we present and discuss some examples, such as the choice of molecular markers to be used to characterize differentiation and developmental processes. The chosen examples pertain to the study of germline in molluscs, reptiles, and other non-model animals.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Breton S, Bouvet K, Auclair G, Ghazal S, Sietman BE, Johnson N, Bettinazzi S, Stewart DT, Guerra D. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA. PLoS One 2017; 12:e0183529. [PMID: 28817688 PMCID: PMC5560648 DOI: 10.1371/journal.pone.0183529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022] Open
Abstract
Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| | - Karim Bouvet
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Gabrielle Auclair
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Stéphanie Ghazal
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Bernard E. Sietman
- Minnesota Department of Natural Resources, Division of Ecological and Water Resources, Lake City, Minnesota, United States of America
| | - Nathan Johnson
- U. S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, United States of America
| | - Stefano Bettinazzi
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Donald T. Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Davide Guerra
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Pozzi A, Plazzi F, Milani L, Ghiselli F, Passamonti M. SmithRNAs: Could Mitochondria "Bend" Nuclear Regulation? Mol Biol Evol 2017; 34:1960-1973. [PMID: 28444389 PMCID: PMC5850712 DOI: 10.1093/molbev/msx140] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Typically, animal mitochondria have very compact genomes, with few short intergenic regions, and no introns. Hence, it may seem that there is little space for unknown functions in mitochondrial DNA (mtDNA). However, mtDNA can also operate through RNA interference, as small non coding RNAs (sncRNAs) produced by mtDNA have already been proposed for humans. We sequenced sncRNA libraries from isolated mitochondria of Ruditapes philippinarum (Mollusca Bivalvia) gonads, a species with doubly uniparental inheritance of mitochondria, and identified several putative sncRNAs of mitochondrial origin. Some sncRNAs are transcribed by intergenic regions that form stable stem-hairpin structures, which makes them good miRNA-like candidates. We decided to name them small mitochondrial highly-transcribed RNAs (smithRNAs). Many concurrent data support that we have recovered sncRNAs of mitochondrial origin that might be involved in gonad formation and able to affect nuclear gene expression. This possibility has been never suggested before. If mtDNA can affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for it to interact with the nucleus, and makes metazoan mtDNA a much more complex genome than previously thought.
Collapse
Affiliation(s)
- Andrea Pozzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Gusman A, Lecomte S, Stewart DT, Passamonti M, Breton S. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA. PeerJ 2016; 4:e2760. [PMID: 27994972 PMCID: PMC5157197 DOI: 10.7717/peerj.2760] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/05/2016] [Indexed: 11/20/2022] Open
Abstract
There is only one exception to strict maternal inheritance of mitochondrial DNA (mtDNA) in the animal kingdom: a system named doubly uniparental inheritance (DUI), which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. In this study we provide evidence for the presence of sex-linked heteroplasmy (thus the possible presence of DUI) in two bivalve species, i.e., the nuculanoid Yoldia hyperborea(Gould, 1841)and the veneroid Scrobicularia plana(Da Costa,1778), increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented.
Collapse
Affiliation(s)
- Arthur Gusman
- Department of Biological Sciences, Université de Montréal , Montréal , Québec , Canada
| | - Sophia Lecomte
- Department of Biological Sciences, Université de Strasbourg , Strasbourg , France
| | - Donald T Stewart
- Department of Biology, Acadia University , Wolfville , Nova Scotia , Canada
| | - Marco Passamonti
- Department of Biological Geological and Environmental Sciences, University of Bologna , Bologna , Italy
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal , Montréal , Québec , Canada
| |
Collapse
|
13
|
Kyriakou E, Kravariti L, Zouros E, Rodakis GC. No sex-specific protein-binding site in the VD1 of the F mitochondrial genome of the mussel Mytilus galloprovincialis. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lymbery RA, Kennington WJ, Evans JP. Fluorescent sperm offer a method for tracking the real-time success of ejaculates when they compete to fertilise eggs. Sci Rep 2016; 6:22689. [PMID: 26941059 PMCID: PMC4778040 DOI: 10.1038/srep22689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
Despite intensive research effort, many uncertainties remain in the field of gamete-level sexual selection, particularly in understanding how sperm from different males interact when competing for fertilisations. Here, we demonstrate the utility of broadcast spawning marine invertebrates for unravelling these mysteries, highlighting their mode of reproduction and, in some species, unusual patterns of mitochondrial inheritance. We present a method utilising both properties in the blue mussel, Mytilus galloprovincialis. In mytilids and many other bivalves, both sperm and egg mitochondria are inherited. We exploit this, using the vital mitochondrial dye MitoTracker, to track the success of sperm from individual males when they compete with those from rivals to fertilise eggs. We confirm that dying mitochondria has no adverse effects on in vitro measures of sperm motility (reflecting mitochondrial energetics) or sperm competitive fertilisation success. Therefore, we propose the technique as a powerful and logistically tractable tool for sperm competition studies. Importantly, our method allows the competitive fertilisation success of sperm from any male to be measured directly and disentangled from confounding effects of post-fertilisation embryo survival. Moreover, the mitochondrial dye has broader applications in taxa without paternal mitochondrial inheritance, for example by tracking the dynamics of competing ejaculates prior to fertilisation.
