1
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Calcium sparks enhance the tissue fluidity within epithelial layers and promote apical extrusion of transformed cells. Cell Rep 2022; 40:111078. [PMID: 35830802 DOI: 10.1016/j.celrep.2022.111078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C. In addition, transient upsurges of intracellular calcium, which we call calcium sparks, frequently occur in normal cells neighboring RasV12 cells, which are mediated by mechanosensitive calcium channel TRPC1 upon membrane stretching. Calcium sparks then enhance cell movements of both normal and RasV12 cells through phosphorylation of AHNAK2 and promote apical extrusion. Moreover, comparable calcium sparks positively regulate apical extrusion of RasV12-transformed cells in zebrafish larvae as well. Hence, calcium sparks play a crucial role in the elimination of transformed cells at the early phase of cell competition.
Collapse
|
3
|
Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo. J Mol Biol 2019; 432:605-620. [PMID: 31711960 DOI: 10.1016/j.jmb.2019.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.
Collapse
|
4
|
Vicente M, Salgado-Almario J, Soriano J, Burgos M, Domingo B, Llopis J. Visualization of Mitochondrial Ca 2+ Signals in Skeletal Muscle of Zebrafish Embryos with Bioluminescent Indicators. Int J Mol Sci 2019; 20:ijms20215409. [PMID: 31671636 PMCID: PMC6862566 DOI: 10.3390/ijms20215409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are believed to play an important role in shaping the intracellular Ca2+ transients during skeletal muscle contraction. There is discussion about whether mitochondrial matrix Ca2+ dynamics always mirror the cytoplasmic changes and whether this happens in vivo in whole organisms. In this study, we characterized cytosolic and mitochondrial Ca2+ signals during spontaneous skeletal muscle contractions in zebrafish embryos expressing bioluminescent GFP-aequorin (GA, cytoplasm) and mitoGFP-aequorin (mitoGA, trapped in the mitochondrial matrix). The Ca2+ transients measured with GA and mitoGA reflected contractions of the trunk observed by transmitted light. The mitochondrial uncoupler FCCP and the inhibitor of the mitochondrial calcium uniporter (MCU), DS16570511, abolished mitochondrial Ca2+ transients whereas they increased the frequency of cytosolic Ca2+ transients and muscle contractions, confirming the subcellular localization of mitoGA. Mitochondrial Ca2+ dynamics were also determined with mitoGA and were found to follow closely cytoplasmic changes, with a slower decay. Cytoplasmic Ca2+ kinetics and propagation along the trunk and tail were characterized with GA and with the genetically encoded fluorescent Ca2+ indicator, Twitch-4. Although fluorescence provided a better spatio-temporal resolution, GA was able to resolve the same kinetic parameters while allowing continuous measurements for hours.
Collapse
Affiliation(s)
- Manuel Vicente
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Jussep Salgado-Almario
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Joaquim Soriano
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Miguel Burgos
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Beatriz Domingo
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Juan Llopis
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| |
Collapse
|
5
|
Webb SE, Miller AL. The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca 2+ Signaling Events During the Early Development of Zebrafish (Danio rerio). Methods Mol Biol 2019; 1929:73-93. [PMID: 30710268 DOI: 10.1007/978-1-4939-9030-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We have visualized many of the Ca2+ signaling events that occur during the early stages of zebrafish development using complementary luminescent and fluorescent imaging techniques. We initially microinject embryos with the luminescent Ca2+ reporter, f-holo-aequorin, and using a custom-designed luminescent imaging system, we can obtain pan-embryonic visual information continually for up to the first ~24 h postfertilization (hpf). Once we know approximately when and where to look for these Ca2+ signaling events within a complex developing embryo, we then repeat the experiment using a fluorescent Ca2+ reporter such as calcium green-1 dextran and use confocal laser scanning microscopy to provide time-lapse series of higher-resolution images. These protocols allow us to identify the specific cell types and even the particular subcellular domain (e.g., nucleus or cytoplasm) generating the Ca2+ signal. Here, we outline the techniques we use to precisely microinject f-holo-aequorin or calcium green-1 dextran into embryos without affecting their viability or development. We also describe how to inject specific regions of early embryos in order to load localized embryonic domains with a particular Ca2+ reporter. These same techniques can also be used to introduce other membrane-impermeable reagents into embryos, including Ca2+ channel antagonists, Ca2+ chelators, fluorescent dyes, RNA, and DNA.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China.
