1
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
2
|
Cox JA, Voigt MM. The Metalloproteinase adam19b Is Required for Sensory Axon Guidance in the Hindbrain. Front Neural Circuits 2019; 13:14. [PMID: 30894803 PMCID: PMC6415755 DOI: 10.3389/fncir.2019.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/20/2019] [Indexed: 11/25/2022] Open
Abstract
Little is known about the molecular and cellular mechanisms involved in the formation of the cranial peripheral sensory system in vertebrates. To identify genes involved in the formation of these circuits, we performed a forward genetic screen utilizing a transgenic zebrafish line (p2rx3.2:gfpsl1) that expresses green fluorescent protein (gfp) in sensory neurons of the Vth, VIIth, IXth and Xth cranial ganglia. Here, we describe a novel zebrafish mutant in which a missense mutation in the adam19b gene selectively affects the epibranchial sensory circuits.
Collapse
Affiliation(s)
- Jane A Cox
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Mark M Voigt
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Alfandari D, Taneyhill LA. Cut loose and run: The complex role of ADAM proteases during neural crest cell development. Genesis 2018; 56:e23095. [PMID: 29476604 PMCID: PMC6105527 DOI: 10.1002/dvg.23095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022]
Abstract
ADAM metalloproteases have been shown to play critical roles during development. In this review, we will describe functional evidence that implicates ADAM proteins during the genesis, migration and differentiation of neural crest cells. We will restrict our analysis to the transmembrane ADAMs as other reviews have addressed the role of extracellular metalloproteases (Christian et al. [2013] Critical Reviews in Biochemistry and Molecular Biology 48:544-560). This review will describe advances that have been obtained mainly through the use of two vertebrate model systems, the frog, and avian embryos. The role of the principal substrates of ADAMs, the cadherins, has been extensively described in other reviews, most recently in (Cousin [1997] Mechanisms of Development 148:79-88; Taneyhill and Schiffmacher [2017] Genesis, 55). The function of ADAMs in the migration of other cell types, including the immune system, wound healing and cancer has been described previously in (Dreymueller et al. [2017] Mediators of Inflammation 2017: 9621724). Our goal is to illustrate both the importance of ADAMs in controlling neural crest behavior and how neural crest cells have helped us understand the molecular interactions, substrates, and functions of ADAM proteins in vivo.
Collapse
Affiliation(s)
- Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
4
|
Markus-Koch A, Schmitt O, Seemann S, Lukas J, Koczan D, Ernst M, Fuellen G, Wree A, Rolfs A, Luo J. ADAM23 promotes neuronal differentiation of human neural progenitor cells. Cell Mol Biol Lett 2017; 22:16. [PMID: 28828010 PMCID: PMC5562998 DOI: 10.1186/s11658-017-0045-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background ADAM23 is widely expressed in the embryonic central nervous system and plays an important role in tissue formation. Results In this study, we showed that ADAM23 contributes to cell survival and is involved in neuronal differentiation during the differentiation of human neural progenitor cells (hNPCs). Upregulation of ADAM23 in hNPCs was found to increase the number of neurons and the length of neurite, while its downregulation decreases them and triggers cell apoptosis. RNA microarray analysis revealed mechanistic insights into genes and pathways that may become involved in multiple cellular processes upon up- or downregulation of ADAM23. Conclusions Our results suggest that ADAM23 regulates neuronal differentiation by triggering specific signaling pathways during hNPC differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s11658-017-0045-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annett Markus-Koch
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, 18055 Rostock, Germany
| | - Susanne Seemann
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Dirk Koczan
- Institute for Immunology, Rostock University Medical Center, Schillingallee 70, 18055 Rostock, Germany
| | - Mathias Ernst
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, 18055 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
5
|
Tomás-Roca L, Corral-San-Miguel R, Aroca P, Puelles L, Marín F. Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features. Brain Struct Funct 2014; 221:815-38. [PMID: 25381007 DOI: 10.1007/s00429-014-0938-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/31/2014] [Indexed: 01/17/2023]
Abstract
The medulla oblongata is the caudal portion of the vertebrate hindbrain. It contains major ascending and descending fiber tracts as well as several motor and interneuron populations, including neural centers that regulate the visceral functions and the maintenance of bodily homeostasis. In the avian embryo, it has been proposed that the primordium of this region is subdivided into five segments or crypto-rhombomeres (r7-r11), which were defined according to either their parameric position relative to intersomitic boundaries (Cambronero and Puelles, in J Comp Neurol 427:522-545, 2000) or a stepped expression of Hox genes (Marín et al., in Dev Biol 323:230-247, 2008). In the present work, we examine the implied similar segmental organization of the mouse medulla oblongata. To this end, we analyze the expression pattern of Hox genes from groups 3 to 8, comparing them to the expression of given cytoarchitectonic and molecular markers, from mid-gestational to perinatal stages. As a result of this approach, we conclude that the mouse medulla oblongata is segmentally organized, similarly as in avian embryos. Longitudinal structures such as the nucleus of the solitary tract, the dorsal vagal motor nucleus, the hypoglossal motor nucleus, the descending trigeminal and vestibular columns, or the reticular formation appear subdivided into discrete segmental units. Additionally, our analysis identified an internal molecular organization of the migrated pontine nuclei that reflects a differential segmental origin of their neurons as assessed by Hox gene expression.