Collapse
Affiliation(s)
- Rowan A Lymbery
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| |
Collapse
|
15
|
Early replication dynamics of sex-linked mitochondrial DNAs in the doubly uniparental inheritance species Ruditapes philippinarum (Bivalvia Veneridae). Heredity (Edinb) 2015; 116:324-32. [PMID: 26626575 DOI: 10.1038/hdy.2015.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/18/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial homoplasmy, which is maintained by strictly maternal inheritance and a series of bottlenecks, is thought to be an adaptive condition for metazoans. Doubly uniparental inheritance (DUI) is a unique mode of mitochondrial transmission found in bivalve species, in which two distinct mitochondrial genome (mtDNA) lines are present, one inherited through eggs (F) and one through sperm (M). During development, the two lines segregate in a sex- and tissue-specific manner: females lose M during embryogenesis, whereas males actively segregate it in the germ line. These two pivotal events are still poorly characterized. Here we investigated mtDNA replication dynamics during embryogenesis and pre-adulthood of the venerid Ruditapes philippinarum using real-time quantitative PCR. We found that both mtDNAs do not detectably replicate during early embryogenesis, and that the M line might be lost from females around 24 h of age. A rise in mtDNA copy number was observed before the first reproductive season in both sexes, with the M mitochondrial genome replicating more than the F in males, and we associate these boosts to the early phase of gonad production. As evidence indicates that DUI relies on the same molecular machine of mitochondrial maternal inheritance that is common in most animals, our data are relevant not only to DUI but also to shed light on how differential segregations of mtDNA variants, in the same nuclear background, may be controlled during development.
Collapse
|
16
|
Vargas J, Pérez M, Toro J, Astorga MP. Presence of two mitochondrial genomes in the mytilid Perumytilus purpuratus: Phylogenetic evidence for doubly uniparental inheritance. Genet Mol Biol 2015; 38:173-81. [PMID: 26273220 PMCID: PMC4530645 DOI: 10.1590/s1415-47573822201420140262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/22/2015] [Indexed: 11/24/2022] Open
Abstract
This study presents evidence, using sequences of ribosomal 16S and COI mtDNA, for the presence of two mitochondrial genomes in Perumytilus purpuratus. This may be considered evidence of doubly uniparental mtDNA inheritance. The presence of the two types of mitochondrial genomes differentiates females from males. The F genome was found in the somatic and gonadal tissues of females and in the somatic tissues of males; the M genome was found in the gonads and mantle of males only. For the mitochondrial 16S region, ten haplotypes were found for the F genome (nucleotide diversity 0.004), and 7 haplotypes for the M genome (nucleotide diversity 0.001), with a distance Dxy of 0.125 and divergence Kxy of 60.33%. For the COI gene 17 haplotypes were found for the F genome (nucleotide diversity 0.009), and 10 haplotypes for the M genome (nucleotide diversity 0.010), with a genetic distance Dxy of 0.184 and divergence Kxy of 99.97%. Our results report the presence of two well-differentiated, sex-specific types of mitochondrial genome (one present in the male gonad, the other in the female gonad), implying the presence of DUI in P. purpuratus. These results indicate that care must be taken in phylogenetic comparisons using mtDNA sequences of P. purpuratus without considering the sex of the individuals.
Collapse
Affiliation(s)
- Jaime Vargas
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Montse Pérez
- > Instituto Español de Oceanografía. Centro Oceanográfico de Vigo, Vigo, Spain
| | - Jorge Toro
- Instituto de Ciencias Marinas y Limnológicas. Universidad Austral de Chile, Valdivia, Chile
| | - Marcela P Astorga
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| |
Collapse
|
17
|
Kyriakou E, Kravariti L, Vasilopoulos T, Zouros E, Rodakis GC. A protein binding site in the M mitochondrial genome of Mytilus galloprovincialis may be responsible for its paternal transmission. Gene 2015; 562:83-94. [PMID: 25701604 DOI: 10.1016/j.gene.2015.02.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
Sea mussels (genus Mytilus) have two mitochondrial genomes in obligatory co-existence, one that is transmitted through the egg and the other through the sperm. The phenomenon, known as Doubly Uniparental Inheritance (DUI) of mitochondrial DNA (mtDNA), is presently known to occur in more than 40 molluscan bivalve species. Females and the somatic tissues of males contain mainly the maternal (F) genome. In contrast, the sperm contains only the paternal (M) genome. Through electrophoretic mobility shift assay (EMSA) experiments we have identified a sequence element in the control region (CR) of the M genome that acts as a binding site for the formation of a complex with a protein factor that occurs in the male gonad. An adenine tract upstream to the element is also essential for the formation of the complex. The reaction is highly specific. It does not occur with protein extracts from the female gonad or from a male or female somatic tissue. Further experiments showed that the interaction takes place in mitochondria surrounding the nucleus of the cells of male gonads, suggesting a distinct role of perinuclear mitochondria. We propose that at a certain point during spermatogenesis mitochondria are subject to degradation and that perinuclear mitochondria with the M mtDNA-protein complex are protected from this degradation with the result that mature spermatozoa contain only the paternal mitochondrial genome.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | - Lara Kravariti
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | - Themistoklis Vasilopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | - Eleftherios Zouros
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece
| | - George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece.
