1
|
Hou X, Nozumi M, Nakamura H, Igarashi M, Sugiyama S. Coactosin Promotes F-Actin Protrusion in Growth Cones Under Cofilin-Related Signaling Pathway. Front Cell Dev Biol 2021; 9:660349. [PMID: 34235144 PMCID: PMC8256272 DOI: 10.3389/fcell.2021.660349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
During brain development, axon outgrowth and its subsequent pathfinding are reliant on a highly motile growth cone located at the tip of the axon. Actin polymerization that is regulated by actin-depolymerizing factors homology (ADF-H) domain-containing family drives the formation of lamellipodia and filopodia at the leading edge of growth cones for axon guidance. However, the precise localization and function of ADF-H domain-containing proteins involved in axon extension and retraction remain unclear. We have previously shown that transcripts and proteins of coactosin-like protein 1 (COTL1), an ADF-H domain-containing protein, are observed in neurites and axons in chick embryos. Coactosin overexpression analysis revealed that this protein was localized to axonal growth cones and involved in axon extension in the midbrain. We further examined the specific distribution of coactosin and cofilin within the growth cone using superresolution microscopy, structured illumination microscopy, which overcomes the optical diffraction limitation and is suitable to the analysis of cellular dynamic movements. We found that coactosin was tightly associated with F-actin bundles at the growth cones and that coactosin overexpression promoted the expansion of lamellipodia and extension of growth cones. Coactosin knockdown in oculomotor neurons resulted in an increase in the levels of the inactive, phosphorylated form of cofilin and dysregulation of actin polymerization and axonal elongation, which suggests that coactosin promoted axonal growth in a cofilin-dependent manner. Indeed, the application of a dominant-negative form of LIMK1, a downstream effector of GTPases, reversed the effect of coactosin knockdown on axonal growth by enhancing cofilin activity. Combined, our results indicate that coactosin functions promote the assembly of protrusive actin filament arrays at the leading edge for growth cone motility.
Collapse
Affiliation(s)
- Xubin Hou
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Molecular Neurobiology, Graduate School of Life Sciences, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Harukazu Nakamura
- Department of Molecular Neurobiology, Graduate School of Life Sciences, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Kitajima K, Kawahira N, Lee SW, Tamura K, Morishita Y, Ohtsuka D. Light-induced local gene expression in primary chick cell culture system. Dev Growth Differ 2021; 63:189-198. [PMID: 33733477 PMCID: PMC8252662 DOI: 10.1111/dgd.12721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/28/2022]
Abstract
The ability to manipulate gene expression at a specific region in a tissue or cell culture system is critical for analysis of target gene function. For chick embryos/cells, several gene introduction/induction methods have been established such as those involving retrovirus, electroporation, sonoporation, and lipofection. However, these methods have limitations in the accurate induction of localized gene expression. Here we demonstrate the effective application of a recently developed light‐dependent gene expression induction system (LightOn system) using the Neurospora crassa photoreceptor Vivid fused with a Gal4 DNA binding domain and p65 activation domain (GAVPO) that alters its activity in response to light stimulus in a primary chicken cell culture system. We show that the gene expression level and induction specificity in this system are strongly dependent on the light irradiation conditions. Especially, the irradiation interval is an important parameter for modulating gene expression; for shorter time intervals, higher induction specificity can be achieved. Further, by adjusting light irradiation conditions, the expression level in primary chicken cells can be regulated in a multiple step manner, in contrast to the binary expression seen for gene disruption or introduction (i.e., null or overexpression). This result indicates that the light‐dependent expression control method can be a useful technique in chick models to examine how gene function is affected by gradual changes in gene expression levels. We applied this light induction system to regulate Sox9 expression in cultures of chick limb mesenchyme cells and showed that induced SOX9 protein could modulate expression of downstream genes.
