1
|
Beyer J, Song Y, Lillicrap A, Rodríguez-Satizábal S, Chatzigeorgiou M. Ciona spp. and ascidians as bioindicator organisms for evaluating effects of endocrine disrupting chemicals: A discussion paper. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106170. [PMID: 37708617 DOI: 10.1016/j.marenvres.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
In context of testing, screening and monitoring of endocrine-disrupting (ED) type of environmental pollutants, tunicates could possibly represent a particularly interesting group of bioindicator organisms. These primitive chordates are already important model organisms within developmental and genomics research due to their central position in evolution and close relationship to vertebrates. The solitary ascidians, such as the genus Ciona spp. (vase tunicates), could possibly be extra feasible as ED bioindicators. They have a free-swimming, tadpole-like larval stage that develops extremely quickly (<20 h under favorable conditions), has a short life cycle (typically 2-3 months), are relatively easy to maintain in laboratory culture, have fully sequenced genomes, and transgenic embryos with 3D course data of the embryo ontogeny are available. In this article, we discuss possible roles of Ciona spp. (and other solitary ascidians) as ecotoxicological bioindicator organisms in general but perhaps especially for effect studies of contaminants with presumed endocrine disrupting modes of action.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | | |
Collapse
|
2
|
Use of invertebrates to model chemically induced parkinsonism-symptoms. Biochem Soc Trans 2023; 51:435-445. [PMID: 36645005 PMCID: PMC9987996 DOI: 10.1042/bst20221172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of neurological diseases is currently growing due to the combination of several factor, including poor lifestyle and environmental imbalance which enhance the contribution of genetic factors. Parkinson's disease (PD), a chronic and progressive neurological condition, is one of the most prevalent neurodegenerative human diseases. Development of models may help to understand its pathophysiology. This review focuses on studies using invertebrate models to investigate certain chemicals that generate parkinsonian-like symptoms models. Additionally, we report some preliminary results of our own research on a crustacean (the crab Ucides cordatus) and a solitary ascidian (Styela plicata), used after induction of parkinsonism with 6-hydroxydopamine and the pesticide rotenone, respectively. We also discuss the advantages, limits, and drawbacks of using invertebrate models to study PD. We suggest prospects and directions for future investigations of PD, based on invertebrate models.
Collapse
|
3
|
Prasad T, Iyer S, Chatterjee S, Kumar M. In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder. WIREs Mech Dis 2023:e1603. [PMID: 36754084 DOI: 10.1002/wsbm.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
The genesis and functioning of the central nervous system are one of the most intricate and intriguing aspects of embryogenesis. The big lacuna in the field of human CNS development is the lack of accessibility of the human brain for direct observation during embryonic and fetal development. Thus, it is imperative to establish alternative animal models to gain deep mechanistic insights into neurodevelopment, establishment of neural circuitry, and its function. Neurodevelopmental events such as neural specification, differentiation, and generation of neuronal and non-neuronal cell types have been comprehensively studied using a variety of animal models and in vitro model systems derived from human cells. The experimentations on animal models have revealed novel, mechanistic insights into neurogenesis, formation of neural networks, and function. The models, thus serve as indispensable tools to understand the molecular basis of neurodevelopmental disorders (NDDs) arising from aberrations during embryonic development. Here, we review the spectrum of in vivo models such as fruitfly, zebrafish, frog, mice, and nonhuman primates to study neurogenesis and NDDs like microcephaly and Autism Spectrum Disorder. We also discuss nonconventional models such as ascidians and the recent technological advances in the field to study neurogenesis, disease mechanisms, and pathophysiology of human NDDs. This article is categorized under: Cancer > Stem Cells and Development Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Tuhina Prasad
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sayoni Chatterjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Eliso MC, Bergami E, Bonciani L, Riccio R, Belli G, Belli M, Corsi I, Spagnuolo A. Application of transcriptome profiling to inquire into the mechanism of nanoplastics toxicity during Ciona robusta embryogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120892. [PMID: 36529345 DOI: 10.1016/j.envpol.2022.120892] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The growing concern on nanoplastics (<1 μm) impact on marine life has stimulated a significant amount of studies aiming to address ecotoxicity and disclose their mechanisms of action. Here, we applied an integrative approach to develop an Adverse Outcome Pathway (AOP) upon acute exposure to amino-modified polystyrene nanoparticles (PS-NH2 NPs, 50 nm), as proxy for nanoplastics, during the embryogenesis of the chordate Ciona robusta. Genes related to glutathione metabolism, immune defense, nervous system, transport by aquaporins and energy metabolism were affected by either concentration tested of 10 or 15 μg mL-1 of PS-NH2. Transcriptomic data and in vivo experiments were assembled into two putative AOPs, identifying as key events the adhesion of PS-NH2 as (molecular) initiating event, followed by oxidative stress, changes in transcription of specific genes, morphological defects, increase in reactive oxygen species level, impaired swimming behavior. As final adverse outcomes, altered larval development, reduced metamorphosis and inhibition of hatching were identified. Our study attempts to define AOPs for PS-NH2 without excluding that chemicals leaching from them might also have a potential role in the observed outcome. Overall data provide new insights into the mechanism of action of PS-NH2 NPs during chordate embryogenesis and offer further keys for a better knowledge of nanoplastics impact on early stages of marine life.