| |
Collapse
|
18
|
Milani L, Ghiselli F, Maurizii MG, Nuzhdin SV, Passamonti M. Paternally transmitted mitochondria express a new gene of potential viral origin. Genome Biol Evol 2015; 6:391-405. [PMID: 24500970 PMCID: PMC3942028 DOI: 10.1093/gbe/evu021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial ORFans (open reading frames having no detectable homology and with unknown function) were discovered in bivalve molluscs with doubly uniparental inheritance (DUI) of mitochondria. In these animals, two mitochondrial lineages are present, one transmitted through eggs (F-type), the other through sperm (M-type), each showing a specific ORFan. In this study, we used in situ hybridization and immunocytochemistry to provide evidence for the expression of Ruditapes philippinarum male-specific ORFan (orf21): both the transcript and the protein (RPHM21) were localized in spermatogenic cells and mature spermatozoa; the protein was localized in sperm mitochondria and nuclei, and in early embryos. Also, in silico analyses of orf21 flanking region and RPHM21 structure supported its derivation from viral sequence endogenization. We propose that RPHM21 prevents the recognition of M-type mitochondria by the degradation machinery, allowing their survival in the zygote. The process might involve a mechanism similar to that of Modulators of Immune Recognition, viral proteins involved in the immune recognition pathway, to which RPHM21 showed structural similarities. A viral origin of RPHM21 may also support a developmental role, because some integrated viral elements are involved in development and sperm differentiation of their host. Mitochondrial ORFans could be responsible for or participate in the DUI mechanism and their viral origin could explain the acquired capability of M-type mitochondria to avoid degradation and invade the germ line, that is what viruses do best: to elude host immune system and proliferate.
Collapse
Affiliation(s)
- Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
19
|
Plazzi F, Cassano A, Passamonti M. The quest for Doubly Uniparental Inheritance in heterodont bivalves and its detection inMeretrix lamarckii(Veneridae: Meretricinae). J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico Plazzi
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| | - Antonello Cassano
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| |
Collapse
|
20
|
Sańko TJ, Burzyński A. Co-expressed mitochondrial genomes: recently masculinized, recombinant mitochondrial genome is co-expressed with the female-transmitted mtDNA genome in a male Mytilus trossulus mussel from the Baltic Sea. BMC Genet 2014; 15:28. [PMID: 24575766 PMCID: PMC3941564 DOI: 10.1186/1471-2156-15-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/13/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Few exceptions have been described from strict maternal inheritance of mitochondrial DNA in animals, including sea mussels (Mytilidae), clams (Donacidae, Veneridae and Solenidae) and freshwater mussels (Unionoidae) order. In these bivalves mitochondria and their DNA are transferred through two separate routes. The females inherit only the maternal mitochondrial DNA whereas the males inherit maternal as well as paternal mitochondrial DNA, which is usually present only in gonads and sperm. The mechanism controlling this phenomenon is unclear but leads to the existence of two separate mitochondrial DNA lineages in a single species. The lineages are usually well differentiated: up to 20-50% divergence in nucleotide sequence. Occasionally, a maternal mitochondrial DNA can invade the paternal transmission route, eventually replacing the diverged M-type and lowering the divergence. Such role reversal (masculinization) event has happened recently in the Mytilus population of the Baltic Sea which consists of M. edulis × M. trossulus hybrids, but the functional status of the resulting mitochondrial genome was unknown. RESULTS In this paper we sequenced transcripts from one specimen that was identified as male carrying both the female mitochondrial genome and a recently masculinized mitochondrial genome. Additionally, the analysis of the control region has showed that the recently masculinized, recombinant genome, not only has an M-type control region and all coding regions derived from the F-type, but also is transcriptionally active along side the maternally inherited F-type genome. In the comparative analysis, the two genomes exhibit different substitution patterns, typical for the M vs. F genome comparisons. The genetic distances and ratios of non-synonymous substitutions also suggest that one of the genomes is transitioning from the maternal to the paternal inheritance mode, consistent with its recent masculinization. CONCLUSION We have shown, for the first time, that the recently masculinized mitochondrial genome is active and that it accumulates excess of non-synonymous substitutions across its coding sequence. This suggests, that, under certain cytonuclear incompatibility conditions, masculinization may serve to restore the endangered functionality of the paternally inherited genome. This is also another example of a mitochondrial genome in which the recombination in the control region predated its transition from paternal to maternal transmission route.