Collapse
Affiliation(s)
- Keiichi Kitajima
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Research Fellow (DC2) of Japan Society for the Promotion of Science, Tokyo, Japan.,Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Naofumi Kawahira
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Daisuke Ohtsuka
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
3
|
Sugiyama S, Sugi J, Iijima T, Hou X. Single-Cell Visualization Deep in Brain Structures by Gene Transfer. Front Neural Circuits 2020; 14:586043. [PMID: 33328900 PMCID: PMC7710941 DOI: 10.3389/fncir.2020.586043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
A projection neuron targets multiple regions beyond the functional brain area. In order to map neuronal connectivity in a massive neural network, a means for visualizing the entire morphology of a single neuron is needed. Progress has facilitated single-neuron analysis in the cerebral cortex, but individual neurons in deep brain structures remain difficult to visualize. To this end, we developed an in vivo single-cell electroporation method for juvenile and adult brains that can be performed under a standard stereomicroscope. This technique involves rapid gene transfection and allows the visualization of dendritic and axonal morphologies of individual neurons located deep in brain structures. The transfection efficiency was enhanced by directly injecting the expression vector encoding green fluorescent protein instead of monitoring cell attachment to the electrode tip. We obtained similar transfection efficiencies in both young adult (≥P40) and juvenile mice (P21-30). By tracing the axons of thalamocortical neurons, we identified a specific subtype of neuron distinguished by its projection pattern. Additionally, transfected mOrange-tagged vesicle-associated membrane protein 2-a presynaptic protein-was strongly localized in terminal boutons of thalamocortical neurons. Thus, our in vivo single-cell gene transfer system offers rapid single-neuron analysis deep in brain. Our approach combines observation of neuronal morphology with functional analysis of genes of interest, which can be useful for monitoring changes in neuronal activity corresponding to specific behaviors in living animals.
Collapse
Affiliation(s)
- Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | |
Collapse
|
4
|
Abstract
To elucidate a gene function, in vivo analysis is indispensable. We can carry out gain and loss of function experiment of a gene of interest by electroporation in ovo and ex ovo culture system on early-stage and advanced-stage chick embryos, respectively. In this section, we introduce in/ex ovo electroporation methods for the development of the chick central nervous system and visual system investigation.
Collapse
Affiliation(s)
- Hidekiyo Harada
- Genetics and Development Division, Krembil Research Institute, University of Toronto, 60 Leonard St., Toronto, ON, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Minoru Omi
- Department of Anatomy I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Harukazu Nakamura
- Frontier Research Institute for Interdisciplinary Science (FRIS), Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
5
|
Abstract
Genome editing is driving a revolution in the biomedical sciences that carries the promise for future treatments of genetic diseases. The CRISPR/Cas9 system of RNA-guided genome editing has been successfully applied to modify the genome of a wide spectrum of organisms. We recently showed that this technique can be combined with in vivo electroporation to inhibit the function of genes of interest in somatic cells of the developing chicken embryo. We present here a simplified version of the previously described technique that leads to effective gene loss-of-function.
Collapse
Affiliation(s)
- Valérie Morin
- Institut NeuroMyoGène, INMG, Faculty of Medicine Laënnec, University Lyon1, Bâtiment B, 7 rue Guillaume Paradin, 69008, Lyon, France
| | - Nadège Véron
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Christophe Marcelle
- Institut NeuroMyoGène, INMG, Faculty of Medicine Laënnec, University Lyon1, Bâtiment B, 7 rue Guillaume Paradin, 69008, Lyon, France. .,EMBL Australia, Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
6
|
Véron N, Qu Z, Kipen PAS, Hirst CE, Marcelle C. CRISPR mediated somatic cell genome engineering in the chicken. Dev Biol 2015; 407:68-74. [PMID: 26277216 DOI: 10.1016/j.ydbio.2015.08.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/17/2023]
Abstract
Gene-targeted knockout technologies are invaluable tools for understanding the functions of genes in vivo. CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Here, we combined CRISPR with in vivo electroporation in the chicken embryo to efficiently target the transcription factor PAX7 in tissues of the developing embryo. This approach generated mosaic genetic mutations within a wild-type cellular background. This series of proof-of-principle experiments indicate that in vivo CRISPR-mediated cell genome engineering is an effective method to achieve gene loss-of-function in the tissues of the chicken embryo and it completes the growing genetic toolbox to study the molecular mechanisms regulating development in this important animal model.