Collapse
Affiliation(s)
- Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy.
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena (MO), Italy
| | - Lisa Bonciani
- BioChemie LAB, Via di Limite, 27G, 50013, Campi Bisenzio, FI, Italy
| | - Roberto Riccio
- BioChemie LAB, Via di Limite, 27G, 50013, Campi Bisenzio, FI, Italy
| | - Giulia Belli
- BioChemie LAB, Via di Limite, 27G, 50013, Campi Bisenzio, FI, Italy
| | - Mattia Belli
- BioChemie LAB, Via di Limite, 27G, 50013, Campi Bisenzio, FI, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| |
Collapse
|
5
|
Central nervous system regeneration in ascidians: cell migration and differentiation. Cell Tissue Res 2022; 390:335-354. [PMID: 36066636 DOI: 10.1007/s00441-022-03677-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Adult ascidians have the capacity to regenerate the central nervous system (CNS) and are therefore excellent models for studies on neuroregeneration. The possibility that undifferentiated blood cells are involved in adult neuroregeneration merits investigation. We analyzed the migration, circulation, and role of hemocytes of the ascidian Styela plicata in neuroregeneration. Hemocytes were removed and incubated with superparamagnetic iron oxide nanoparticles (SPION), and these SPION-labeled hemocytes were injected back into the animals (autologous transplant), followed by neurodegeneration with the neurotoxin 3-acetylpyridine (3AP). Magnetic resonance imaging showed that 1, 5, and 10 days after injury, hemocytes migrated to the intestinal region, siphons, and CNS. Immunohistochemistry revealed that the hemocytes that migrated to the CNS were putative stem cells (P-element-induced wimpy testis + or PIWI + cells). In the cortex of the neural ganglion, migrated hemocytes started to lose their PIWI labeling 5 days after injury, and 10 days later started to show β-III tubulin labeling. In the neural gland, however, the hemocytes remained undifferentiated during the entire experimental period. Transmission electron microscopy revealed regions in the neural gland with characteristics of neurogenic niches, not previously reported in ascidians. These results showed that migration of hemocytes to the hematopoietic tissue and to the 3AP-neurodegenerated region is central to the complex mechanism of neuroregeneration.
Collapse
|
6
|
Gattoni G, Andrews TGR, Benito-Gutiérrez È. Restricted Proliferation During Neurogenesis Contributes to Regionalisation of the Amphioxus Nervous System. Front Neurosci 2022; 16:812223. [PMID: 35401089 PMCID: PMC8987370 DOI: 10.3389/fnins.2022.812223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system of the cephalochordate amphioxus consists of a dorsal neural tube with an anterior brain. Two decades of gene expression analyses in developing amphioxus embryos have shown that, despite apparent morphological simplicity, the amphioxus neural tube is highly regionalised at the molecular level. However, little is known about the morphogenetic mechanisms regulating the spatiotemporal emergence of cell types at distinct sites of the neural axis and how their arrangements contribute to the overall neural architecture. In vertebrates, proliferation is key to provide appropriate cell numbers of specific types to particular areas of the nervous system as development proceeds, but in amphioxus proliferation has never been studied at this level of detail, nor in the specific context of neurogenesis. Here, we describe the dynamics of cell division during the formation of the central nervous system in amphioxus embryos, and identify specific regions of the nervous system that depend on proliferation of neuronal precursors at precise time-points for their maturation. By labelling proliferating cells in vivo at specific time points in development, and inhibiting cell division during neurulation, we demonstrate that localised proliferation in the anterior cerebral vesicle is required to establish the full cell type repertoire of the frontal eye complex and the putative hypothalamic region of the amphioxus brain, while posterior proliferating progenitors, which were found here to derive from the dorsal lip of the blastopore, contribute to elongation of the caudal floor plate. Between these proliferative domains, we find that trunk nervous system differentiation is independent from cell division, in which proliferation decreases during neurulation and resumes at the early larval stage. Taken together, our results highlight the importance of proliferation as a tightly controlled mechanism for shaping and regionalising the amphioxus neural axis during development, by addition of new cells fated to particular types, or by influencing tissue geometry.
