1
|
Satake H, Sasakura Y. The neuroendocrine system of Ciona intestinalis Type A, a deuterostome invertebrate and the closest relative of vertebrates. Mol Cell Endocrinol 2024; 582:112122. [PMID: 38109989 DOI: 10.1016/j.mce.2023.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Deuterostome invertebrates, including echinoderms, hemichordates, cephalochordates, and urochordates, exhibit common and species-specific morphological, developmental, physiological, and behavioral characteristics that are regulated by neuroendocrine and nervous systems. Over the past 15 years, omics, genetic, and/or physiological studies on deuterostome invertebrates have identified low-molecular-weight transmitters, neuropeptides and their cognate receptors, and have clarified their various biological functions. In particular, there has been increasing interest on the neuroendocrine and nervous systems of Ciona intestinalis Type A, which belongs to the subphylum Urochordata and occupies the critical phylogenetic position as the closest relative of vertebrates. During the developmental stage, gamma-aminobutylic acid, D-serine, and gonadotropin-releasing hormones regulate metamorphosis of Ciona. In adults, the neuropeptidergic mechanisms underlying ovarian follicle growth, oocyte maturation, and ovulation have been elucidated. This review article provides the most recent and fundamental knowledge of the neuroendocrine and nervous systems of Ciona, and their evolutionary aspects.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
2
|
Utsumi MK, Oka K, Hotta K. Transitions of motor neuron activities during Ciona development. Front Cell Dev Biol 2023; 11:1100887. [PMID: 36711039 PMCID: PMC9880257 DOI: 10.3389/fcell.2023.1100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Motor neurons (MNs) are one of the most important components of Central Pattern Generators (CPG) in vertebrates (Brown, Proceedings of The Royal Society B: Biological Sciences (The Royal Society), 1911, 84(572), 308-319). However, it is unclear how the neural activities of these components develop during their embryogenesis. Our previous study revealed that in Ciona robusta (Ciona intestinalis type A), a model organism with a simple neural circuit, a single pair of MNs (MN2L/MN2R) was determining the rhythm of its spontaneous early motor behavior (developmental stage St.22-24). MN2s are known to be one of the main components of Ciona CPG, though the neural activities of MN2s in the later larval period (St.25-) were not yet investigated. In this study, we investigated the neural activities of MN2s during their later stages and how they are related to Ciona's swimming CPG. Long-term simultaneous Ca2+ imaging of both MN2s with GCaMP6s/f (St.22-34) revealed that MN2s continued to determine the rhythm of motor behavior even in their later larval stages. Their activities were classified into seven phases (I-VII) depending on the interval and the synchronicity of MN2L and MN2R Ca2+ transients. Initially, each MN2 oscillates sporadically (I). As they develop into swimming larvae, they gradually oscillate at a constant interval (II-III), then start to synchronize (IV) and fully synchronize (V). Intervals become longer (VI) and sporadic again during the tail aggression period (VII). Interestingly, 76% of the embryos started to oscillate from MN2R. In addition, independent photostimulations on left and right MN2s were conducted. This is the first report of the live imaging of neural activities in Ciona's developing swimming CPG. These findings will help to understand the development of motor neuron circuits in chordate animals.
