1
|
Parain K, Chesneau A, Locker M, Borday C, Perron M. Regeneration from three cellular sources and ectopic mini-retina formation upon neurotoxic retinal degeneration in Xenopus. Glia 2024; 72:759-776. [PMID: 38225726 DOI: 10.1002/glia.24502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Regenerative abilities are not evenly distributed across the animal kingdom. The underlying modalities are also highly variable. Retinal repair can involve the mobilization of different cellular sources, including ciliary marginal zone (CMZ) stem cells, the retinal pigmented epithelium (RPE), or Müller glia. To investigate whether the magnitude of retinal damage influences the regeneration modality of the Xenopus retina, we developed a model based on cobalt chloride (CoCl2 ) intraocular injection, allowing for a dose-dependent control of cell death extent. Analyses in Xenopus laevis revealed that limited CoCl2 -mediated neurotoxicity only triggers cone loss and results in a few Müller cells reentering the cell cycle. Severe CoCl2 -induced retinal degeneration not only potentializes Müller cell proliferation but also enhances CMZ activity and unexpectedly triggers RPE reprogramming. Surprisingly, reprogrammed RPE self-organizes into an ectopic mini-retina-like structure laid on top of the original retina. It is thus likely that the injury paradigm determines the awakening of different stem-like cell populations. We further show that these cellular sources exhibit distinct neurogenic capacities without any bias towards lost cells. This is particularly striking for Müller glia, which regenerates several types of neurons, but not cones, the most affected cell type. Finally, we found that X. tropicalis also has the ability to recruit Müller cells and reprogram its RPE following CoCl2 -induced damage, whereas only CMZ involvement was reported in previously examined degenerative models. Altogether, these findings highlight the critical role of the injury paradigm and reveal that three cellular sources can be reactivated in the very same degenerative model.
Collapse
Affiliation(s)
- Karine Parain
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| | - Albert Chesneau
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| | - Morgane Locker
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| | - Caroline Borday
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| | - Muriel Perron
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| |
Collapse
|
2
|
Nguyen VP, Zhe J, Hu J, Ahmed U, Paulus YM. Molecular and cellular imaging of the eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:360-386. [PMID: 38223186 PMCID: PMC10783915 DOI: 10.1364/boe.502350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
The application of molecular and cellular imaging in ophthalmology has numerous benefits. It can enable the early detection and diagnosis of ocular diseases, facilitating timely intervention and improved patient outcomes. Molecular imaging techniques can help identify disease biomarkers, monitor disease progression, and evaluate treatment responses. Furthermore, these techniques allow researchers to gain insights into the pathogenesis of ocular diseases and develop novel therapeutic strategies. Molecular and cellular imaging can also allow basic research to elucidate the normal physiological processes occurring within the eye, such as cell signaling, tissue remodeling, and immune responses. By providing detailed visualization at the molecular and cellular level, these imaging techniques contribute to a comprehensive understanding of ocular biology. Current clinically available imaging often relies on confocal microscopy, multi-photon microscopy, PET (positron emission tomography) or SPECT (single-photon emission computed tomography) techniques, optical coherence tomography (OCT), and fluorescence imaging. Preclinical research focuses on the identification of novel molecular targets for various diseases. The aim is to discover specific biomarkers or molecular pathways associated with diseases, allowing for targeted imaging and precise disease characterization. In parallel, efforts are being made to develop sophisticated and multifunctional contrast agents that can selectively bind to these identified molecular targets. These contrast agents can enhance the imaging signal and improve the sensitivity and specificity of molecular imaging by carrying various imaging labels, including radionuclides for PET or SPECT, fluorescent dyes for optical imaging, or nanoparticles for multimodal imaging. Furthermore, advancements in technology and instrumentation are being pursued to enable multimodality molecular imaging. Integrating different imaging modalities, such as PET/MRI (magnetic resonance imaging) or PET/CT (computed tomography), allows for the complementary strengths of each modality to be combined, providing comprehensive molecular and anatomical information in a single examination. Recently, photoacoustic microscopy (PAM) has been explored as a novel imaging technology for visualization of different retinal diseases. PAM is a non-invasive, non-ionizing radiation, and hybrid imaging modality that combines the optical excitation of contrast agents with ultrasound detection. It offers a unique approach to imaging by providing both anatomical and functional information. Its ability to utilize molecularly targeted contrast agents holds great promise for molecular imaging applications in ophthalmology. In this review, we will summarize the application of multimodality molecular imaging for tracking chorioretinal angiogenesis along with the migration of stem cells after subretinal transplantation in vivo.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Umayr Ahmed
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Markitantova YV, Grigoryan EN. Cellular and Molecular Triggers of Retinal Regeneration in Amphibians. Life (Basel) 2023; 13:1981. [PMID: 37895363 PMCID: PMC10608152 DOI: 10.3390/life13101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine.