Collapse
Affiliation(s)
- Tomasz J Sańko
- Genetics and Marine Biotechnology Department, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland.
| | | |
Collapse
|
21
|
Sano N, Obata M, Komaru A. Mitochondrial DNA transcription levels during spermatogenesis and early development in doubly uniparental inheritance of the mitochondrial DNA system of the blue mussel Mytilus galloprovincialis. Zoolog Sci 2013; 30:675-9. [PMID: 23915162 DOI: 10.2108/zsj.30.675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In some species of bivalve, there are two highly diverged mitochondrial genomes, one found in all individuals (F type) and the other normally in males only (M type). In Mytilus, a maternally-dependent sex ratio of the progeny has been reported. Some females almost exclusively produce daughters, while others produce a high proportion of sons. We previously reported that in M. galloprovincialis, M type mtDNA copy number may be maintained during spermatogenesis and the development of larvae of male-biased mothers to sustain the doubly uniparental inheritance system. In this study, we investigated transcription levels of M type mtDNA before and after fertilization to understand its function in the germ line. First, we quantified transcription levels of M type mtDNA in testicular cells dissected using laser-capture micro-dissection. The transcription levels of M type mtDNA were not significantly different between spermatogonia and spermatocytes versus spermatids and spermatozoa. Next, we examined differences in transcription levels of M type mtDNA between larvae from male-biased and female-biased mothers. The transcription levels of M type mtDNA significantly increased 24 and 48 h after fertilization in male-biased crosses. By contrast, transcription levels significantly decreased in female-biased crosses. These results suggest M type mtDNA may play a role in early germ line formation.
Collapse
|
22
|
Milani L, Ghiselli F, Nuzhdin SV, Passamonti M. Nuclear genes with sex bias in Ruditapes philippinarum (Bivalvia, veneridae): Mitochondrial inheritance and sex determination in DUI species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:442-54. [PMID: 23873694 DOI: 10.1002/jez.b.22520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 05/16/2013] [Accepted: 06/03/2013] [Indexed: 01/13/2023]
Abstract
Mitochondria are inherited maternally in most metazoans, but in bivalves with Doubly Uniparental Inheritance (DUI) a mitochondrial lineage is transmitted through eggs (F-type), and another through sperm (M-type). In DUI species, a sex-ratio distortion of the progeny was observed: some females produce a female-biased offspring (female-biased family), others a male-biased progeny (male-biased family), and others a 50:50 sex-ratio. A peculiar segregation pattern of M-type mitochondria in DUI organisms appears to be correlated with the sex bias of these families. According to a proposed model for the inheritance of M-type mitochondria in DUI, the transmission of sperm mitochondria is controlled by three nuclear genes, named W, X, and Z. An additional S gene with different dosage effect would be involved in sex determination. In this study, we analyzed structure and localization of three transcripts (psa, birc, and anubl1) with specific sex and family biases in the Manila clam Ruditapes philippinarum. In situ hybridization confirmed the localization of these transcripts in gametogenic cells. In other animals, homologs of these genes are involved in reproduction and ubiquitination. We hypothesized that these genes may have a role in sex determination and could also be responsible for the maintenance/degradation of spermatozoon mitochondria during embryo development of the DUI species R. philippinarum, so that we propose them as candidate factors of the W/X/Z/S system.
Collapse
Affiliation(s)
- Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
23
|
Diz AP, Dudley E, Cogswell A, MacDonald BW, Kenchington ELR, Zouros E, Skibinski DOF. Proteomic analysis of eggs from Mytilus edulis females differing in mitochondrial DNA transmission mode. Mol Cell Proteomics 2013; 12:3068-80. [PMID: 23869045 DOI: 10.1074/mcp.m113.031401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many bivalves have an unusual mechanism of mitochondrial DNA (mtDNA) inheritance called doubly uniparental inheritance (DUI) in which distinctly different genomes are inherited through the female (F genome) and male (M genome) lineages. In fertilized eggs that will develop into male embryos, the sperm mitochondria remain in an aggregation, which is believed to be delivered to the primordial germ cells and passed to the next generation through the sperm. In fertilized eggs that will develop into female embryos, the sperm mitochondria are dispersed throughout the developing embryo and make little if any contribution to the next generation. The frequency of embryos with the aggregated or dispersed mitochondrial type varies among females. Previous models of DUI have predicted that maternal nuclear factors cause molecular differences among unfertilized eggs from females producing embryos with predominantly dispersed or aggregated mitochondria. We test this hypothesis using females of each of the two types from a natural population. We have found small, yet detectable, differences of the predicted type at the proteome level. We also provide evidence that eggs of females giving the dispersed pattern have consistently lower expression for different proteasome subunits than eggs of females giving the aggregated pattern. These results, combined with those of an earlier study in which we used hatchery lines of Mytilus, and with a transcriptomic study in a clam that has the DUI system of mtDNA transmission, reinforce the hypothesis that the ubiquitin-proteasome system plays a key role in the mechanism of DUI and sex determination in bivalves. We also report that eggs of females giving the dispersed pattern have higher expression for arginine kinase and enolase, enzymes involved in energy production, whereas ferritin, which is involved in iron homeostasis, has lower expression. We discuss these results in the context of genetic models for DUI and suggest experimental methods for further understanding the role of these proteins in DUI.