Collapse
Affiliation(s)
- Madoka K. Utsumi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan,Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Japan,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan,*Correspondence: Kohji Hotta,
| |
Collapse
|
3
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
4
|
Zhang J, Dong B, Yang L. Molecular Characterization and Expression Analysis of Putative Class C (Glutamate Family) G Protein-Coupled Receptors in Ascidian Styela clava. BIOLOGY 2022; 11:782. [PMID: 35625509 PMCID: PMC9138782 DOI: 10.3390/biology11050782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, we performed the genome-wide domain analysis and sequence alignment on the genome of Styela clava, and obtained a repertoire of 204 putative GPCRs, which exhibited a highly reduced gene number compared to vertebrates and cephalochordates. In this repertoire, six Class C GPCRs, including four metabotropic glutamate receptors (Sc-GRMs), one calcium-sensing receptor (Sc-CaSR), and one gamma-aminobutyric acid (GABA) type B receptor 2-like (Sc-GABABR2-like) were identified, with the absence of type 1 taste and vomeronasal receptors. All the Sc-GRMs and Sc-CaSR contained the typical "Venus flytrap" and cysteine-rich domains required for ligand binding and subsequent propagation of conformational changes. In swimming larvae, Sc-grm3 and Sc-casr were mainly expressed at the junction of the sensory vesicle and tail nerve cord while the transcripts of Sc-grm4, Sc-grm7a, and Sc-grm7b appeared at the anterior trunk, which suggested their important functions in neurotransmission. The high expression of these Class C receptors at tail-regression and metamorphic juvenile stages hinted at their potential involvement in regulating metamorphosis. In adults, the transcripts were highly expressed in several peripheral tissues, raising the possibility that S. clava Class C GPCRs might function as neurotransmission modulators peripherally after metamorphosis. Our study systematically characterized the ancestral chordate Class C GPCRs to provide insights into the origin and evolution of these receptors in chordates and their roles in regulating physiological and morphogenetic changes relevant to the development and environmental adaption.
Collapse
Affiliation(s)
- Jin Zhang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Likun Yang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
5
|
Nourizadeh S, Kassmer S, Rodriguez D, Hiebert LS, De Tomaso AW. Whole body regeneration and developmental competition in two botryllid ascidians. EvoDevo 2021; 12:15. [PMID: 34911568 PMCID: PMC8675491 DOI: 10.1186/s13227-021-00185-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Botryllid ascidians are a group of marine invertebrate chordates that are colonial and grow by repeated rounds of asexual reproduction to form a colony of individual bodies, called zooids, linked by a common vascular network. Two distinct processes are responsible for zooid regeneration. In the first, called blastogenesis, new zooids arise from a region of multipotent epithelium from a pre-existing zooid. In the second, called whole body regeneration (WBR), mobile cells in the vasculature coalesce and are the source of the new zooid. In some botryllid species, blastogenesis and WBR occur concurrently, while in others, blastogenesis is used exclusively for growth, while WBR only occurs following injury or exiting periods of dormancy. In species such as Botrylloides diegensis, injury induced WBR is triggered by the surgical isolation of a small piece of vasculature. However, Botryllus schlosseri has unique requirements that must be met for successful injury induced WBR. Our goal was to understand why there would be different requirements between these two species. RESULTS While WBR in B. diegensis was robust, we found that in B. schlosseri, new zooid growth following injury is unlikely due to circulatory cells, but instead a result of ectopic development of tissues leftover from the blastogenic process. These tissues could be whole, damaged, or partially resorbed developing zooids, and we defined the minimal amount of vascular biomass to support ectopic regeneration. We did find a common theme between the two species: a competitive process exists which results in only a single zooid reaching maturity following injury. We utilized this phenomenon and found that competition is reversible and mediated by circulating factors and/or cells. CONCLUSIONS We propose that WBR does not occur in B. schlosseri and that the unique requirements defined in other studies only serve to increase the chances of ectopic development. This is likely a response to injury as we have discovered a vascular-based reversible competitive mechanism which ensures that only a single zooid completes development. This competition has been described in other species, but the unique response of B. schlosseri to injury provides a new model to study resource allocation and competition within an individual.