Collapse
Affiliation(s)
- Nadège Véron
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia
| | - Zhengdong Qu
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia
| | - Phoebe A S Kipen
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia
| | - Claire E Hirst
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia
| | - Christophe Marcelle
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Extending the limits of avian embryo culture with the modified Cornish pasty and whole-embryo transplantation methods. Methods 2014; 66:441-6. [DOI: 10.1016/j.ymeth.2013.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
|
8
|
Shinya M, Kobayashi K, Masuda A, Tokumoto M, Ozaki Y, Saito K, Kawasaki T, Sado Y, Sakai N. Properties of gene knockdown system by vector-based siRNA in zebrafish. Dev Growth Differ 2013; 55:755-65. [PMID: 24117364 DOI: 10.1111/dgd.12091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi) has emerged as a powerful tool to silence specific genes. Vector-based RNAi systems have been developed to downregulate targeted genes in a spatially and temporally regulated fashion both in vitro and in vivo. The zebrafish (Danio rerio) is a model animal that has been examined based on a wide variety of biological techniques, including embryonic manipulations, forward and reverse genetics, and molecular biology. However, a heritable and tissue-specific knockdown of gene expression has not yet been developed in zebrafish. We examined two types of vector, which produce small interfering RNA (siRNA), the direct effector in RNAi system; microRNA (miRNA) process mimicking vectors with a promoter for RNA polymerase II and short hairpin RNA (shRNA) expressing vector through a promoter for RNA polymerase III. Though gene-silencing phenotypes were not observed in the miRNA process mimicking vectors, the transgenic embryos of the second vector (Tg(zU6-shGFP)), shRNA expressing vector for enhanced green fluorescence protein, revealed knockdown of the targeted gene. Interestingly, only the embryos from Tg(zU6-shGFP) female but not from the male fish showed the downregulation. Comparison of the quantity of siRNA produced by each vector indicates that the vectors tested here induced siRNA, but at low levels barely sufficient to silence the targeted gene.
Collapse
Affiliation(s)
- Minori Shinya
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan
| | - Kayo Kobayashi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Aki Masuda
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Mika Tokumoto
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yuichi Ozaki
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Kenji Saito
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Toshihiro Kawasaki
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yukiko Sado
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
9
|
Hou X, Katahira T, Ohashi K, Mizuno K, Sugiyama S, Nakamura H. Coactosin accelerates cell dynamism by promoting actin polymerization. Dev Biol 2013; 379:53-63. [DOI: 10.1016/j.ydbio.2013.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/05/2013] [Accepted: 04/09/2013] [Indexed: 01/25/2023]
|
10
|
Serralbo O, Picard CA, Marcelle C. Long-term, inducible gene loss-of-function in the chicken embryo. Genesis 2013; 51:372-80. [PMID: 23468129 DOI: 10.1002/dvg.22388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 11/07/2022]
Abstract
The use of shRNAmir to down-regulate the expression of genes of interest is a powerful tool for studying gene function during early chick development. However, because of the limitations of electroporation-mediated transgenesis, the down-regulation of genes expressed at late stages of development in specific tissues is difficult to perform. By combining electroporation of a doxycycline-inducible, miR30-based shRNA plasmid with the Tol2 genomic integration system, we are now able to down-regulate the expression of any gene of interest at defined stage of chicken development.
Collapse
Affiliation(s)
- Olivier Serralbo
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria, 3800, Australia.