Collapse
Affiliation(s)
- Angel P Diz
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, Wales UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Milani L, Ghiselli F, Passamonti M. Sex-linked mitochondrial behavior during early embryo development in Ruditapes philippinarum (Bivalvia Veneridae) a species with the Doubly Uniparental Inheritance (DUI) of mitochondria. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:182-9. [PMID: 22544715 DOI: 10.1002/jez.b.22004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In most metazoans mitochondria are inherited maternally. However, in some bivalve molluscs, two mitochondrial lineages are present: one transmitted through females (F-type), the other through males (M-type). This unique system is called Doubly Uniparental Inheritance (DUI) of mitochondria. In DUI species, M-type mitochondria have to invade the germ line of male embryos during development, otherwise sperm would transmit F-type mtDNA and DUI would fail. The mechanisms by which sperm mitochondria enter the germ line are still unknown. To address this question, we traced the movement of spermatozoon mitochondria (M-type) in embryos of the DUI species Ruditapes philippinarum by fertilizing eggs with sperm stained with the mitochondrial-specific vital dye MitoTracker Green. As in Mytilus DUI species, in R. philippinarum the distribution of sperm mitochondria follows two different patterns: an aggregated one in which these organelles locate near the first cleavage furrow, and a dispersed one in which sperm mitochondria are scattered. The presence of the two mitochondrial patterns in these taxa, together with their absence in species with Strictly Maternal Inheritance (SMI), confirms that their occurrence is related to DUI. Moreover, a Real-Time qPCR analysis showed that neither M-type nor F-type mitochondria undergo replication boosts in the earliest embryo development. This is the first study on sex-linked mtDNA copy number carried out by qPCR analysis on embryos of a DUI species and the first time the segregation patterns of sperm mitochondria are described in a DUI system other than Mytilus.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | | | |
Collapse
|
25
|
Biparental Inheritance Through Uniparental Transmission: The Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evol Biol 2012. [DOI: 10.1007/s11692-012-9195-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Milani L, Ghiselli F, Maurizii MG, Passamonti M. Doubly uniparental inheritance of mitochondria as a model system for studying germ line formation. PLoS One 2011; 6:e28194. [PMID: 22140544 PMCID: PMC3226660 DOI: 10.1371/journal.pone.0028194] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Doubly Uniparental Inheritance (DUI) of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI). DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos. METHODOLOGY/PRINCIPAL FINDINGS We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow. CONCLUSIONS/SIGNIFICANCE In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown, they could be a variation of the mechanism regulating the mitochondrial bottleneck in all metazoans.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
27
|
Ghiselli F, Milani L, Chang PL, Hedgecock D, Davis JP, Nuzhdin SV, Passamonti M. De Novo assembly of the Manila clam Ruditapes philippinarum transcriptome provides new insights into expression bias, mitochondrial doubly uniparental inheritance and sex determination. Mol Biol Evol 2011; 29:771-86. [PMID: 21976711 DOI: 10.1093/molbev/msr248] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Males and females share the same genome, thus, phenotypic divergence requires differential gene expression and sex-specific regulation. Accordingly, the analysis of expression patterns is pivotal to the understanding of sex determination mechanisms. Many bivalves are stable gonochoric species, but the mechanism of gonad sexualization and the genes involved are still unknown. Moreover, during the period of sexual rest, a gonad is not present and sex cannot be determined. A mechanism associated with germ line differentiation in some bivalves, including the Manila clam Ruditapes philippinarum, is the doubly uniparental inheritance (DUI) of mitochondria, a variation of strict maternal inheritance. Two mitochondrial lineages are present, one transmitted through eggs and the other through sperm, as well as a mother-dependent sex bias of the progeny. We produced a de novo annotation of 17,186 transcripts from R. philippinarum and compared the transcriptomes of males and females and identified 1,575 genes with strong sex-specific expression and 166 sex-specific single nucleotide polymorphisms, obtaining preliminary information about genes that could be involved in sex determination. Then we compared the transcriptomes between a family producing predominantly females and a family producing predominantly males to identify candidate genes involved in regulation of sex-specific aspects of DUI system, finding a relationship between sex bias and differential expression of several ubiquitination genes. In mammalian embryos, sperm mitochondria are degraded by ubiquitination. A modification of this mechanism is hypothesized to be responsible for the retention of sperm mitochondria in male embryos of DUI species. Ubiquitination can additionally regulate gene expression, playing a role in sex determination of several animals. These data enable us to develop a model that incorporates both the DUI literature and our new findings.