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
| |
Collapse
|
6
|
Akahoshi T, Hotta K, Oka K. Characterization of calcium transients during early embryogenesis in ascidians Ciona robusta (Ciona intestinalis type A) and Ciona savignyi. Dev Biol 2017; 431:205-214. [PMID: 28935526 DOI: 10.1016/j.ydbio.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/26/2022]
Abstract
The calcium ion (Ca2+) is an important second messenger, and a rapid increase in Ca2+ level (Ca2+ transient) is involved in various aspects of embryogenesis. Although Ca2+ transients play an important role in early developmental stages, little is known about their dynamics throughout embryogenesis. Here, Ca2+ transients were characterized by visualizing Ca2+ dynamics in developing chordate embryos using a fluorescent protein-based Ca2+ indicator, GCaMP6s in combination with finely tuned microscopy. Ca2+ transients were detected in precursors of muscle cells in the late gastrula stage. In the neurula stage, repetitive Ca2+ transients were observed in left and right neurogenic cells, including visceral ganglion (VG) precursors, and the duration of Ca2+ transients was 39±4s. In the early tailbud stage, Ca2+ transients were observed in differentiating precursors of nerve cord neurons. A small population of VG precursors showed rhythmical Ca2+ transients with a duration of 22±4s, suggesting a central pattern generator (CPG) origin. At the mid tailbud stage, Ca2+transients were observed in a wide area of epidermal cells and named CTECs. The number and frequency of CTECs increased drastically in late tailbud stages, and the timing of the increase coincided with that of the relaxation of the tail bending. The experiment using Ca2+ chelator showed that the CTECs were largely depending on the extracellular Ca2+. The waveform analysis of Ca2+ transients revealed different features according to duration and frequency. The comprehensive characterization of Ca2+ transients during early ascidian embryogenesis will help our understanding of the role of Ca2+ signaling in chordate embryogenesis.
Collapse
Affiliation(s)
- Taichi Akahoshi
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
7
|
Chan HYS, Cheung MC, Gao Y, Miller AL, Webb SE. Expression and reconstitution of the bioluminescent Ca(2+) reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP3 and ryanodine receptors during the early stages of their differentiation into cardiomyocytes. SCIENCE CHINA-LIFE SCIENCES 2016; 59:811-24. [PMID: 27430888 DOI: 10.1007/s11427-016-5094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2016] [Indexed: 02/05/2023]
Abstract
In order to develop a novel method of visualizing possible Ca(2+) signaling during the early differentiation of hESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters, we expressed the bioluminescent Ca(2+) reporter, apo-aequorin, in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca(2+) signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca(2+) transients (generated by release from intracellular stores) were detected in 1-12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or CaCl2, indicating that holo-f-aequorin was functional in these cells. Furthermore, following the addition of exogenous ATP, an inositol trisphosphate receptor (IP3R) agonist, small Ca(2+) transients were generated from day 1 onward. That ATP was inducing Ca(2+) release from functional IP3Rs was demonstrated by treatment with 2-APB, a known IP3R antagonist. In contrast, following treatment with caffeine, a ryanodine receptor (RyR) agonist, a minimal Ca(2+) response was observed at day 8 of differentiation only. Thus, our data indicate that unlike RyRs, IP3Rs are present and continually functional at these early stages of cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Harvey Y S Chan
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Man Chun Cheung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi Gao
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
8
|
Markova O, Sénatore S, Chardès C, Lenne PF. Calcium Spikes in Epithelium: study on Drosophila early embryos. Sci Rep 2015; 5:11379. [PMID: 26198871 PMCID: PMC4510484 DOI: 10.1038/srep11379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Calcium ion acts in nearly every aspect of cellular life. The versatility and specificity required for such a ubiquitous role is ensured by the spatio-temporal dynamics of calcium concentration variations. While calcium signal dynamics has been extensively studied in cell cultures and adult tissues, little is known about calcium activity during early tissue morphogenesis. We monitored intracellular calcium concentration in Drosophila gastrula and revealed single cell calcium spikes that were short-lived, rare and showed strong variability among embryos. We quantitatively described the spatio-temporal dynamics of these spikes and analyzed their potential origins and nature by introducing physical and chemical perturbations. Our data highlight the inter- and intra-tissue variability of calcium activity during tissue morphogenesis.