Collapse
Affiliation(s)
- Shane Nourizadeh
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA.
| | - Susannah Kassmer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Laurel S Hiebert
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| |
Collapse
|
6
|
Akahoshi T, Utsumi MK, Oonuma K, Murakami M, Horie T, Kusakabe TG, Oka K, Hotta K. A single motor neuron determines the rhythm of early motor behavior in Ciona. SCIENCE ADVANCES 2021; 7:eabl6053. [PMID: 34890229 PMCID: PMC8664258 DOI: 10.1126/sciadv.abl6053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Recent work in tunicate supports the similarity between the motor circuits of vertebrates and basal deuterostome lineages. To understand how the rhythmic activity in motor circuits is acquired during development of protochordate Ciona, we investigated the coordination of the motor response by identifying a single pair of oscillatory motor neurons (MN2/A10.64). The MN2 neurons had Ca2+ oscillation with an ~80-s interval that was cell autonomous even in a dissociated single cell. The Ca2+ oscillation of MN2 coincided with the early tail flick (ETF). The spikes of the membrane potential in MN2 gradually correlated with the rhythm of ipsilateral muscle contractions in ETFs. The optogenetic experiments indicated that MN2 is a necessary and sufficient component of ETFs. These results indicate that MN2 is indispensable for the early spontaneous rhythmic motor behavior of Ciona. Our findings shed light on the understanding of development and evolution of chordate rhythmical locomotion.
Collapse
Affiliation(s)
- Taichi Akahoshi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Madoka K. Utsumi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Makoto Murakami
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Takehiro G. Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Konan University, Kobe 658-8501, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
| |
Collapse
|
7
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
8
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
9
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
10
|
Mello ADA, Geihs MA, Nogueira TDS, Allodi S, Vargas MA, de Barros CM. Oxidative stress: Noradrenaline as an integrator of responses in the neuroendocrine and immune systems of the ascidian Phallusia nigra. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103573. [PMID: 31918205 DOI: 10.1016/j.dci.2019.103573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Neurotransmitters play key roles in regulating the homeostasis of organisms in stressful environments. Noradrenaline (NA) is the main neurotransmitter known to modulate immunological parameters, and is important in the crosstalk between the neuroendocrine and immune systems. In this study, using the ascidian Phallusia nigra, we analyzed the level of catecholamines (CA) in the plasma after mechanical stress, and the effect of NA on the oxidative stress (OS) displayed by immune cells. We measured the concentration of reactive oxygen species (ROS), and analyzed whether α- and/or β-adrenoreceptors (ARs) are involved in ROS modulation, lipid peroxidation (LPO), antioxidant capacity against peroxyl radicals (ACAP), and activity of the enzymes catalase (CAT) and glutathione S transferase (GST) in immune cells after incubation with different concentrations of NA, with or without zymosan (ZnA) challenge. The results showed that NA reduced ROS production, even in immune cells challenged with ZnA, and that this modulation occurred through α1-and β1-ARs. ACAP levels showed different responses, depending on whether immune cells were challenged or not with ZnA, and also depending on the NA concentration: 1.0 μM NA increased ACAP levels, but 10.0 μM reduced ACAP levels. NA enhanced the activity of CAT and GST in ZnA-challenged and non-challenged immune cells, while 1.0 and 10.0 μM NA effectively reduced LPO. Taken together, these results show that NA can protect cells from ROS damage, decreasing ROS production and LPO, and enhancing ACAP as well as the activity of CAT and GST. The approach used here with this model contributes to understanding the relationship between the neuroendocrine and immune systems, revealing new effects of NA on OS regulation in ascidians.
Collapse
Affiliation(s)
- Andressa de Abreu Mello
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil; Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G2-001, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ, Av. Aluizio da Silva Gomes, 50, Macaé, RJ, 27930-560, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G1-003, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Márcio Alberto Geihs
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - Thuany da Silva Nogueira
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G2-001, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G1-003, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marcelo Alves Vargas
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - Cintia Monteiro de Barros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ, Av. Aluizio da Silva Gomes, 50, Macaé, RJ, 27930-560, Brazil.