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Sano N, Obata M, Ooie Y, Komaru A. Mitochondrial DNA copy number is maintained during spermatogenesis and in the development of male larvae to sustain the doubly uniparental inheritance of mitochondrial DNA system in the blue mussel Mytilus galloprovincialis. Dev Growth Differ 2011; 53:816-21. [DOI: 10.1111/j.1440-169x.2011.01290.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Ladoukakis ED, Theologidis I, Rodakis GC, Zouros E. Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes. Mol Biol Evol 2011; 28:1847-59. [PMID: 21220759 DOI: 10.1093/molbev/msr007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination is restricted to sequences of low divergence. This is attributed to the mismatch repairing system (MMR), which does not allow recombination between sequences that are highly divergent. This acts as a safeguard against recombination between nonhomologous sequences that could result in genome imbalance. Here, we report recombination between maternal and paternal mitochondrial genomes of the sea mussel, whose sequences differ by >20%. We propose that the strict maternal inheritance of the animal mitochondrial DNA and the ensuing homoplasmy has relieved the MMR system of the animal mitochondrion from the pressure to tolerate recombination only among sequences with a high degree of similarity.
Collapse
|
30
|
Ghiselli F, Milani L, Passamonti M. Strict sex-specific mtDNA segregation in the germ line of the DUI species Venerupis philippinarum (Bivalvia: Veneridae). Mol Biol Evol 2010; 28:949-61. [PMID: 20952499 DOI: 10.1093/molbev/msq271] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Doubly Uniparental Inheritance (DUI) is one of the most striking exceptions to the common rule of standard maternal inheritance of metazoan mitochondria. In DUI, two mitochondrial genomes are present, showing different transmission routes, one through eggs (F-type) and the other through sperm (M-type). In this paper, we report results from a multiplex real-time quantitative polymerase chain reaction analysis on the Manila clam Venerupis philippinarum (formerly Tapes philippinarum). We quantified M- and F-types in somatic tissues, gonads, and gametes. Nuclear and external reference sequences were used, and the whole experimental process was designed to avoid any possible cross-contamination. In most male somatic tissues, the M-type is largely predominant: This suggests that the processes separating sex-linked mitochondrial DNAs (mtDNAs) in somatic tissues are less precise than in other DUI species. In the germ line, we evidenced a strict sex-specific mtDNA segregation because both sperm and eggs do carry exclusively M- and F-types, respectively, an observation that is in contrast with a previous analysis on Mytilus galloprovincialis. More precisely, whereas two mtDNAs are present in the whole gonad, only the sex-specific one is detected in gametes. Because of this, we propose that the mtDNA transmission is achieved through a three-checkpoint process in V. philippinarum. The cytological mechanisms of male mitochondria segregation in males and degradation in females during the embryo development (here named Checkpoint #1 and Checkpoint #2) are already well known for DUI species; a Checkpoint #3 would act when primordial germ cells (PGCs) are first formed and would work in both males and females. We believe that Checkpoint #3 is a mere variation of the "mitochondrial bottleneck" in species with standard maternal inheritance, established when their PGCs separate during embryo cleavage.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Bologna, Italy.
| | | | | |
Collapse
|
31
|
Kyriakou E, Zouros E, Rodakis GC. The atypical presence of the paternal mitochondrial DNA in somatic tissues of male and female individuals of the blue mussel species Mytilus galloprovincialis. BMC Res Notes 2010; 3:222. [PMID: 20691065 PMCID: PMC2924344 DOI: 10.1186/1756-0500-3-222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/06/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In animals mtDNA inheritance is maternal except in certain molluscan bivalve species which have a paternally inherited mitochondrial genome (genome M) along with the standard maternal one (genome F). Normally, the paternal genome occurs in the male gonad, but it can be often found, as a minority, in somatic tissues of males and females. This may happen in two ways. One is through "sperm mtDNA leakage" into somatic tissues, a deviation from the normal situation in which the sperm mtDNA vanishes in females or ends up exclusively in the germ line of males. The other is through "egg heteroplasmy", when the egg contains, in small quantities, the paternal genome in addition to maternal genome. FINDINGS To test the two hypotheses, we compared the sequences of one of the most variable domains of the M molecule in a somatic tissue (foot) and in the sperm of ten male and in the foot of ten female individuals of M. galloprovincialis. Presence of the M genome was rarer in the foot of females than males. The M genome in the sperm and in the foot of males was identical. CONCLUSIONS Given that the surveyed region differs from individual to individual, the identity of the M genome in the foot and the sperm of males supports strongly the hypothesis that, at least for the tissue examined, the presence of the M genome is due to sperm mtDNA leakage.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece.