Collapse
Affiliation(s)
- Olga Markova
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France
| | | | - Claire Chardès
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France
| | | |
Collapse
|
9
|
Okamoto SI, Nakagawa M, Hatta K. Stochastic Ca2 Waves that Propagate Through the Neuroepithelium in Limited Distances of the Brain and Retina Imaged with GCaMP3 in Zebrafish Embryos. Zoolog Sci 2013; 30:716-23. [DOI: 10.2108/zsj.30.716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shin-ichi Okamoto
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Masashi Nakagawa
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Kohei Hatta
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| |
Collapse
|
10
|
Lin CY, Chen JS, Loo MR, Hsiao CC, Chang WY, Tsai HJ. MicroRNA-3906 regulates fast muscle differentiation through modulating the target gene homer-1b in zebrafish embryos. PLoS One 2013; 8:e70187. [PMID: 23936160 PMCID: PMC3729524 DOI: 10.1371/journal.pone.0070187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/17/2013] [Indexed: 01/22/2023] Open
Abstract
A microRNA, termed miR-In300 or miR-3906, suppresses the transcription of myf5 through silencing dickkopf-related protein 3 (dkk3r/dkk3a) during early development when myf5 is highly transcribed, but not at late stages when myf5 transcription is reduced. Moreover, after 24 hpf, when muscle cells are starting to differentiate, Dkk3a could not be detected in muscle tissue at 20 hpf. To explain these reversals, we collected embryos at 32 hpf, performed assays, and identified homer-1b, which regulates calcium release from sarcoplasmic reticulum, as the target gene of miR-3906. We further found that either miR-3906 knockdown or homer-1b overexpression increased expressions of fmhc4 and atp2a1 of calcium-dependent fast muscle fibrils, but not slow muscle fibrils, and caused a severe disruption of sarcomeric actin and Z-disc structure. Additionally, compared to control embryos, the intracellular calcium concentration ([Ca2+]i) of these treated embryos was increased as high as 83.9–97.3% in fast muscle. In contrast, either miR-3906 overexpression or homer-1b knockdown caused decreases of [Ca2+]i and, correspondingly, defective phenotypes in fast muscle. These defects could be rescued by inducing homer-1b expression at later stage. These results indicate that miR-3906 controls [Ca2+]i homeostasis in fast muscle through fine tuning homer-1b expression during differentiation to maintain normal muscle development.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Animals, Genetically Modified
- Binding Sites/genetics
- Calcium/metabolism
- Cell Differentiation/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Knockdown Techniques
- In Situ Hybridization
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Microscopy, Electron, Transmission
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Mutation
- Oligonucleotide Array Sequence Analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/ultrastructure
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Cheng-Yung Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Jie-Shin Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Moo-Rung Loo
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chung-Ching Hsiao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Wen-Yen Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Huai-Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 2013; 33:7513-25. [PMID: 23616556 DOI: 10.1523/jneurosci.4559-12.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.