| |
Collapse
|
11
|
Ryan K, Meinertzhagen IA. Neuronal identity: the neuron types of a simple chordate sibling, the tadpole larva of Ciona intestinalis. Curr Opin Neurobiol 2019; 56:47-60. [PMID: 30530111 PMCID: PMC6551260 DOI: 10.1016/j.conb.2018.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022]
Abstract
Neurons of the sparsely populated nervous system of the tadpole larva in the tunicate Ciona intestinalis, a chordate sibling, are known from sporadic previous studies but especially two recent reports that document the connectome of both the central and peripheral nervous systems at EM level. About 330 CNS cells comprise mostly ciliated ependymal cells, with ∼180 neurons that constitute about 50 morphologically distinguishable types. The neurons reveal various chordate characters amid many features that are idiosyncratic. Most neurons are ciliated and lack dendrites, some even lack an axon. Synapses mostly form en passant between axons, and resemble those in basal invertebrates; some are dyads and all have heterogenous synaptic vesicle populations. Each neuron has on average 49 synapses with other cells; these constitute a synaptic network of unpredicted complexity.
Collapse
Affiliation(s)
- Kerrianne Ryan
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
12
|
Kourakis MJ, Borba C, Zhang A, Newman-Smith E, Salas P, Manjunath B, Smith WC. Parallel visual circuitry in a basal chordate. eLife 2019; 8:44753. [PMID: 30998184 PMCID: PMC6499539 DOI: 10.7554/elife.44753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
A common CNS architecture is observed in all chordates, from vertebrates to basal chordates like the ascidian Ciona. Ciona stands apart among chordates in having a complete larval connectome. Starting with visuomotor circuits predicted by the Ciona connectome, we used expression maps of neurotransmitter use with behavioral assays to identify two parallel visuomotor circuits that are responsive to different components of visual stimuli. The first circuit is characterized by glutamatergic photoreceptors and responds to the direction of light. These photoreceptors project to cholinergic motor neurons, via two tiers of cholinergic interneurons. The second circuit responds to changes in ambient light and mediates an escape response. This circuit uses GABAergic photoreceptors which project to GABAergic interneurons, and then to cholinergic interneurons. Our observations on the behavior of larvae either treated with a GABA receptor antagonist or carrying a mutation that eliminates photoreceptors indicate the second circuit is disinhibitory.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Angela Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Priscilla Salas
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - B Manjunath
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - William C Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
13
|
Messinetti S, Mercurio S, Pennati R. Bisphenol A affects neural development of the ascidian Ciona robusta. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:5-16. [PMID: 30218549 DOI: 10.1002/jez.2230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 11/06/2022]
Abstract
Bisphenol A (BPA) is an organic pollutant derived from plastic degradation that has numerous and variable adverse effects on human health and wildlife. In particular, it has been reported that BPA can alter reproductive processes and nervous system development in vertebrates. Considering BPA presence in marine environment and the scant data available on its interaction with nervous system development, we analyzed the effect of BPA exposure on sperm viability, fertilization, embryogenesis, and neural differentiation of the ascidian Ciona robusta. Ascidians are members of the Phylum Tunicata, the sister group of Vertebrata, sharing with them fundamental developmental processes. Our results showed that first cell division was altered starting from 5 µM concentration. Lethal concentration (LC 50 ) was estimated to be 5.2 µM. Larvae developed from treated embryos showed specific malformations to the pigment cells even at 0.1 µM, corresponding to the highest environmental concentration reported so far. Moreover, GABAergic and dopaminergic neurons proved to be target organs of BPA teratogenic action, in accordance with similar results reported in vertebrate animal models. Overall, our results suggest that BPA can exert its effects on nervous system acting on different pathways and underline that C. robusta is a valuable invertebrate animal model for preliminary screenings of effects of pollutants on vertebrates.