Collapse
Affiliation(s)
- Laura Tomás-Roca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, and IMIB (Instituto Murciano de Investigación Biosanitaria), 30100, Murcia, Spain
- Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rubén Corral-San-Miguel
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, and IMIB (Instituto Murciano de Investigación Biosanitaria), 30100, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, and IMIB (Instituto Murciano de Investigación Biosanitaria), 30100, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, and IMIB (Instituto Murciano de Investigación Biosanitaria), 30100, Murcia, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, and IMIB (Instituto Murciano de Investigación Biosanitaria), 30100, Murcia, Spain.
| |
Collapse
|
6
|
Yan X, Lin J, Talabattula VAN, Mußmann C, Yang F, Wree A, Rolfs A, Luo J. ADAM10 negatively regulates neuronal differentiation during spinal cord development. PLoS One 2014; 9:e84617. [PMID: 24404179 PMCID: PMC3880303 DOI: 10.1371/journal.pone.0084617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/15/2013] [Indexed: 12/22/2022] Open
Abstract
Members of the ADAM (a disintegrin and metalloprotease) family are involved in embryogenesis and tissue formation via their proteolytic function, cell-cell and cell-matrix interactions. ADAM10 is expressed temporally and spatially in the developing chicken spinal cord, but its function remains elusive. In the present study, we address this question by electroporating ADAM10 specific morpholino antisense oligonucleotides (ADAM10-mo) or dominant-negative ADAM10 (dn-ADAM10) plasmid into the developing chicken spinal cord as well as by in vitro cell culture investigation. Our results show that downregulation of ADAM10 drives precocious differentiation of neural progenitor cells and radial glial cells, resulting in an increase of neurons in the developing spinal cord, even in the prospective ventricular zone. Remarkably, overexpression of the dn-ADAM10 plasmid mutated in the metalloprotease domain (dn-ADAM10-me) mimics the phenotype as found by the ADAM10-mo transfection. Furthermore, in vitro experiments on cultured cells demonstrate that downregulation of ADAM10 decreases the amount of the cleaved intracellular part of Notch1 receptor and its target, and increases the number of βIII-tubulin-positive cells during neural progenitor cell differentiation. Taken together, our data suggest that ADAM10 negatively regulates neuronal differentiation, possibly via its proteolytic effect on the Notch signaling during development of the spinal cord.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Juntang Lin
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, P.R. China
- Institute of Anatomy I, School of Medicine University of Jena, Jena, Germany
| | | | - Carolin Mußmann
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, School of Medicine University of Rostock, Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
7
|
Schiffmacher AT, Padmanabhan R, Jhingory S, Taneyhill LA. Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest. Mol Biol Cell 2013; 25:41-54. [PMID: 24196837 PMCID: PMC3873892 DOI: 10.1091/mbc.e13-08-0459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | | | | | | |
Collapse
|
8
|
Christian L, Bahudhanapati H, Wei S. Extracellular metalloproteinases in neural crest development and craniofacial morphogenesis. Crit Rev Biochem Mol Biol 2013; 48:544-60. [PMID: 24066766 DOI: 10.3109/10409238.2013.838203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neural crest (NC) is a population of migratory stem/progenitor cells that is found in early vertebrate embryos. NC cells are induced during gastrulation, and later migrate to multiple destinations and contribute to many types of cells and tissues, such as craniofacial structures, cardiac tissues, pigment cells and the peripheral nervous system. Recently, accumulating evidence suggests that many extracellular metalloproteinases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs), play important roles in various stages of NC development. Interference with metalloproteinase functions often causes defects in craniofacial structures, as well as in other cells and tissues that are contributed by NC cells, in humans and other vertebrates. In this review, we summarize the current state of the field concerning the roles of these three families of metalloproteinases in NC development and related tissue morphogenesis, with a special emphasis on craniofacial morphogenesis.