Collapse
Affiliation(s)
| | - Eleonora N. Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
4
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
5
|
Grigoryan EN. Self-Organization of the Retina during Eye Development, Retinal Regeneration In Vivo, and in Retinal 3D Organoids In Vitro. Biomedicines 2022; 10:1458. [PMID: 35740479 PMCID: PMC9221005 DOI: 10.3390/biomedicines10061458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Self-organization is a process that ensures histogenesis of the eye retina. This highly intricate phenomenon is not sufficiently studied due to its biological complexity and genetic heterogeneity. The review aims to summarize the existing central theories and ideas for a better understanding of retinal self-organization, as well as to address various practical problems of retinal biomedicine. The phenomenon of self-organization is discussed in the spatiotemporal context and illustrated by key findings during vertebrate retina development in vivo and retinal regeneration in amphibians in situ. Described also are histotypic 3D structures obtained from the disaggregated retinal progenitor cells of birds and retinal 3D organoids derived from the mouse and human pluripotent stem cells. The review highlights integral parts of retinal development in these conditions. On the cellular level, these include competence, differentiation, proliferation, apoptosis, cooperative movements, and migration. On the physical level, the focus is on the mechanical properties of cell- and cell layer-derived forces and on the molecular level on factors responsible for gene regulation, such as transcription factors, signaling molecules, and epigenetic changes. Finally, the self-organization phenomenon is discussed as a basis for the production of retinal organoids, a promising model for a wide range of basic scientific and medical applications.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
6
|
Grigoryan EN. Pigment Epithelia of the Eye: Cell-Type Conversion in Regeneration and Disease. Life (Basel) 2022; 12:life12030382. [PMID: 35330132 PMCID: PMC8955580 DOI: 10.3390/life12030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Pigment epithelial cells (PECs) of the retina (RPE), ciliary body, and iris (IPE) are capable of altering their phenotype. The main pathway of phenotypic switching of eye PECs in vertebrates and humans in vivo and/or in vitro is neural/retinal. Besides, cells of amphibian IPE give rise to the lens and its derivatives, while mammalian and human RPE can be converted along the mesenchymal pathway. The PECs’ capability of conversion in vivo underlies the lens and retinal regeneration in lower vertebrates and retinal diseases such as proliferative vitreoretinopathy and fibrosis in mammals and humans. The present review considers these processes studied in vitro and in vivo in animal models and in humans. The molecular basis of conversion strategies in PECs is elucidated. Being predetermined onto- and phylogenetically, it includes a species-specific molecular context, differential expression of transcription factors, signaling pathways, and epigenomic changes. The accumulated knowledge regarding the mechanisms of PECs phenotypic switching allows the development of approaches to specified conversion for many purposes: obtaining cells for transplantation, creating conditions to stimulate natural regeneration of the retina and the lens, blocking undesirable conversions associated with eye pathology, and finding molecular markers of pathology to be targets of therapy.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Sherpa RD, Hui SP. An insight on established retinal injury mechanisms and prevalent retinal stem cell activation pathways in vertebrate models. Animal Model Exp Med 2021; 4:189-203. [PMID: 34557646 PMCID: PMC8446703 DOI: 10.1002/ame2.12177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Implementing different tools and injury mechanisms in multiple animal models of retina regeneration, researchers have discovered the existence of retinal stem/progenitor cells. Although they appear to be distributed uniformly across the vertebrate lineage, the reparative potential of the retina is mainly restricted to lower vertebrates. Regenerative repair post-injury requires the creation of a proliferative niche, vital for proper stem cell activation, propagation, and lineage differentiation. This seems to be lacking in mammals. Hence, in this review, we first discuss the many forms of retinal injuries that have been generated using animal models. Next, we discuss how they are utilized to stimulate regeneration and mimic eye disease pathologies. The key to driving stem cell activation in mammals relies on the information we can gather from these models. Lastly, we present a brief update about the genes, growth factors, and signaling pathways that have been brought to light using these models.
Collapse
Affiliation(s)
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for NeurosciencesUniversity of CalcuttaKolkataIndia
| |
Collapse
|
8
|
Grigoryan EN, Markitantova YV. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Detrimental Effects of UVB on Retinal Pigment Epithelial Cells and Its Role in Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1904178. [PMID: 32855763 PMCID: PMC7443017 DOI: 10.1155/2020/1904178] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.
Collapse
|
11
|
Grigoryan EN. Potential Endogenous Cell Sources for Retinal Regeneration in Vertebrates and Humans: Progenitor Traits and Specialization. Biomedicines 2020; 8:E208. [PMID: 32664635 PMCID: PMC7400588 DOI: 10.3390/biomedicines8070208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal diseases often cause the loss of photoreceptor cells and, consequently, impairment of vision. To date, several cell populations are known as potential endogenous retinal regeneration cell sources (RRCSs): the eye ciliary zone, the retinal pigment epithelium, the iris, and Müller glia. Factors that can activate the regenerative responses of RRCSs are currently under investigation. The present review considers accumulated data on the relationship between the progenitor properties of RRCSs and the features determining their differentiation. Specialized RRCSs (all except the ciliary zone in low vertebrates), despite their differences, appear to be partially "prepared" to exhibit their plasticity and be reprogrammed into retinal neurons due to the specific gene expression and epigenetic landscape. The "developmental" characteristics of RRCS gene expression are predefined by the pathway by which these cell populations form during eye morphogenesis; the epigenetic features responsible for chromatin organization in RRCSs are under intracellular regulation. Such genetic and epigenetic readiness is manifested in vivo in lower vertebrates and in vitro in higher ones under conditions permissive for cell phenotype transformation. Current studies on gene expression in RRCSs and changes in their epigenetic landscape help find experimental approaches to replacing dead cells through recruiting cells from endogenous resources in vertebrates and humans.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
12
|
Tavakoli Z, Yazdian F, Tabandeh F, Sheikhpour M. Regenerative medicine as a novel strategy for AMD treatment: a review. Biomed Phys Eng Express 2019; 6:012001. [PMID: 33438587 DOI: 10.1088/2057-1976/ab269a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is known as a major cause of irreversible blindness in elderly adults. The segment of the retina responsible for central vision damages in the disease process. Degeneration of retinal pigmented epithelium (RPE) cells, photoreceptors, and choriocapillaris associated with aging participate for visual loss. In 2010, AMD involved 6.6% of all blindness cases around the world. Some of the researches have evaluated the replacing of damaged RPE in AMD patients by using the cells from various sources. Today, the advancement of RPE differentiation or generation from stem cells has been gained, and currently, clinical trials are testing the efficiency and safety of replacing degenerated RPE with healthy RPE. However, the therapeutic success of RPE transplantation may be restricted unless the transplanted cells can be adhered, distributed and survive for long-term in the transplanted site without any infections. In recent years a variety of scaffold types were used as a carrier for RPE transplantation and AMD treatment. In this review, we have discussed types of scaffolds; natural or synthetic, solid or hydrogel and their results in RPE replacement. Eventually, our aim is highlighting the novel and best scaffold carriers that may have potentially promoting the efficacy of RPE transplantation.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
13
|
Abstract
Retinal degeneration is a leading cause of untreatable blindness in the industrialised world. It is typically irreversible and there are few curative treatments available. The use of stem cells to generate new retinal neurons for transplantation purposes has received significant interest in recent years and is beginning to move towards clinical trials. However, such approaches are likely to be most effective for relatively focal areas of repair. An intriguing complementary approach is endogenous self-repair. Retinal cells from the ciliary marginal zone (CMZ), retinal pigment epithelium (RPE) and Müller glial cells (MG) have all been shown to play a role in retinal repair, typically in lower vertebrates. Among them, MG have received renewed interest, due to their distribution throughout (centre to periphery) the neural retina and their potential to re-acquire a progenitor-like state following retinal injury with the ability to proliferate and generate new neurons. Triggering these innate self-repair mechanisms represents an exciting therapeutic option in treating retinal degeneration. However, these cells behave differently in mammalian and non-mammalian species, with a considerably restricted potential in mammals. In this short review, we look at some of the recent progress made in our understanding of the signalling pathways that underlie MG-mediated regeneration in lower vertebrates, and some of the challenges that have been revealed in our attempts to reactivate this process in the mammalian retina.