Collapse
Affiliation(s)
- Silvia Messinetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| | - Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| |
Collapse
|
14
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Abstract
Transgenesis is an indispensable method for elucidating the cellular and molecular mechanisms underlying biological phenomena. In Ciona, transgenic lines that have a transgene insertion in their genomes have been created. The transgenic lines are valuable because they express reporter genes in a nonmosaic manner. This nonmosaic manner allows us to accurately observe tissues and organs. The insertions of transgenes can destroy genes to create mutants. The insertional mutagenesis is a splendid method for investigating functions of genes. In Ciona intestinalis, expression of the gfp reporter gene is subjected to epigenetic silencing in the female germline. This epigenetic silencing has been used to establish a novel method for knocking down maternal expression of genes. The genetic procedures based on germline transgenesis facilitate studies for addressing gene functions in Ciona.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| |
Collapse
|
16
|
Kusakabe TG. Identifying Vertebrate Brain Prototypes in Deuterostomes. DIVERSITY AND COMMONALITY IN ANIMALS 2017. [DOI: 10.1007/978-4-431-56469-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
The central nervous system of ascidian larvae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:538-61. [DOI: 10.1002/wdev.239] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 11/07/2022]
|
18
|
Catecholaminergic System of Invertebrates: Comparative and Evolutionary Aspects in Comparison With the Octopaminergic System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:363-94. [PMID: 26940523 DOI: 10.1016/bs.ircmb.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we examined the catecholaminergic system of invertebrates, starting from protists and getting to chordates. Different techniques used by numerous researchers revealed, in most examined phyla, the presence of catecholamines dopamine, noradrenaline, and adrenaline or of the enzymes involved in their synthesis. The catecholamines are generally linked to the nervous system and they can act as neurotransmitters, neuromodulators, and hormones; moreover they play a very important role as regards the response to a large number of stress situations. Nevertheless, in some invertebrate phyla belonging to Protostoma, the monoamine octopamine is the main biogenic amine. The presence of catecholamines in some protists suggests a role as intracellular or interorganismal signaling molecules and an ancient origin of their synthetic pathways. The catecholamines appear also involved in the regulation of bioluminescence and in the control of larval development and metamorphosis in some marine invertebrate phyla.
Collapse
|
19
|
Hozumi A, Horie T, Sasakura Y. Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev Dyn 2015; 244:1375-93. [PMID: 26250096 DOI: 10.1002/dvdy.24317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The dorsally located central nervous system (CNS) is an important hallmark of chordates. Among chordates, tunicate ascidians change their CNS remarkably by means of a metamorphosis from a highly regionalized larval CNS to an oval-shaped juvenile CNS without prominent morphological features. The neuronal organization of the CNS of ascidian tadpole larvae has been well described, but that in the CNS of postmetamorphosis juveniles has not been characterized well. RESULTS We investigated the number of neural cells, the number and position of differentiated neurons, and their axonal trajectories in the juvenile CNS of the ascidian Ciona intestinalis. The cell bodies of cholinergic, glutamatergic, and GABAergic/glycinergic neurons exhibited different localization patterns along the anterior-posterior axis in the juvenile CNS. Cholinergic neurons extended their axons toward the oral, atrial and body wall muscles and pharyngeal gill to regulate muscle contraction and ciliary movement. CONCLUSIONS Unlike its featureless shape, the juvenile CNS is highly patterned along the anterior-posterior axis. This patterning may be necessary for exerting multiple roles in the regulation of adult tissues distributed throughout the body. This basic information of the juvenile CNS of Ciona will allow in-depth studies of molecular mechanisms underlying the reconstruction of the CNS during ascidian metamorphosis.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Takeo Horie
- Japan Science and Technology Agency, PRESTO, Honcho, Kawaguchi, Saitama, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
20
|
Esposito R, Racioppi C, Pezzotti MR, Branno M, Locascio A, Ristoratore F, Spagnuolo A. The ascidian pigmented sensory organs: structures and developmental programs. Genesis 2014; 53:15-33. [PMID: 25382437 DOI: 10.1002/dvg.22836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/25/2023]
Abstract
The recent advances on ascidian pigment sensory organ development and function represent a fascinating platform to get insight on the basic programs of chordate eye formation. This review aims to summarize current knowledge, at the structural and molecular levels, on the two main building blocks of ascidian light sensory organ, i.e. pigment cells and photoreceptor cells. The unique features of these structures (e.g., simplicity and well characterized cell lineage) are indeed making it possible to dissect the developmental programs at single cell resolution and will soon provide a panel of molecular tools to be exploited for a deep developmental and comparative-evolutionary analysis.