Collapse
Affiliation(s)
- Laura Christian
- Department of Biology, West Virginia University , Morgantown, WV , USA
| | | | | |
Collapse
|
9
|
Lin J, Yan X, Wang C, Talabattula VAN, Guo Z, Rolfs A, Luo J. Expression patterns of the ADAMs in early developing chicken cochlea. Dev Growth Differ 2013; 55:368-76. [PMID: 23496030 DOI: 10.1111/dgd.12051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/30/2022]
Abstract
Members of the ADAM (a disintegrin and metalloprotease) family are type I transmembrane proteins involved in biological processes of proteolysis, cell adhesion, cell-matrix interaction, as well as in the intracellular signaling transduction. In the present study, expression patterns of seven members of the ADAM family were investigated at the early stages of the developing cochlea by in situ hybridization. The results show that each individual ADAM is expressed and regulated in the early developing cochlea. ADAM9, ADAM10, ADAM17, and ADAM23 are initially and widely expressed in the otic vesicle at embryonic day 2.5 (E2.5) and in the differential elements of the cochlear duct at E9, while ADAM12 is expressed in acoustic ganglion cells at E7. ADAM22 is detectable in cochlear ganglion cells as early as from E4 and in the basilar papilla from E7. Therefore, the present study extends our previous results and suggests that ADAMs also play a role in the early cochlear development.
Collapse
Affiliation(s)
- Juntang Lin
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang City, 453003, Henan, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Yan X, Lin J, Rolfs A, Luo J. Expression patterns of ADAMs in the developing chicken lens. J Mol Histol 2012; 43:121-35. [PMID: 22246534 DOI: 10.1007/s10735-011-9389-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/30/2011] [Indexed: 11/25/2022]
Abstract
In the present study the expression patterns of ADAM (a disintegrin and metalloprotease) genes in the chicken developing lens were analyzed. Using in situ hybridization, we found that seven members of the ADAM family including ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23 are expressed in the developing embryonic lens. From embryonic incubation day (E) 2 to E3, most of the ADAMs investigated here are expressed in the lens placode and lens vesicle. From E5 to E7, all seven ADAMs, but predominantly ADAM9 and ADAM10, are throughly expressed in the central epithelium, as well as in the proliferating lens epithelium and the equatorial lens epithelium. From E9 to E14, expression of ADAM9, ADAM10, and ADAM17 decreases moderately in these regions. ADAM12 and ADAM13 are weakly expressed in the central epithelium and the lens epithelium, and are not detectable from E14 onward. ADAM22 and ADAM23 are expressed in the central epithelium, the lens epithelium and the equatorial lens epithelium at E5 and decrease gradually afterwards in the same regions. At E16, only weak ADAM9, ADAM10 and ADAM17 signals are found in the anterior lens epithelium. The changing spatiotemporal expression of the seven ADAMs suggests a regulatory role for these molecules during chicken lens development.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147, Rostock, Germany
| | | | | | | |
Collapse
|
11
|
Lin J, Luo J, Redies C. Differential regional expression of multiple ADAMs during feather bud formation. Dev Dyn 2011; 240:2142-52. [DOI: 10.1002/dvdy.22703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 01/02/2023] Open
|