| | | | | |
Collapse
|
32
|
Paternal mtDNA and maleness are co-inherited but not causally linked in mytilid mussels. PLoS One 2009; 4:e6976. [PMID: 19759895 PMCID: PMC2736565 DOI: 10.1371/journal.pone.0006976] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In marine mussels of the genus Mytilus there are two mitochondrial genomes. One is transmitted through the female parent, which is the normal transmission route in animals, and the other is transmitted through the male parent which is an unusual phenomenon. In males the germ cell line is dominated by the paternal mitochondrial genome and the somatic cell line by the maternal. Research to date has not allowed a clear answer to the question of whether inheritance of the paternal genome is causally related to maleness. METHODOLOGY/PRINCIPAL FINDINGS Here we present results from hybrid crosses, from triploid mussels and from observations of sperm mitochondria in fertilized eggs which clearly show that maleness and presence of the paternal mitochondrial genome can be decoupled. These same results show that the female mussel has exclusive control of whether her progeny will inherit the mitochondrial genome of the male parent. CONCLUSIONS/SIGNIFICANCE These findings are important in our efforts to understand the mechanistic basis of this unusual mode of mitochondrial DNA inheritance that is common among bivalves.
Collapse
|
33
|
Passamonti M, Ghiselli F. Doubly uniparental inheritance: two mitochondrial genomes, one precious model for organelle DNA inheritance and evolution. DNA Cell Biol 2009; 28:79-89. [PMID: 19196051 DOI: 10.1089/dna.2008.0807] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotes have exploited several mechanisms for organelle uniparental inheritance, so this feature arose and evolved independently many times in their history. Metazoans' mitochondria commonly experience strict maternal inheritance; that is, they are only transmitted by females. However, the most noteworthy exception comes from some bivalve mollusks, in which two mitochondrial lineages (together with their genomes) are inherited: one through females (F) and the other through males (M). M and F genomes show up to 30% sequence divergence. This inheritance mechanism is known as doubly uniparental inheritance (DUI), because both sexes inherit uniparentally their mitochondria. Here, we review what we know about this unusual system, and we propose a model for evolution of DUI that might account for its origin as sex determination mechanism. Moreover, we propose DUI as a choice model to address many aspects that should be of interest to a wide range of biological subfields, such as mitochondrial inheritance, mtDNA evolution and recombination, genomic conflicts, evolution of sex, and developmental biology. Actually, as research proceeds, mitochondria appear to have acquired a central role in many fundamental processes of life, which are not only in their metabolic activity as cellular power plants, such as cell signaling, fertilization, development, differentiation, ageing, apoptosis, and sex determination. A function of mitochondria in the origin and maintenance of sex has been also proposed.
Collapse
Affiliation(s)
- Marco Passamonti
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
34
|
Obata M, Shimizu M, Sano N, Komaru A. Maternal Inheritance of Mitochondrial DNA (mtDNA) in the Pacific oyster (Crassostrea gigas): a Preliminary Study Using mtDNA Sequence Analysis with Evidence of Random Distribution of MitoTracker-Stained Sperm Mitochondria in Fertilized Eggs. Zoolog Sci 2008; 25:248-54. [DOI: 10.2108/zsj.25.248] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 12/06/2007] [Indexed: 11/17/2022]
|
35
|
Usher KM, Bergman B, Raven JA. Exploring Cyanobacterial Mutualisms. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095641] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kayley M. Usher
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, 6009 Australia;
| | - Birgitta Bergman
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - John A. Raven
- Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom;
| |
Collapse
|
36
|
Obata M, Sano N, Kawamura K, Komaru A. Inheritance of two M type mitochondrial DNA from sperm and unfertilized eggs to offspring in Mytilus galloprovincialis. Dev Growth Differ 2007; 49:335-44. [PMID: 17501909 DOI: 10.1111/j.1440-169x.2007.00930.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Mytilus mussels, paternal mitochondrial DNA (mtDNA) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, sperm mtDNA (M type) is inherited only by males. Female mussels receive maternal mtDNA (F type). However, in our previous study, we showed female and unfertilized eggs have both F and M types. We hypothesized that the two M types both from sperm and unfertilized eggs were transmitted to offspring. To test the hypothesis, we examined the number of M type haplotypes in mature M. galloprovincialis. The M type in larvae was compared with those of the parents. Cross experiments were carried out to test the inheritance of M type. In six of 20 mature mussels, two M types were detected by sequence analysis and polymerase chain reaction-restriction fragment length polymorphism. In cross experiments of larval samples from five of 12 crosses, double peak wave was observed by single nucleotide polymorphisms analysis. In these larval samples, the higher peak wave was identical to the parental M type. Larvae received much more paternal M type than the maternal ones. We demonstrated that two M types from sperm and unfertilized eggs were transmitted to offspring in M. galloprovincialis.