Collapse
Affiliation(s)
- R Esposito
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, NAPOLI, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Mikhailov AT. Exploring the past through the present. Evol Dev 2013. [DOI: 10.1111/ede.12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alexander T. Mikhailov
- Developmental Biology Unit, Institute of Health Sciences, University of La Coruña; Campus de Oza, Building “El Fortín,” Las Jubias Str. s/n, La Coruña; 15006 Spain
| |
Collapse
|
22
|
Norepinephrine depresses the nitric oxide production in the ascidian hemocytes. J Invertebr Pathol 2012; 111:182-5. [PMID: 22820407 DOI: 10.1016/j.jip.2012.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 11/22/2022]
Abstract
Norepinephrine (NE) is a neuro-hormone released by vertebrates and invertebrates during acute stress, and can influence their immune function. We found that NE depressed the production of nitric oxide (NO) by the hemocytes of ascidians. Our results with a fluorescent indicator for NO in assays using both NE and either α or β-antagonist revealed that NE down-regulated NO production by the ascidian hemocytes. Our data suggest that NE may be acting via specific hemocyte receptors to induce a decrease in immune function.
Collapse
|
23
|
Candiani S, Moronti L, Ramoino P, Schubert M, Pestarino M. A neurochemical map of the developing amphioxus nervous system. BMC Neurosci 2012; 13:59. [PMID: 22676056 PMCID: PMC3484041 DOI: 10.1186/1471-2202-13-59] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/27/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Amphioxus, representing the most basal group of living chordates, is the best available proxy for the last invertebrate ancestor of the chordates. Although the central nervous system (CNS) of amphioxus comprises only about 20,000 neurons (as compared to billions in vertebrates), the developmental genetics and neuroanatomy of amphioxus are strikingly vertebrate-like. In the present study, we mapped the distribution of amphioxus CNS cells producing distinctive neurochemicals. To this end, we cloned genes encoding biosynthetic enzymes and/or transporters of the most common neurotransmitters and assayed their developmental expression in the embryo and early larva. RESULTS By single and double in situ hybridization experiments, we identified glutamatergic, GABAergic/glycinergic, serotonergic and cholinergic neurons in developing amphioxus. In addition to characterizing the distribution of excitatory and inhibitory neurons in the developing amphioxus CNS, we observed that cholinergic and GABAergic/glycinergic neurons are segmentally arranged in the hindbrain, whereas serotonergic, glutamatergic and dopaminergic neurons are restricted to specific regions of the cerebral vesicle and the hindbrain. We were further able to identify discrete groups of GABAergic and glutamatergic interneurons and cholinergic motoneurons at the level of the primary motor center (PMC), the major integrative center of sensory and motor stimuli of the amphioxus nerve cord. CONCLUSIONS In this study, we assessed neuronal differentiation in the developing amphioxus nervous system and compiled the first neurochemical map of the amphioxus CNS. This map is a first step towards a full characterization of the neurotransmitter signature of previously described nerve cell types in the amphioxus CNS, such as motoneurons and interneurons.
Collapse
Affiliation(s)
- Simona Candiani
- Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova, Viale Benedetto XV, 5, 16132 Genoa, Italy.