Collapse
Affiliation(s)
- Rahul Langhe
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
14
|
Kha CX, Guerin DJ, Tseng KAS. Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms. Front Physiol 2019; 10:502. [PMID: 31139088 PMCID: PMC6518849 DOI: 10.3389/fphys.2019.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
A longstanding challenge in regeneration biology is to understand the role of developmental mechanisms in restoring lost or damaged tissues and organs. As these body structures were built during embryogenesis, it is not surprising that a number of developmental mechanisms are also active during regeneration. However, it remains unclear whether developmental mechanisms act similarly or differently during regeneration as compared to development. Since regeneration is studied in the context of mature, differentiated tissues, it is difficult to evaluate comparative studies with developmental processes due to the latter's highly proliferative environment. We have taken a more direct approach to study regeneration in a developmental context (regrowth). Xenopus laevis, the African clawed frog, is a well-established model for both embryology and regeneration studies, especially for the eye. Xenopus eye development is well-defined. Xenopus is also an established model for retinal and lens regeneration studies. Previously, we demonstrated that Xenopus tailbud embryo can successfully regrow a functional eye that is morphologically indistinguishable from an age-matched control eye. In this study, we assessed the temporal regulation of retinal differentiation and patterning restoration during eye regrowth. Our findings showed that during regrowth, cellular patterning and retinal layer formation was delayed by approximately 1 day but was restored by 3 days when compared to eye development. An assessment of the differentiation of ganglion cells, photoreceptor cells, and Müller glia indicated that the retinal birth order generated during regrowth was consistent with that observed for eye development. Thus, retina differentiation and patterning during regrowth is similar to endogenous eye development. We used this eye regrowth model to assess the role of known mechanisms in development versus regrowth. Loss-of-function studies showed that Pax6 was required for both eye development and regrowth whereas apoptosis was only required for regrowth. Together, these results revealed that the mechanisms required for both development and regrowth can be distinguished from regrowth-specific ones. Our study highlights this developmental model of eye regrowth as a robust platform to systematically and efficiently define the molecular mechanisms that are required for regeneration versus development.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Dylan J Guerin
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
15
|
Grigoryan EN. Endogenous Cell Sources for Eye Retina Regeneration in Vertebrate Animals and Humans. Russ J Dev Biol 2019. [DOI: 10.1134/s106236041901003x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Chesneau A, Bronchain O, Perron M. Conditional Chemogenetic Ablation of Photoreceptor Cells in Xenopus Retina. Methods Mol Biol 2018; 1865:133-146. [PMID: 30151764 DOI: 10.1007/978-1-4939-8784-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Xenopus is an attractive model system for regeneration studies, as it exhibits an extraordinary regenerative capacity compared to mammals. It is commonly used to study body part regeneration following amputation, for instance of the limb, the tail, or the retina. Models with more subtle injuries are also needed for human degenerative disease modeling, allowing for the study of stem cell recruitment for the regeneration of a given cellular subtype. We present here a model to ablate photoreceptor cells in the Xenopus retina. This method is based on the nitroreductase/metronidazole (NTR/MTZ) system, a combination of chemical and genetic tools, allowing for the conditional ablation of targeted cells. This type of approach establishes Xenopus as a powerful model to study cellular regeneration and stem cell regulation.
Collapse
Affiliation(s)
- Albert Chesneau
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay Cedex, France
| | - Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay Cedex, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay Cedex, France.
| |
Collapse
|
17
|
Chignen Possi K, Mulumba M, Omri S, Garcia-Ramos Y, Tahiri H, Chemtob S, Ong H, Lubell WD. Influences of Histidine-1 and Azaphenylalanine-4 on the Affinity, Anti-inflammatory, and Antiangiogenic Activities of Azapeptide Cluster of Differentiation 36 Receptor Modulators. J Med Chem 2017; 60:9263-9274. [DOI: 10.1021/acs.jmedchem.7b01209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kelvine Chignen Possi
- Département
de Chimie, ‡Département de Pédiatrie, and §Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Mukandila Mulumba
- Département
de Chimie, ‡Département de Pédiatrie, and §Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Samy Omri
- Département
de Chimie, ‡Département de Pédiatrie, and §Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Yesica Garcia-Ramos
- Département
de Chimie, ‡Département de Pédiatrie, and §Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Houda Tahiri
- Département
de Chimie, ‡Département de Pédiatrie, and §Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Sylvain Chemtob
- Département
de Chimie, ‡Département de Pédiatrie, and §Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Huy Ong
- Département
de Chimie, ‡Département de Pédiatrie, and §Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - William D. Lubell
- Département
de Chimie, ‡Département de Pédiatrie, and §Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale, Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
18
|
Steinfeld J, Steinfeld I, Bausch A, Coronato N, Hampel ML, Depner H, Layer PG, Vogel-Höpker A. BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling. Biol Open 2017; 6:979-992. [PMID: 28546339 PMCID: PMC5550904 DOI: 10.1242/bio.018739] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2017] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors in vivo at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick. Shortly after BMP application, expression of Microphthalmia-associated transcription factor (Mitf) is induced in the NR and selective cell death on the basal side of the NR induces an RPE-like morphology. The newly induced RPE differentiates and expresses Melanosomalmatrix protein 115 (Mmp115) and RPE65. BMP-induced Wnt2b expression is observed in regions of the NR that become pigmented. Loss of function studies show that conversion of the NR into RPE requires both BMP and Wnt signalling. Simultaneous to the appearance of ectopic RPE tissue, BMP application reprogrammed the proximal RPE into multi-layered retinal tissue. The newly induced NR expresses visual segment homeobox-containing gene (Vsx2), and the ganglion and photoreceptor cell markers Brn3α and Visinin are detected. Our results show that high BMP concentrations are required to induce the conversion of NR into RPE, while low BMP concentrations can still induce transdifferentiation of the RPE into NR. This knowledge may contribute to the development of efficient standardized protocols for RPE and NR generation for cell replacement therapies.