Collapse
|
7
|
Olivo P, Palladino A, Ristoratore F, Spagnuolo A. Brain Sensory Organs of the Ascidian Ciona robusta: Structure, Function and Developmental Mechanisms. Front Cell Dev Biol 2021; 9:701779. [PMID: 34552923 PMCID: PMC8450388 DOI: 10.3389/fcell.2021.701779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, new characters are designed by modifying pre-existing structures already present in ancient organisms. In this perspective, the Central Nervous System (CNS) of ascidian larva offers a good opportunity to analyze a complex phenomenon with a simplified approach. As sister group of vertebrates, ascidian tadpole larva exhibits a dorsal CNS, made up of only about 330 cells distributed into the anterior sensory brain vesicle (BV), connected to the motor ganglion (MG) and a caudal nerve cord (CNC) in the tail. Low number of cells does not mean, however, low complexity. The larval brain contains 177 neurons, for which a documented synaptic connectome is now available, and two pigmented organs, the otolith and the ocellus, controlling larval swimming behavior. The otolith is involved in gravity perception and the ocellus in light perception. Here, we specifically review the studies focused on the development of the building blocks of ascidians pigmented sensory organs, namely pigment cells and photoreceptor cells. We focus on what it is known, up to now, on the molecular bases of specification and differentiation of both lineages, on the function of these organs after larval hatching during pre-settlement period, and on the most cutting-edge technologies, like single cell RNAseq and genome editing CRISPR/CAS9, that, adapted and applied to Ciona embryos, are increasingly enhancing the tractability of Ciona for developmental studies, including pigmented organs formation.
Collapse
Affiliation(s)
- Paola Olivo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Antonio Palladino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
8
|
Benito-Gutiérrez È, Gattoni G, Stemmer M, Rohr SD, Schuhmacher LN, Tang J, Marconi A, Jékely G, Arendt D. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol 2021; 19:110. [PMID: 34020648 PMCID: PMC8139002 DOI: 10.1186/s12915-021-01045-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The evolutionary origin of the telencephalon, the most anterior part of the vertebrate brain, remains obscure. Since no obvious counterpart to the telencephalon has yet been identified in invertebrate chordates, it is difficult to trace telencephalic origins. One way to identify homologous brain parts between distantly related animal groups is to focus on the combinatorial expression of conserved regionalisation genes that specify brain regions. RESULTS Here, we report the combined expression of conserved transcription factors known to specify the telencephalon in the vertebrates in the chordate amphioxus. Focusing on adult specimens, we detect specific co-expression of these factors in the dorsal part of the anterior brain vesicle, which we refer to as Pars anterodorsalis (PAD). As in vertebrates, expression of the transcription factors FoxG1, Emx and Lhx2/9 overlaps that of Pax4/6 dorsally and of Nkx2.1 ventrally, where we also detect expression of the Hedgehog ligand. This specific pattern of co-expression is not observed prior to metamorphosis. Similar to the vertebrate telencephalon, the amphioxus PAD is characterised by the presence of GABAergic neurons and dorsal accumulations of glutamatergic as well as dopaminergic neurons. We also observe sustained proliferation of neuronal progenitors at the ventricular zone of the amphioxus brain vesicle, as observed in the vertebrate brain. CONCLUSIONS Our findings suggest that the PAD in the adult amphioxus brain vesicle and the vertebrate telencephalon evolved from the same brain precursor region in ancestral chordates, which would imply homology of these structures. Our comparative data also indicate that this ancestral brain already contained GABA-, glutamatergic and dopaminergic neurons, as is characteristic for the olfactory bulb of the vertebrate telencephalon. We further speculate that the telencephalon might have evolved in vertebrates via a heterochronic shift in developmental timing.