| | | | | | | | | |
Collapse
|
24
|
Sasakura Y, Mita K, Ogura Y, Horie T. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Dev Growth Differ 2012; 54:420-37. [DOI: 10.1111/j.1440-169x.2012.01343.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | - Kaoru Mita
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | - Yosuke Ogura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | | |
Collapse
|
25
|
Nishitsuji K, Horie T, Ichinose A, Sasakura Y, Yasuo H, Kusakabe TG. Cell lineage and cis-regulation for a unique GABAergic/glycinergic neuron type in the larval nerve cord of the ascidian Ciona intestinalis. Dev Growth Differ 2012; 54:177-86. [DOI: 10.1111/j.1440-169x.2011.01319.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Hamada M, Shimozono N, Ohta N, Satou Y, Horie T, Kawada T, Satake H, Sasakura Y, Satoh N. Expression of neuropeptide- and hormone-encoding genes in the Ciona intestinalis larval brain. Dev Biol 2011; 352:202-14. [PMID: 21237141 DOI: 10.1016/j.ydbio.2011.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023]
Abstract
Despite containing only approximately 330 cells, the central nervous system (CNS) of Ciona intestinalis larvae has an architecture that is similar to the vertebrate CNS. Although only vertebrates have a distinct hypothalamus-the source of numerous neurohormone peptides that play pivotal roles in the development, function, and maintenance of various neuronal and endocrine systems, it is suggested that the Ciona brain contains a region that corresponds to the vertebrate hypothalamus. To identify genes expressed in the brain, we isolated brain vesicles using transgenic embryos carrying Ci-β-tubulin(promoter)::Kaede, which resulted in robust Kaede expression in the larval CNS. The associated transcriptome was investigated using microarray analysis. We identified 565 genes that were preferentially expressed in the larval brain. Among these genes, 11 encoded neurohormone peptides including such hypothalamic peptides as gonadotropin-releasing hormone and oxytocin/vasopressin. Six of the identified peptide genes had not been previously described. We also found that genes encoding receptors for some of the peptides were expressed in the brain. Interestingly, whole-mount in situ hybridization showed that most of the peptide genes were expressed in the ventral brain. This catalog of the genes expressed in the larval brain should help elucidate the evolution, development, and functioning of the chordate brain.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa 904-0412, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 2011; 469:525-8. [PMID: 21196932 DOI: 10.1038/nature09631] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/27/2010] [Indexed: 12/27/2022]
Abstract
In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.
Collapse
|
28
|
Kawada T, Sekiguchi T, Sakai T, Aoyama M, Satake H. Neuropeptides, hormone peptides, and their receptors in Ciona intestinalis: an update. Zoolog Sci 2010; 27:134-53. [PMID: 20141419 DOI: 10.2108/zsj.27.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
29
|
Islam AFMT, Moly PK, Miyamoto Y, Kusakabe TG. Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution. Zoolog Sci 2010; 27:84-90. [PMID: 20141412 DOI: 10.2108/zsj.27.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the Hedgehog (Hh) family are soluble ligands that orchestrate a wide spectrum of developmental processes ranging from left-right axis determination of the embryo to tissue patterning and organogenesis. Tunicates, including ascidians, are the closest relatives of vertebrates, and elucidation of Hh signaling in ascidians should provide an important clue towards better understanding the role of this pathway in development. In previous studies, expression patterns of genes encoding Hh and its downstream factor Gli have been examined up to the tailbud stage in the ascidian embryo, but their expression in the larva has not been reported. Here we show the spatial expression patterns of hedgehog (Ci-hh1, Ci-hh2), patched (Ci-ptc), smoothened (Ci-smo), and Gli (Ci-Gli) orthologs in larvae of the ascidian Ciona intestinalis. The expression patterns of Ci-hh2 and Ci-Gli dramatically change during the period between the late tailbud embryo and the swimming larva. At the larval stage, expression of Ci-Gli was found in a central part of the endoderm and in the visceral ganglion, while Ci-hh2 was expressed in two discrete endodermal regions, anteriorly and posteriorly adjacent to the cells expressing Gli. The expression patterns of these genes suggest that the Hh ligand controls postembryonic development of the endoderm and the central nervous system. Expression of a gene encoding Hh in the anterior and/or pharyngeal endoderm is probably an ancient chordate character; diversification of regulation and targets of the Hh signaling in this region may have played a major role in the evolution of chordate body structures.