Collapse
Affiliation(s)
- Jörg Steinfeld
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Ichie Steinfeld
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Alexander Bausch
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Nicola Coronato
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Meggi-Lee Hampel
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Heike Depner
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Paul G Layer
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Astrid Vogel-Höpker
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| |
Collapse
|
19
|
Naitoh H, Suganuma Y, Ueda Y, Sato T, Hiramuki Y, Fujisawa-Sehara A, Taketani S, Araki M. Upregulation of matrix metalloproteinase triggers transdifferentiation of retinal pigmented epithelial cells in Xenopus laevis: A Link between inflammatory response and regeneration. Dev Neurobiol 2017; 77:1086-1100. [PMID: 28371543 DOI: 10.1002/dneu.22497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 11/09/2022]
Abstract
In adult Xenopus eyes, when the whole retina is removed, retinal pigmented epithelial (RPE) cells become activated to be retinal stem cells and regenerate the whole retina. In the present study, using a tissue culture model, it was examined whether upregulation of matrix metalloproteinases (Mmps) triggers retinal regeneration. Soon after retinal removal, Xmmp9 and Xmmp18 were strongly upregulated in the tissues of the RPE and the choroid. In the culture, Mmp expression in the RPE cells corresponded with their migration from the choroid. A potent MMP inhibitor, 1,10-PNTL, suppressed RPE cell migration, proliferation, and formation of an epithelial structure in vitro. The mechanism involved in upregulation of Mmps was further investigated. After retinal removal, inflammatory cytokine genes, IL-1β and TNF-α, were upregulated both in vivo and in vitro. When the inflammation inhibitors dexamethasone or Withaferin A were applied in vitro, RPE cell migration was severely affected, suppressing transdifferentiation. These results demonstrate that Mmps play a pivotal role in retinal regeneration, and suggest that inflammatory cytokines trigger Mmp upregulation, indicating a direct link between the inflammatory reaction and retinal regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1086-1100, 2017.
Collapse
Affiliation(s)
- Hanako Naitoh
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Yukari Suganuma
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Yoko Ueda
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Takahiko Sato
- Department of Growth Regulation, Institute of Frontier Medical Sciences, Kyoto University, 606-8585, Japan
| | - Yosuke Hiramuki
- Department of Growth Regulation, Institute of Frontier Medical Sciences, Kyoto University, 606-8585, Japan
| | - Atsuko Fujisawa-Sehara
- Department of Growth Regulation, Institute of Frontier Medical Sciences, Kyoto University, 606-8585, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Masasuke Araki
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, 630-8506, Japan.,Unit of Neural Development and Regeneration, Department of Biology, Nara Medical University, Nara, 634-8521, Japan
| |
Collapse
|
20
|
Tseng AS. Seeing the future: usingXenopusto understand eye regeneration. Genesis 2017; 55. [DOI: 10.1002/dvg.23003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Ai-Sun Tseng
- School of Life Sciences; University of Nevada; Las Vegas, 4505 South Maryland Parkway, Box 454004 Las Vegas Nevada 89154
| |
Collapse
|
21
|
Ail D, Perron M. Retinal Degeneration and Regeneration-Lessons From Fishes and Amphibians. CURRENT PATHOBIOLOGY REPORTS 2017; 5:67-78. [PMID: 28255526 PMCID: PMC5309292 DOI: 10.1007/s40139-017-0127-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Retinal degenerative diseases have immense socio-economic impact. Studying animal models that recapitulate human eye pathologies aids in understanding the pathogenesis of diseases and allows for the discovery of novel therapeutic strategies. Some non-mammalian species are known to have remarkable regenerative abilities and may provide the basis to develop strategies to stimulate self-repair in patients suffering from these retinal diseases. RECENT FINDINGS Non-mammalian organisms, such as zebrafish and Xenopus, have become attractive model systems to study retinal diseases. Additionally, many fish and amphibian models of retinal cell ablation and cell lineage analysis have been developed to study regeneration. These investigations highlighted several cellular sources for retinal repair in different fish and amphibian species. Moreover, major differences in repair mechanisms have been reported in these animal models. SUMMARY This review aims to emphasize first on the importance of zebrafish and Xenopus models in studying the pathogenesis of retinal diseases and, second, on the different modes of regeneration processes in these model organisms.
Collapse
Affiliation(s)
- Divya Ail
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- Centre d’Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| |
Collapse
|
22
|
Di Foggia V, Makwana P, Ali RR, Sowden JC. Induced Pluripotent Stem Cell Therapies for Degenerative Disease of the Outer Retina: Disease Modeling and Cell Replacement. J Ocul Pharmacol Ther 2016; 32:240-52. [PMID: 27027805 DOI: 10.1089/jop.2015.0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stem cell therapies are being explored as potential treatments for retinal disease. How to replace neurons in a degenerated retina presents a continued challenge for the regenerative medicine field that, if achieved, could restore sight. The major issues are: (i) the source and availability of donor cells for transplantation; (ii) the differentiation of stem cells into the required retinal cells; and (iii) the delivery, integration, functionality, and survival of new cells in the host neural network. This review considers the use of induced pluripotent stem cells (iPSC), currently under intense investigation, as a platform for cell transplantation therapy. Moreover, patient-specific iPSC are being developed for autologous cell transplantation and as a tool for modeling specific retinal diseases, testing gene therapies, and drug screening.