Collapse
|
12
|
Webb SE, Chan CM, Miller AL. Introduction of aequorin into zebrafish embryos for recording Ca(2+) signaling during the first 48 h of development. Cold Spring Harb Protoc 2013; 2013:383-386. [PMID: 23637358 DOI: 10.1101/pdb.top066316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ca(2+) signals, whether transient pulses, propagating waves, or long-duration, steady gradients, are generally considered to play an important role in the pattern-forming events that occur during vertebrate development. One vertebrate that has long been a favorite of embryologists because of its ex utero development and the optical clarity of its embryos is the zebrafish, Danio rerio. Using the bioluminescent Ca(2+) reporter aequorin, distinct Ca(2+) signals have been reported for at least the first 48 h of zebrafish development, with signals becoming progressively more complex as the embryo develops. Here we provide a general introduction to aequorin and its use in monitoring Ca(2+) signals and discuss methods for introducing aequorin into zebrafish embryos.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China.
| | | | | |
Collapse
|
13
|
Webb SE, Miller AL. Microinjecting holo-aequorin into dechorionated and intact zebrafish embryos. Cold Spring Harb Protoc 2013; 2013:447-55. [PMID: 23637360 DOI: 10.1101/pdb.prot072967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The injection of holo-aequorin into embryos at the one-cell stage, along with the use of a simple photomultiplier tube or luminescence imaging system, allows transient localized elevations of free cytosolic Ca(2+) to be recorded and observed during the first 24 h of zebrafish development. The technique for loading dechorionated or intact one-cell stage zebrafish embryos with holo-aequorin is described here.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China.
| | | |
Collapse
|
14
|
Characterization of Ca(2+) signaling in the external yolk syncytial layer during the late blastula and early gastrula periods of zebrafish development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1641-56. [PMID: 23142640 DOI: 10.1016/j.bbamcr.2012.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 11/24/2022]
Abstract
Preferential loading of the complementary bioluminescent (f-aequorin) and fluorescent (Calcium Green-1 dextran) Ca(2+) reporters into the yolk syncytial layer (YSL) of zebrafish embryos, revealed the generation of stochastic patterns of fast, short-range, and slow, long-range Ca(2+) waves that propagate exclusively through the external YSL (E-YSL). Starting abruptly just after doming (~4.5h post-fertilization: hpf), and ending at the shield stage (~6.0hpf) these distinct classes of waves propagated at mean velocities of ~50 and ~4μm/s, respectively. Although the number and pattern of these waves varied between embryos, their initiation site and arcs of propagation displayed a distinct dorsal bias, suggesting an association with the formation and maintenance of the nascent dorsal-ventral axis. Wave initiation coincided with a characteristic clustering of YSL nuclei (YSN), and their associated perinuclear ER, in the E-YSL. Furthermore, the inter-YSN distance (IND) appeared to be critical such that Ca(2+) wave propagation occurred only when this was <~8μm; an IND >~8μm was coincidental with wave termination at shield stage. Treatment with the IP3R antagonist, 2-APB, the Ca(2+) buffer, 5,5'-dibromo BAPTA, and the SERCA-pump inhibitor, thapsigargin, resulted in a significant disruption of the E-YSL Ca(2+) waves, whereas exposure to the RyR antagonists, ryanodine and dantrolene, had no significant effect. These findings led us to propose that the E-YSL Ca(2+) waves are generated mainly via Ca(2+) release from IP3Rs located in the perinuclear ER, and that the clustering of the YSN is an essential step in providing a CICR pathway required for wave propagation. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
15
|