Collapse
Affiliation(s)
- Mayu Obata
- Faculty of Bioresources, Mie University, 1577 Kurimamachiya, Tsu 514-8507, Japan.
| | | | | | | |
Collapse
|
37
|
Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU. The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends Genet 2007; 23:465-74. [PMID: 17681397 DOI: 10.1016/j.tig.2007.05.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Mitochondria possess their own genetic material (mitochondrial DNA or mtDNA), whose gene products are involved in mitochondrial respiration and oxidative phosphorylation, transcription, and translation. In animals, mitochondrial DNA is typically transmitted to offspring by the mother alone. The discovery of 'doubly uniparental inheritance' (DUI) of mtDNA in some bivalves has challenged the paradigm of strict maternal inheritance (SMI). In this review, we survey recent advances in our understanding of DUI, which is a peculiar system of cytoplasmic DNA inheritance that involves distinct maternal and paternal routes of mtDNA transmission, a novel extension of a mitochondrial gene (cox2), recombination, and periodic 'role-reversals' of the normally male and female-transmitted mitochondrial genomes. DUI provides a unique opportunity for studying nuclear-cytoplasmic genome interactions and the evolutionary significance of different modes of mitochondrial inheritance.
Collapse
Affiliation(s)
- Sophie Breton
- Département de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | | | | | | | | |
Collapse
|
38
|
Venetis C, Theologidis I, Zouros E, Rodakis GC. No evidence for presence of maternal mitochondrial DNA in the sperm of Mytilus galloprovincialis males. Proc Biol Sci 2007; 273:2483-9. [PMID: 16959639 PMCID: PMC1634914 DOI: 10.1098/rspb.2006.3607] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis. In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.
Collapse
Affiliation(s)
- Constantinos Venetis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of AthensPanepistimioupolis, 15701 Athens, Greece
| | | | - Eleftherios Zouros
- Department of Biology, University of Crete71409 Heraklion, Crete, Greece
| | - George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of AthensPanepistimioupolis, 15701 Athens, Greece
- Author for correspondence ()
| |
Collapse
|
39
|
Sano N, Obata M, Komaru A. Quantitation of the male and female types of mitochondrial DNA in a blue mussel, Mytilus galloprovincialis, using real-time polymerase chain reaction assay. Dev Growth Differ 2007; 49:67-72. [PMID: 17227346 DOI: 10.1111/j.1440-169x.2007.00904.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The system termed doubly uniparental inheritance (DUI) of mitochondrial transmission to progeny has been reported in Mytilus. Under DUI, it has been thought that males have both paternally (M type) and maternally (F type) transmitted mitochondrial DNA (mtDNA), and females have only F type. However, the presence of M type in females has been reported. To clarify the ratio of M type to F type mtDNA in female and male tissues to further our understanding of mitochondrial transmission, we developed a procedure to measure the copy numbers of the two types of mtDNA in Mytilus galloprovincialis using a real-time polymerase chain reaction assay. The following results were obtained by this method. In females, the copy numbers of M type mtDNA detected in adductor muscle, gonad and eggs were approximately 10 000-fold lower than those of F type. In males, F type dominated in adductor muscle, as in the female tissue. However, copy numbers of M type mtDNA were approximately 1000-fold higher than those of F type in gonad and 100 000-fold higher than those of F type in sperm. We examined the quantity relationship between the two types of mtDNA and the transmission mechanism of mtDNA in M. galloprovincialis.
Collapse
Affiliation(s)
- Natsumi Sano
- Faculty of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| | | | | |
Collapse
|
40
|
Obata M, Kamiya C, Kawamura K, Komaru A. Sperm mitochondrial DNA transmission to both male and female offspring in the blue mussel Mytilus galloprovincialis. Dev Growth Differ 2006; 48:253-61. [PMID: 16681650 DOI: 10.1111/j.1440-169x.2006.00863.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Mytilus mussels, paternal mitochondrial DNA (M type) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, it has been reported that female mussels generally have only maternal mtDNA (F type). In this study, we examined the mode of mtDNA transmission in Mytilus galloprovincialis using M and F type-specific primer sets. The ratio of M and F types were measured in each sample by SNaPshot. The M type was detected in the adductor muscle and female gonad of all females. In unfertilized eggs spawned by 84.6% of females (22/26), M type was also detected. The F type was more abundant than the M type in all females. Although the ratio of M type in females was very low, all females contained the M type. From these results, we propose a new possibility about DUI inheritance. The presence of M type in unfertilized eggs indicates that the M type of eggs may also contribute to M type inheritance.
Collapse
Affiliation(s)
- Mayu Obata
- Faculty of Biresources, Mie University, 1577 Kurimamachiya, Tsu 514-8507, Japan.
| | | | | | | |
Collapse
|