Collapse
Affiliation(s)
- Valentina Di Foggia
- 1 UCL Institute of Child Health, University College London , London, United Kingdom
| | - Priyanka Makwana
- 1 UCL Institute of Child Health, University College London , London, United Kingdom
| | - Robin R Ali
- 2 UCL Institute of Ophthalmology , London, United Kingdom
| | - Jane C Sowden
- 1 UCL Institute of Child Health, University College London , London, United Kingdom
| |
Collapse
|
23
|
Martinez-De Luna RI, Ku RY, Aruck AM, Santiago F, Viczian AS, San Mauro D, Zuber ME. Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. Dev Biol 2016; 426:219-235. [PMID: 26996101 DOI: 10.1016/j.ydbio.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Abstract
Intermediate filament proteins are structural components of the cellular cytoskeleton with cell-type specific expression and function. Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein and is up-regulated in glia of the nervous system in response to injury and during neurodegenerative diseases. In the retina, GFAP levels are dramatically increased in Müller glia and are thought to play a role in the extensive structural changes resulting in Müller cell hypertrophy and glial scar formation. In spite of similar changes to the morphology of Xenopus Müller cells following injury, we found that Xenopus lack a gfap gene. Other type III intermediate filament proteins were, however, significantly induced following rod photoreceptor ablation and retinal ganglion cell axotomy. The recently available X. tropicalis and X. laevis genomes indicate a small deletion most likely resulted in the loss of the gfap gene during anuran evolution. Lastly, a survey of representative species from all three extant amphibian orders including the Anura (frogs, toads), Caudata (salamanders, newts), and Gymnophiona (caecilians) suggests that deletion of the gfap locus occurred in the ancestor of all Anura after its divergence from the Caudata ancestor around 290 million years ago. Our results demonstrate that extensive changes in Müller cell morphology following retinal injury do not require GFAP in Xenopus, and other type III intermediate filament proteins may be involved in the gliotic response.
Collapse
Affiliation(s)
- Reyna I Martinez-De Luna
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Ray Y Ku
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Alexandria M Aruck
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Francesca Santiago
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Andrea S Viczian
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA
| | - Diego San Mauro
- Department of Zoology & Physical Anthropology, Faculty of Biological Sciences, Complutense University, Madrid 28040, Spain
| | - Michael E Zuber
- Departments of Ophthalmology, Biochemistry & Molecular Biology, Neuroscience & Physiology, The Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse 13210, NY, USA.
| |
Collapse
|
24
|
Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier RL. Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomater 2016; 31:61-70. [PMID: 26621699 DOI: 10.1016/j.actbio.2015.11.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/02/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
Abstract
Tissue decellularization strategies have enabled engineering of scaffolds that preserve native extracellular matrix (ECM) structure and composition. In this study, we developed decellularized retina (decell-retina) thin films. We hypothesized that these films, mimicking the retina niche, would promote human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. Retinas isolated from bovine eyes were decellularized using 1% w/v sodium dodecyl sulfate (SDS) and pepsin digested. The resulting decell-retina was biochemically assayed for composition and cast dried to develop thin films. Attachment, viability, morphology, proliferation and gene expression of hRPC cultured on the films were studied in vitro. Biochemical analyses of decell-retina compared to native retina indicated the bulk of DNA (94%) was removed, while the majority of sulfated GAGs (55%), collagen (83%), hyaluronic acid (87%), and key growth factors were retained. The decell-retina films supported hRPC attachment and growth, with cell number increasing 1.5-fold over a week. RT-PCR analysis revealed hRPC expression of rhodopsin, rod outer membrane, neural retina-specific leucine zipper neural and cone-rod homeobox gene on decell-retina films, indicating photoreceptor development. In conclusion, novel decell-retina films show promise as potential substrates for culture and/or transplantation of retinal progenitor cells to treat retinal degenerative disorders. STATEMENT OF SIGNIFICANCE In this study, we report the development of a novel biomaterial, based on decellularized retina (decell-retina) that mimics the retina niche and promotes human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. We estimated, for the first time, the amounts of collagen I, GAGs and HA present in native retina, as well as the decell-retina. We demonstrated that retinas can be decellularized using ionic detergents and can be processed into mechanically stable thin films, which can act as substrates for culturing hRPCs. Rhodopsin, ROM1, NRL and CRX gene expression on the decell-retina films indicated photoreceptor development from RPCs. These results support the potential of decell-retina as a cell delivery platform to treat and manage retinal degenerative disease like AMD.
Collapse
|
25
|
Matsushita T, Fujihara A, Royall L, Kagiwada S, Kosaka M, Araki M. Immediate differentiation of neuronal cells from stem/progenitor-like cells in the avian iris tissues. Exp Eye Res 2014; 123:16-26. [DOI: 10.1016/j.exer.2014.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/19/2023]
|
26
|
Yu H, Vu THK, Cho KS, Guo C, Chen DF. Mobilizing endogenous stem cells for retinal repair. Transl Res 2014; 163:387-98. [PMID: 24333552 PMCID: PMC3976683 DOI: 10.1016/j.trsl.2013.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
Irreversible vision loss is most often caused by the loss of function and subsequent death of retinal neurons, such as photoreceptor cells-the cells that initiate vision by capturing and transducing signals of light. One reason why retinal degenerative diseases are devastating is that, once retinal neurons are lost, they don't grow back. Stem cell-based cell replacement strategy for retinal degenerative diseases are leading the way in clinical trials of transplantation therapy, and the exciting findings in both human and animal models point to the possibility of restoring vision through a cell replacement regenerative approach. A less invasive method of retinal regeneration by mobilizing endogenous stem cells is, thus, highly desirable and promising for restoring vision. Although many obstacles remain to be overcome, the field of endogenous retinal repair is progressing at a rapid pace, with encouraging results in recent years.