Collapse
|
30
|
Shimozono N, Ohta N, Satoh N, Hamada M. Differential regional expression of genes in the developing brain of Ciona intestinalis embryos. Zoolog Sci 2010; 27:103-9. [PMID: 20141415 DOI: 10.2108/zsj.27.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previous transcriptome analysis identified 565 genes that are preferentially expressed in the developing brain of Ciona intestinalis larvae. Here, we show by in-situ hybridization that the spatial expression patterns of these brain-specific genes fall into different categories depending on the regions where the gene is expressed. For example, Ci-opsin3 and Ci-Dkk3 are expressed in the entire brain, Ci-tyrosinase and Ci-TYRP1 in the dorsal region, and Ci-synaptotagmin3, Ci-ZF399, and Ci-PTFb in the ventral region. Other genes are specific to the posterior, anterior, central, posterior and ventral, or anterior-ventral region of the brain. This regional expression of genes in the Ciona brain is not always associated with cell lineage, suggesting that complex mechanisms control the regionalized expression of brain-specific genes.
Collapse
Affiliation(s)
- Naoki Shimozono
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
31
|
Takamura K, Minamida N, Okabe S. Neural Map of the Larval Central Nervous System in the AscidianCiona intestinalis. Zoolog Sci 2010; 27:191-203. [DOI: 10.2108/zsj.27.191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Candiani S, Moronti L, Pennati R, De Bernardi F, Benfenati F, Pestarino M. The synapsin gene family in basal chordates: evolutionary perspectives in metazoans. BMC Evol Biol 2010; 10:32. [PMID: 20113475 PMCID: PMC2825198 DOI: 10.1186/1471-2148-10-32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/29/2010] [Indexed: 01/07/2023] Open
Abstract
Background Synapsins are neuronal phosphoproteins involved in several functions correlated with both neurotransmitter release and synaptogenesis. The comprehension of the basal role of the synapsin family is hampered in vertebrates by the existence of multiple synapsin genes. Therefore, studying homologous genes in basal chordates, devoid of genome duplication, could help to achieve a better understanding of the complex functions of these proteins. Results In this study we report the cloning and characterization of the Ciona intestinalis and amphioxus Branchiostoma floridae synapsin transcripts and the definition of their gene structure using available C. intestinalis and B. floridae genomic sequences. We demonstrate the occurrence, in both model organisms, of a single member of the synapsin gene family. Full-length synapsin genes were identified in the recently sequenced genomes of phylogenetically diverse metazoans. Comparative genome analysis reveals extensive conservation of the SYN locus in several metazoans. Moreover, developmental expression studies underline that synapsin is a neuronal-specific marker in basal chordates and is expressed in several cell types of PNS and in many, if not all, CNS neurons. Conclusion Our study demonstrates that synapsin genes are metazoan genes present in a single copy per genome, except for vertebrates. Moreover, we hypothesize that, during the evolution of synapsin proteins, new domains are added at different stages probably to cope up with the increased complexity in the nervous system organization. Finally, we demonstrate that protochordate synapsin is restricted to the post-mitotic phase of CNS development and thereby is a good marker of postmitotic neurons.
Collapse
Affiliation(s)
- Simona Candiani
- Department of Biology, University of Genoa, Viale Benedetto XV5, 16132 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Nishino A, Okamura Y, Piscopo S, Brown ER. A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate. BMC Neurosci 2010; 11:6. [PMID: 20085645 PMCID: PMC2822779 DOI: 10.1186/1471-2202-11-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis. RESULTS A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody. CONCLUSIONS In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago.
Collapse
Affiliation(s)
- Atsuo Nishino
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yasushi Okamura
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University, Yamada-Oka 2-2, Suita, Osaka, 565-0871, Japan
| | - Stefania Piscopo
- Laboratorio di Fisiologia Animale ed Evoluzione, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italia
| | - Euan R Brown
- Laboratorio di Fisiologia Animale ed Evoluzione, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italia
| |
Collapse
|