| | | | | |
Collapse
|
11
|
Egawa R, Hososhima S, Hou X, Katow H, Ishizuka T, Nakamura H, Yawo H. Optogenetic probing and manipulation of the calyx-type presynaptic terminal in the embryonic chick ciliary ganglion. PLoS One 2013; 8:e59179. [PMID: 23555628 PMCID: PMC3605445 DOI: 10.1371/journal.pone.0059179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/12/2013] [Indexed: 11/23/2022] Open
Abstract
The calyx-type synapse of chick ciliary ganglion (CG) has been intensively studied for decades as a model system for the synaptic development, morphology and physiology. Despite recent advances in optogenetics probing and/or manipulation of the elementary steps of the transmitter release such as membrane depolarization and Ca2+ elevation, the current gene-manipulating methods are not suitable for targeting specifically the calyx-type presynaptic terminals. Here, we evaluated a method for manipulating the molecular and functional organization of the presynaptic terminals of this model synapse. We transfected progenitors of the Edinger-Westphal (EW) nucleus neurons with an EGFP expression vector by in ovo electroporation at embryonic day 2 (E2) and examined the CG at E8–14. We found that dozens of the calyx-type presynaptic terminals and axons were selectively labeled with EGFP fluorescence. When a Brainbow construct containing the membrane-tethered fluorescent proteins m-CFP, m-YFP and m-RFP, was introduced together with a Cre expression construct, the color coding of each presynaptic axon facilitated discrimination among inter-tangled projections, particularly during the developmental re-organization period of synaptic connections. With the simultaneous expression of one of the chimeric variants of channelrhodopsins, channelrhodopsin-fast receiver (ChRFR), and R-GECO1, a red-shifted fluorescent Ca2+-sensor, the Ca2+ elevation was optically measured under direct photostimulation of the presynaptic terminal. Although this optically evoked Ca2+ elevation was mostly dependent on the action potential, a significant component remained even in the absence of extracellular Ca2+. It is suggested that the photo-activation of ChRFR facilitated the release of Ca2+ from intracellular Ca2+ stores directly or indirectly. The above system, by facilitating the molecular study of the calyx-type presynaptic terminal, would provide an experimental platform for unveiling the molecular mechanisms underlying the morphology, physiology and development of synapses.
Collapse
Affiliation(s)
- Ryo Egawa
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Japan Science and Technology Agency (JST), Core Research of Evolutional Science & Technology (CREST), Tokyo, Japan
- Tohoku University Institute for International Advanced Research and Education, Sendai, Japan
| | - Shoko Hososhima
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Japan Science and Technology Agency (JST), Core Research of Evolutional Science & Technology (CREST), Tokyo, Japan
| | - Xubin Hou
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hidetaka Katow
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Japan Science and Technology Agency (JST), Core Research of Evolutional Science & Technology (CREST), Tokyo, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Japan Science and Technology Agency (JST), Core Research of Evolutional Science & Technology (CREST), Tokyo, Japan
| | - Harukazu Nakamura
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Japan Science and Technology Agency (JST), Core Research of Evolutional Science & Technology (CREST), Tokyo, Japan
- Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
12
|
Chalupnikova K, Nejepinska J, Svoboda P. Production and application of long dsRNA in mammalian cells. Methods Mol Biol 2013; 942:291-314. [PMID: 23027058 DOI: 10.1007/978-1-62703-119-6_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Double-stranded RNA (dsRNA) is involved in different biological processes. At least three different pathways can respond to dsRNA in mammals. One of these pathways is RNA interference (RNAi) where long dsRNA induces sequence-specific degradation of transcripts carrying sequences complementary to dsRNA. Long dsRNA is also a potent trigger of the interferon pathway, a sequence-independent response that leads to global suppression of translation and global RNA degradation. In addition, dsRNA can be edited by adenosine deamination, which may result in nuclear retention and degradation of dsRNA or in alteration of RNA coding potential. Here, we provide a technical review summarizing different strategies of long dsRNA usage. While the review is largely focused on long dsRNA-induced RNAi in mammalian cells, it also provides helpful information on both the in vitro production and in vivo expression of dsRNAs. We present an overview of currently available vectors for dsRNA expression and provide the latest update on oocyte-specific transgenic RNAi approaches.
Collapse
|
13
|
Streit A, Tambalo M, Chen J, Grocott T, Anwar M, Sosinsky A, Stern CD. Experimental approaches for gene regulatory network construction: the chick as a model system. Genesis 2012; 51:296-310. [PMID: 23174848 DOI: 10.1002/dvg.22359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 01/23/2023]
Abstract
Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic "wiring diagrams" that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
14
|
Nakamura H, Funahashi J. Electroporation: past, present and future. Dev Growth Differ 2012; 55:15-9. [PMID: 23157363 DOI: 10.1111/dgd.12012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 01/13/2023]
Abstract
Gene transfer by electroporation has become an indispensable method for the study of developmental biology. The technique is applied not only in chick embryos but also in mice and other organisms. Here, a short history and perspectives of electroporation for gene transfer in vertebrates are described.