Collapse
Affiliation(s)
- Honghua Yu
- Department of Ophthalmology, Liuhuaqiao Hospital, Guangzhou, PR China; Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
| | - Thi Hong Khanh Vu
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass; Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
| | - Chenying Guo
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass; VA Boston Healthcare System, Boston, Mass.
| |
Collapse
|
27
|
Miyake A, Araki M. Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model. Dev Neurobiol 2014; 74:739-56. [PMID: 24488715 DOI: 10.1002/dneu.22169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 01/02/2023]
Abstract
Our research group has extensively studied retinal regeneration in adult Xenopus laevis. However, X. laevis does not represent a suitable model for multigenerational genetics and genomic approaches. Instead, Xenopus tropicalis is considered as the ideal model for these studies, although little is known about retinal regeneration in X. tropicalis. In the present study, we showed that a complete retina regenerates at approximately 30 days after whole retinal removal. The regenerating retina was derived from the stem/progenitor cells in the ciliary marginal zone (CMZ), indicating a novel mode of vertebrate retinal regeneration, which has not been previously reported. In a previous study, we showed that in X. laevis, retinal regeneration occurs primarily through the transdifferentiation of retinal pigmented epithelial (RPE) cells. RPE cells migrate to the retinal vascular membrane and reform a new epithelium, which then differentiates into the retina. In X. tropicalis, RPE cells also migrated to the vascular membrane, but transdifferentiation was not evident. Using two tissue culture models of RPE tissues, it was shown that in X. laevis RPE culture neuronal differentiation and reconstruction of the retinal three-dimensional (3-D) structure were clearly observed, while in X. tropicalis RPE culture neither ßIII tubulin-positive cells nor 3-D retinal structure were seen. These results indicate that the two Xenopus species are excellent models to clarify the cellular and molecular mechanisms of retinal regeneration, as these animals have contrasting modes of regeneration; one mode primarily involves RPE cells and the other mode involves stem/progenitor cells in the CMZ.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Biological Sciences, Developmental Neurobiology Laboratory, Nara Women's University, Nara, 630-8506, Japan
| | | |
Collapse
|
28
|
Layer PG, Araki M, Vogel-Höpker A. New concepts for reconstruction of retinal and pigment epithelial tissues. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Hidalgo M, Locker M, Chesneau A, Perron M. Stem Cells and Regeneration in the Xenopus Retina. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-0787-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
31
|
Fang Y, Cho KS, Tchedre K, Lee SW, Guo C, Kinouchi H, Fried S, Sun X, Chen DF. Ephrin-A3 suppresses Wnt signaling to control retinal stem cell potency. Stem Cells 2013; 31:349-59. [PMID: 23165658 DOI: 10.1002/stem.1283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/23/2012] [Indexed: 11/09/2022]
Abstract
The ciliary epithelium (CE) of adult mammals has been reported to provide a source of retinal stem cells (RSCs) that can give rise to all retinal cell types in vitro. A recent study, however, suggests that CE-derived cells possess properties of pigmented ciliary epithelial cells and display little neurogenic potential. Here we show that the neurogenic potential of CE-derived cells is negatively regulated by ephrin-A3, which is upregulated in the CE of postnatal mice and presents a strong prohibitory niche for adult RSCs. Addition of ephrin-A3 inhibits proliferation of CE-derived RSCs and increases pigment 349 cell 359. In contrast, absence of ephrin-A3 promotes proliferation and increases expression of neural progenitor cell markers and photoreceptor progeny. The negative effects of ephrin-A3 on CE-derived RSCs are mediated through activation of an EphA4 receptor and suppression of Wnt3a/β-catenin signaling. Together, our data suggest that CE-derived RSCs contain the intrinsic machinery to generate photoreceptors and other retinal neurons, while the CE of adult mice expresses negative regulators that prohibit the proliferation and neural differentiation of RSCs. Manipulating ephrin and Wnt/β-catenin signaling may, thus, represent a viable approach in activating the endogenous neurogenic potential of CE-derived RSCs for treating photoreceptor damage and retinal degenerative disorders.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nabeshima A, Nishibayashi C, Ueda Y, Ogino H, Araki M. Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6 activation. Genesis 2013; 51:410-9. [PMID: 23362049 DOI: 10.1002/dvg.22378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 12/26/2022]
Abstract
The whole retina regenerates from retinal pigmented epithelial (RPE) cells by transdifferentiation in the adult newt and Xenopus laevis when it is surgically removed. We produced a transgenic animal line, in which EGFP expression is under the control of Rax pomotor. Using F1 and F2 generations, we analyzed Rax-EGFP expression during retinal regeneration in a tissue culture model. In the culture, 4 zones were distinguished as RPE cells migrating outwards from the periphery of the explant: the explant zone, epithelial zone, transition zone and differentiation zone. Expression of transcription factors such as Pax6 and Rax-EGFP was observed in different zones. Rax-EGFP expression preceded Pax6 expression, and the expression of both genes occurred in RPE cells that had lost contact with the basement membrane facing the choroid. We have developed a new culture method in which RPE tissues are embedded in Matrigel. This method has many advantages over the previous gel-overlay method to reproduce construction of 3D-retinal structures and clearly showed that RPE cells need to be detached from the choroid before entering the regeneration pathway. The present results indicate that the temporal changes in cell-cell and cell-extracellular matrix interactions regulate transdifferentiation.
Collapse
Affiliation(s)
- Ayaka Nabeshima
- Department of Biological Sciences, Developmental Neurobiology Laboratory, Nara Women's University, Nara 630-8506
| | | | | | | | | |
Collapse
|
33
|
Abstract
Comparative studies of lens and retina regeneration have been conducted within a wide variety of animals over the last 100 years. Although amphibians, fish, birds and mammals have all been noted to possess lens- or retina-regenerative properties at specific developmental stages, lens or retina regeneration in adult animals is limited to lower vertebrates. The present review covers the newest perspectives on lens and retina regeneration from these different model organisms with a focus on future trends in regeneration research.