Webb SE, Cheung CCY, Chan CM, Love DR, Miller AL. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions. Clin Exp Pharmacol Physiol 2012; 39:78-86. [PMID: 21824171 DOI: 10.1111/j.1440-1681.2011.05582.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Evidence is accumulating for a role for Ca²⁺ signalling in the differentiation and development of embryonic skeletal muscle. 2. Imaging of intact, normally developing transgenic zebrafish that express the protein component of the Ca²⁺-sensitive complex aequorin, specifically in skeletal muscle, show that two distinct periods of spontaneous synchronised Ca²⁺ transients occur in the trunk: one at approximately 17.5-19.5 h post-fertilization (h.p.f.; termed signalling period SP1) and the other after approximately 23 h.p.f. (termed SP2). These periods of intense Ca²⁺ signalling activity are separated by a quiet period. 3. Higher-resolution confocal imaging of embryos loaded with the fluorescent Ca²⁺ reporter calcium green-1 dextran shows that the Ca²⁺ signals are generated almost exclusively in the slow muscle cells, the first muscle cells to differentiate, with distinct nuclear and cytoplasmic components. 4. Here, we show that coincidental with the SP1 Ca²⁺ signals, dystrophin becomes localized to the vertical myoseptae of the myotome. Introduction of a dmd morpholino (dmd-MO) resulted in no dystrophin being expressed in the vertical myoseptae, as well as a disruption of myotome morphology and sarcomere organization. In addition, the Ca²⁺ signalling signatures of dmd-MO-injected embryos or homozygous sapje mutant embryos were abnormal such that the frequency, amplitude and timing of the Ca²⁺ signals were altered compared with controls. 5. Our new data suggest that, in addition to a structural role, dystrophin may function in the regulation of [Ca²⁺](i) during the early stages of slow muscle cell differentiation when the Ca²⁺ signals generated in these cells coincide with the first spontaneous contractions of the trunk.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and Key State Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
16
|
Markova O, Lenne PF. Calcium signaling in developing embryos: focus on the regulation of cell shape changes and collective movements. Semin Cell Dev Biol 2012; 23:298-307. [PMID: 22414534 DOI: 10.1016/j.semcdb.2012.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/31/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
During morphogenesis tissues significantly remodel by coordinated cell migrations and cell rearrangements. Central to this problem are cell shape changes that are driven by distinct cytoskeletal reorganization responsible for force generation. Calcium is a versatile and universal messenger that is implicated in the regulation of embryonic development. Although calcium transients accrue clearly and more intensely in tissues undergoing rearrangement/migration, it is far from clear what the role of these calcium signals is. Here we summarize the evidence implicating calcium participation in tissue movements, cell shape changes and the reorganization of contractile cytoskeletal elements in developing embryos. We also discuss a novel hypothesis that short-lived calcium spikes are required in cells and tissues undergoing migration and rearrangements as a fine tuning response mechanism to prevent local, abnormally high fluctuations in cytoskeletal activities.
Collapse
Affiliation(s)
- Olga Markova
- IBDML, UMR7288 CNRS-Aix-Marseille Université, Campus de Luminy, Marseille, France.
| | | |
Collapse
|
17
|
Webb SE, Miller AL. Aequorin-based genetic approaches to visualize Ca2+ signaling in developing animal systems. Biochim Biophys Acta Gen Subj 2011; 1820:1160-8. [PMID: 22198462 DOI: 10.1016/j.bbagen.2011.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND In recent years, as our understanding of the various roles played by Ca2+ signaling in development and differentiation has expanded, the challenge of imaging Ca2+ dynamics within living cells, tissues, and whole animal systems has been extended to include specific signaling activity in organelles and non-membrane bound sub-cellular domains. SCOPE OF REVIEW In this review we outline how recent advances in genetics and molecular biology have contributed to improving and developing current bioluminescence-based Ca2+ imaging techniques. Reporters can now be targeted to specific cell types, or indeed organelles or domains within a particular cell. MAJOR CONCLUSIONS These advances have contributed to our current understanding of the specificity and heterogeneity of developmental Ca2+ signaling. The improvement in the spatial resolution that results from specifically targeting a Ca2+ reporter has helped to reveal how a ubiquitous signaling messenger like Ca2+ can regulate coincidental but different signaling events within an individual cell; a Ca2+ signaling paradox that until now has been hard to explain. GENERAL SIGNIFICANCE Techniques used to target specific reporters via genetic means will have applications beyond those of the Ca2+ signaling field, and these will, therefore, make a significant contribution in extending our understanding of the signaling networks that regulate animal development. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | |
Collapse
|