Collapse
Affiliation(s)
- Harukazu Nakamura
- Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, Japan.
| | | |
Collapse
|
15
|
Sato Y. Dorsal aorta formation: separate origins, lateral-to-medial migration, and remodeling. Dev Growth Differ 2012; 55:113-29. [PMID: 23294360 DOI: 10.1111/dgd.12010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/19/2012] [Accepted: 09/19/2012] [Indexed: 01/12/2023]
Abstract
Blood vessel formation is a highly dynamic tissue-remodeling event that can be observed from early development in vertebrate embryos. Dorsal aortae, the first functional intra-embryonic blood vessels, arise as two separate bilateral vessels in the trunk and undergo lateral-to-medial translocation, eventually fusing into a single large vessel at the midline. After this dramatic remodeling, the dorsal aorta generates hematopoietic stem cells. The dorsal aorta is a good model to use to increase our understanding of the mechanisms controlling the establishment and remodeling of larger blood vessels in vivo. Because of the easy accessibility to the developing circulatory system, quail and chick embryos have been widely used for studies on blood vessel formation. In particular, the mapping of endothelial cell origins has been performed using quail-chick chimera analysis, revealing endothelial, vascular smooth muscle, and hematopoietic cell progenitors of the dorsal aorta. The avian embryo model also allows conditional gene activation/inactivation and direct observation of cell behaviors during dorsal aorta formation. This allows a better understanding of the molecular mechanisms underlying specific morphogenetic events during dynamic dorsal aorta formation from a cell behavior perspective.
Collapse
Affiliation(s)
- Yuki Sato
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-2-1 Honjo, Kumamoto, Japan.
| |
Collapse
|
16
|
Vergara MN, Canto-Soler MV. Rediscovering the chick embryo as a model to study retinal development. Neural Dev 2012; 7:22. [PMID: 22738172 PMCID: PMC3541172 DOI: 10.1186/1749-8104-7-22] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/22/2012] [Indexed: 01/20/2023] Open
Abstract
The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system.
Collapse
Affiliation(s)
- M Natalia Vergara
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Smith Building 3023, 400 N Broadway, Baltimore, MD 21287-9257, USA
| | - M Valeria Canto-Soler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Smith Building 3023, 400 N Broadway, Baltimore, MD 21287-9257, USA
| |
Collapse
|
17
|
Iguchi T, Yagi H, Wang CC, Sato M. A tightly controlled conditional knockdown system using the Tol2 transposon-mediated technique. PLoS One 2012; 7:e33380. [PMID: 22428039 PMCID: PMC3302819 DOI: 10.1371/journal.pone.0033380] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/08/2012] [Indexed: 11/18/2022] Open
Abstract
Background Gene knockdown analyses using the in utero electroporation method have helped reveal functional aspects of genes of interest in cortical development. However, the application of this method to analyses in later stages of brain development or in the adult brain is still difficult because the amount of injected plasmids in a cell decreases along with development due to dilution by cell proliferation and the degradation of the plasmids. Furthermore, it is difficult to exclude the influence of earlier knockdown effects. Methodology/Principal Findings We developed a tightly controlled conditional knockdown system using a newly constructed vector, pT2K-TBI-shRNAmir, based on a Tol2 transposon-mediated gene transfer methodology with the tetracycline-inducible gene expression technique, which allows us to maintain a transgene for a long period of time and induce the knockdown of the gene of interest. We showed that expression of the endogenous amyloid precursor protein (APP) was sharply decreased by our inducible, stably integrated knockdown system in PC12 cells. Moreover, we induced an acute insufficiency of Dab1 with our system and observed that radial migration was impaired in the developing cerebral cortex. Such inhibitory effects on radial migration were not observed without induction, indicating that our system tightly controlled the knockdown, without any expression leakage in vivo. Conclusions/Significance Our system enables us to investigate the brain at any of the later stages of development or in the adult by utilizing a knockdown technique with the aid of the in utero electroporation gene transfer methodology. Furthermore, we can perform knockdown analyses free from the influence of undesired earlier knockdown effects.
Collapse
Affiliation(s)
- Tokuichi Iguchi
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Research and Education Program for Life Science, University of Fukui, Fukui, Japan
| | - Hideshi Yagi
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Chen-Chi Wang
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Makoto Sato
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Research and Education Program for Life Science, University of Fukui, Fukui, Japan
- Faculty of Medical Sciences, Child Development Research Center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|