Collapse
|
34
|
Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem J 2012; 447:239-48. [PMID: 22839299 PMCID: PMC3459222 DOI: 10.1042/bj20120172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transdifferentiation is the conversion of cells from one differentiated cell type into another. How functionally differentiated cells already committed to a specific cell lineage can transdifferentiate into other cell types is a key question in cell biology and regenerative medicine. In the present study we show that porcine ovarian follicular GCs (granulosa cells) can transdifferentiate into osteoblasts in vitro and in vivo. Pure GCs isolated and cultured in Dulbecco's modified Eagle's medium supplemented with 20% FBS (fetal bovine serum) proliferated and dedifferentiated into fibroblast-like cells. We referred to these cells as DFOG (dedifferentiated follicular granulosa) cells. Microarray analysis showed that DFOG cells lost expression of GC-specific marker genes, but gained the expression of osteogenic marker genes during dedifferentiation. After osteogenic induction, DFOG cells underwent terminal osteoblast differentiation and matrix mineralization in vitro. Furthermore, when DFOG cells were transplanted subcutaneously into SCID mice, these cells formed ectopic osteoid tissue. These results indicate that DFOG cells derived from GCs can differentiate into osteoblasts in vitro and in vivo. We suggest that GCs provide a useful model for studying the mechanisms of transdifferentiation into other cell lineages in functionally differentiated cells.
Collapse
|
35
|
Beddaoui M, Coupland SG, Tsilfidis C. Recovery of function following regeneration of the damaged retina in the adult newt, Notophthalmus viridescens. Doc Ophthalmol 2012; 125:91-100. [DOI: 10.1007/s10633-012-9338-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
|
36
|
Abstract
The innate capacity of adult somatic cells has many potential applications in regenerative medicine. In this issue of Cell Stem Cell, Salero et al. (2012) describe an adult retinal stem cell population capable of generating neural and mesenchymal cell lineages.
Collapse
Affiliation(s)
- Pete Coffey
- Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London EC1V 9EL, UK.
| |
Collapse
|
37
|
Ueda Y, Mizuno N, Araki M. Transgenic Xenopus laevis with the ef1-α promoter as an experimental tool for amphibian retinal regeneration study. Genesis 2012; 50:642-50. [DOI: 10.1002/dvg.22024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/20/2012] [Accepted: 02/26/2012] [Indexed: 11/08/2022]
|
38
|
Agata K, Inoue T. Survey of the differences between regenerative and non-regenerative animals. Dev Growth Differ 2012; 54:143-52. [DOI: 10.1111/j.1440-169x.2011.01323.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Martinez-De Luna RI, Kelly LE, El-Hodiri HM. The Retinal Homeobox (Rx) gene is necessary for retinal regeneration. Dev Biol 2011; 353:10-8. [PMID: 21334323 DOI: 10.1016/j.ydbio.2011.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 01/21/2023]
Abstract
The Retinal Homeobox (Rx) gene is essential for vertebrate eye development. Rx function is required for the specification and maintenance of retinal progenitor cells (RPCs). Loss of Rx function leads to a lack of eye development in a variety of species. Here we show that Rx function is also necessary during retinal regeneration. We performed a thorough characterization of retinal regeneration after partial retinal resection in pre-metamorphic Xenopus laevis. We show that after injury the wound is repopulated with retinal progenitor cells (RPCs) that express Rx and other RPC marker genes. We used an shRNA-based approach to specifically silence Rx expression in vivo in tadpoles. We found that loss of Rx function results in impaired retinal regeneration, including defects in the cells that repopulate the wound and the RPE at the wound site. We show that the regeneration defects can be rescued by provision of exogenous Rx. These results demonstrate for the first time that Rx, in addition to being essential during retinal development, also functions during retinal regeneration.
Collapse
Affiliation(s)
- Reyna I Martinez-De Luna
- Graduate Program in Molecular, Cellular, and Developmental Biology, College of Biological Sciences, Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
40
|
Fischer AJ, Bongini R. Turning Müller glia into neural progenitors in the retina. Mol Neurobiol 2010; 42:199-209. [PMID: 21088932 DOI: 10.1007/s12035-010-8152-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/10/2010] [Indexed: 12/22/2022]
Abstract
Stimulating neuronal regeneration is a potential strategy to treat sight-threatening diseases of the retina. In some classes of vertebrates, retinal regeneration occurs spontaneously to effectively replace neurons lost to acute damage in order to restore visual function. There are different mechanisms and cellular sources of retinal regeneration in different species, include the retinal pigmented epithelium, progenitors seeded across the retina, and the Müller glia. This review briefly summarizes the different mechanisms of retinal regeneration in frogs, fish, chicks, and rodents. The bulk of this review summarizes and discusses recent findings regarding regeneration from Müller glia-derived progenitors, with emphasis on findings in the chick retina. The Müller glia are a promising source of regeneration-supporting cells that are intrinsic to the retina and significant evidence indicated these glias can be stimulated to produce neurons in different classes of vertebrates. The key to harnessing the neurogenic potential of Müller glia is to identify the secreted factors, signaling pathways, and transcription factors that enable de-differentiation, proliferation, and neurogenesis. We review findings regarding the roles of mitogen-activated protein kinase and notch signaling in the proliferation and generation of Müller glia-derived retinal progenitors.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA.
| | | |
Collapse
|
41
|
Bharti K, Miller SS, Arnheiter H. The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res 2010; 24:21-34. [PMID: 20846177 DOI: 10.1111/j.1755-148x.2010.00772.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Compared with neural crest-derived melanocytes, retinal pigment epithelium (RPE) cells in the back of the eye are pigment cells of a different kind. They are a part of the brain, form an epithelial monolayer, respond to distinct extracellular signals, and provide functions that far exceed those of a light-absorbing screen. For instance, they control nutrient and metabolite flow to and from the retina, replenish 11-cis-retinal by re-isomerizing all-trans-retinal generated during photoconversion, phagocytose daily a portion of the photoreceptors' outer segments, and secrete cytokines that locally control the innate and adaptive immune systems. Not surprisingly, RPE cell damage is a major cause of human blindness worldwide, with age-related macular degeneration a prevalent example. RPE replacement therapies using RPE cells generated from embryonic or induced pluripotent stem cells provide a novel approach to a rational treatment of such forms of blindness. In fact, RPE-like cells can be obtained relatively easily when stem cells are subjected to a two-step induction protocol, a first step that leads to a neuroectodermal fate and a second to RPE differentiation. Here, we discuss the characteristics of such cells, propose criteria they should fulfill in order to be considered authentic RPE cells, and point out the challenges one faces when using such cells in attempts to restore vision.
Collapse
Affiliation(s)
- Kapil Bharti
- Mammalian Development Section, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | | | | |
Collapse
|
42
|
Karl MO, Reh TA. Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 2010; 16:193-202. [PMID: 20303826 DOI: 10.1016/j.molmed.2010.02.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/06/2010] [Accepted: 02/10/2010] [Indexed: 12/26/2022]
Abstract
The retina is subject to degenerative diseases that often lead to significant visual impairment. Non-mammalian vertebrates have the remarkable ability to replace neurons lost through damage. Fish, and to a limited extent birds, replace lost neurons by the dedifferentiation of Müller glia to a progenitor state followed by the replication of these neuronal progenitor cells. Over the past five years, studies have investigated whether regeneration can be stimulated in the mouse and rat retina. Several groups have reported that at least some types of neurons can be regenerated in the mammalian retina in vivo or in vitro, and that the regeneration of neurons can be stimulated using growth factors, transcription factors or subtoxic levels of excitatory amino acids. These recent results suggest that some part of the regenerative program that occurs in non-mammalian vertebrates remains in the mammalian retina, and could provide a basis to develop new strategies for retinal repair in patients with retinal degenerations.
Collapse
Affiliation(s)
- M O Karl
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, USA
| | | |
Collapse
|
43
|
Kuriyama F, Ueda Y, Araki M. Complete reconstruction of the retinal laminar structure from a cultured retinal pigment epithelium is triggered by altered tissue interaction and promoted by overlaid extracellular matrices. Dev Neurobiol 2010; 69:950-8. [PMID: 19701886 DOI: 10.1002/dneu.20745] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina regenerates from retinal pigment epithelial (RPE) cells by transdifferentiation in the adult newt and Xenopus laevis when it is surgically removed. This was studied under a novel culture condition, and we succeeded, for the first time, in developing a complete retinal laminar structure from a single epithelial sheet of RPE. We cultured a Xenopus RPE monolayer sheet isolated from the choroid on a filter cup with gels overlaid and found that the retinal tissue structure differentiated with all retinal layers present. In the culture, RPE cells isolated themselves from the culture substratum (filter membrane), migrated, and reattached to the overlaid gel, on which they initiated transdifferentiation. This was exactly the same as observed during in vivo retina regeneration of X. laevis. In contrast, when RPE monolayers were cultured similarly without isolation from the choroid, RPE cells proliferated, but remained pigmented instead of transdifferentiating, indicating that alteration in tissue interaction triggers transdifferentiation. We then examined under the conventional tissue culture condition whether altered RPE-choroid interaction induces Pax6 expression. Pax6 was upregulated in RPE cells soon after they were removed from the choroid, and this expression was not dependent of FGF2. FGF2 administration was needed for RPE cells to maintain Pax6 expression. From the present results, in addition to our previous ones, we propose a two-step mechanism of transdifferentiation: the first step is a reversible process and is initiated by the alteration of the cell-extracellular matrix and/or cell-cell interaction followed by Pax6 upregulation. FGF2 plays a key role in driving RPE cells into the second step, during which they differentiate into retinal stem cells.
Collapse
Affiliation(s)
- Fusako Kuriyama
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Nara Women's University, Nara, Japan
| | | | | |
Collapse
|
44
|
Wilson JM, Martinez-De Luna RI, El Hodiri HM, Smith R, King MW, Mescher AL, Neff AW, Belecky-Adams TL. RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis. Gene Expr Patterns 2009; 10:44-52. [PMID: 19900578 DOI: 10.1016/j.gep.2009.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/30/2022]
Abstract
Ddx39, a DEAD-box RNA helicase, is a part of the homeostatic machinery that regulates the switch between cellular proliferation and differentiation. Ddx39 was shown to be differentially regulated in Xenopus laevis using a differential screen of mRNAs from regenerating limbs (King et al., 2003). Here, the expression patterns of Ddx39 in developing limb and nervous system are reported. Ddx39 was detected by RT-PCR in the Xenopus embryo, the earliest stage examined. Localization of the message by whole-mount in situ hybridization at stage 17 showed it to be localized primarily to the developing nervous system. Ddx39 was present in the ventricular region of the developing neural tube up to and including stage 48, and was also localized to the head mesenchyme, pharyngeal arches, and paraxial mesoderm. Strong label was also present in the developing limb buds at stages 48-55. Analysis of expression patterns in cryosections of the developing eye at stage 38 and 47 showed Ddx39 in the ciliary marginal zone (CMZ) adjacent to the neural retina and within the lens epithelium. Ddx39 was also present in the anterior eye during fibroblast growth factor 2 (FGF2)-mediated retinal regeneration. BrDU incorporation analyses and double-label studies with proliferating cell nuclear antigen showed that Ddx39 message was restricted to a subpopulation of proliferating cells in the developing and regenerating optic cup.
Collapse
Affiliation(s)
- Jonathan M Wilson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Retina and lens regeneration in anuran amphibians. Semin Cell Dev Biol 2009; 20:528-34. [DOI: 10.1016/j.semcdb.2008.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/07/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
|
46
|
Nakatani Y, Nishidate M, Fujita M, Kawakami A, Kudo A. Migration of mesenchymal cell fated to blastema is necessary for fish fin regeneration. Dev Growth Differ 2007; 50:71-83. [DOI: 10.1111/j.1440-169x.2007.00977.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Kawamura K, Sugino Y, Sunanaga T, Fujiwara S. Multipotent epithelial cells in the process of regeneration and asexual reproduction in colonial tunicates. Dev Growth Differ 2007; 50:1-11. [DOI: 10.1111/j.1440-169x.2007.00972.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, Ahmado A, da Cruz L, Andrews P, Coffey P. Embryonic stem cells and retinal repair. Mech Dev 2007; 124:807-29. [PMID: 17881192 DOI: 10.1016/j.mod.2007.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 12/11/2022]
Abstract
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.
Collapse
Affiliation(s)
- Anthony Vugler
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V9EL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|