Collapse
Affiliation(s)
- Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Manuel Stemmer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Max-Planck Institute for Neurobiology in Martinsried, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Silvia D Rohr
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laura N Schuhmacher
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jocelyn Tang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Aleksandra Marconi
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
9
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
10
|
Eliso MC, Manfra L, Savorelli F, Tornambè A, Spagnuolo A. New approaches on the use of tunicates (Ciona robusta) for toxicity assessments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32132-32138. [PMID: 32577962 DOI: 10.1007/s11356-020-09781-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
After the accidental release of crude oil in marine environment, dispersants are applied on sea surface transferring oil into the water column where it can be broken down by biodegradation, thereby reducing potential pollution to coastal areas. Before they can be used in the wild, the ecotoxicity of such dispersants is usually evaluated with toxicity assays using algae, crustacean and fishes. Nowadays, there is a need to find alternative species to reduce the use of vertebrates both for ethical considerations and for reducing the cost of bioassays. Ciona robusta is a solitary ascidian that inhabits shallow waters and marine coastal areas. This species has been recently adopted as valuable biological model for ecotoxicity studies, thanks to its rapid embryonic and larval development, resemblance to vertebrates, and low risk of ethical issues. On this ground, the lethal and sublethal toxicity of two dispersants has been evaluated on Ciona juveniles. At this stage, the organisms become filter-feeders and the morphological alterations of the organs can be easily observed. The median lethal concentrations at 96 h (96hLC50) for Dispersant 1 (non-ionic surfactant) and for Dispersant 2 (mixture of non-ionic surfactants and anionic surfactants) are 41.6 mg/L (38.6-44.9) and 92.5 mg/L (87.7-97.5), respectively. The Ciona juvenile model was compared to Dicentrarchus labrax fish juveniles test, and it showed increased sensitivity for Ciona to these compounds. These results suggest that 96 h mortality test bioassay could be a good alternative method to 96 h mortality assay with D. labrax, limiting the use of vertebrates for dispersant toxicity.
Collapse
Affiliation(s)
- Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms,, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Loredana Manfra
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy.
| | - Federica Savorelli
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - Andrea Tornambè
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms,, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| |
Collapse
|
11
|
Zeng F, Wunderer J, Salvenmoser W, Ederth T, Rothbächer U. Identifying adhesive components in a model tunicate. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190197. [PMID: 31495315 DOI: 10.1098/rstb.2019.0197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tunicates populate a great variety of marine underwater substrates worldwide and represent a significant concern in marine shipping and aquaculture. Adhesives are secreted from the anterior papillae of their swimming larvae, which attach and metamorphose into permanently adhering, filter-feeding adults. We recently described the cellular composition of the sensory adhesive organ of the model tunicate Ciona intestinalis in great detail. Notably, the adhesive secretions of collocytes accumulate at the tip of the organ and contain glycoproteins. Here, we further explore the components of adhesive secretions and have screened for additional specificities that may influence adhesion or cohesion of the Ciona glue, including other carbohydrate moieties, catechols and substrate properties. We found a distinct set of sugar residues in the glue recognized by specific lectins with little overlap to other known marine adhesives. Surprisingly, we also detect catechol residues that likely originate from an adjacent cellular reservoir, the test cells. Furthermore, we provide information on substrate preferences where hydrophobicity outperforms charge in the attachment. Finally, we can influence the settlement process by the addition of hydrophilic heparin. The further analysis of tunicate adhesive strategies should provide a valuable knowledge source in designing physiological adhesives or green antifoulants. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Julia Wunderer
- Department of Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Department of Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Thomas Ederth
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Ute Rothbächer
- Department of Evolutionary Developmental Biology, Institute of Zoology, University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Ryan K, Meinertzhagen IA. Neuronal identity: the neuron types of a simple chordate sibling, the tadpole larva of Ciona intestinalis. Curr Opin Neurobiol 2019; 56:47-60. [PMID: 30530111 PMCID: PMC6551260 DOI: 10.1016/j.conb.2018.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022]
Abstract
Neurons of the sparsely populated nervous system of the tadpole larva in the tunicate Ciona intestinalis, a chordate sibling, are known from sporadic previous studies but especially two recent reports that document the connectome of both the central and peripheral nervous systems at EM level. About 330 CNS cells comprise mostly ciliated ependymal cells, with ∼180 neurons that constitute about 50 morphologically distinguishable types. The neurons reveal various chordate characters amid many features that are idiosyncratic. Most neurons are ciliated and lack dendrites, some even lack an axon. Synapses mostly form en passant between axons, and resemble those in basal invertebrates; some are dyads and all have heterogenous synaptic vesicle populations. Each neuron has on average 49 synapses with other cells; these constitute a synaptic network of unpredicted complexity.
Collapse
Affiliation(s)
- Kerrianne Ryan
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
13
|
Zeng F, Wunderer J, Salvenmoser W, Hess MW, Ladurner P, Rothbächer U. Papillae revisited and the nature of the adhesive secreting collocytes. Dev Biol 2019; 448:183-198. [DOI: 10.1016/j.ydbio.2018.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 11/26/2022]
|
14
|
Automated behavioural analysis reveals the basic behavioural repertoire of the urochordate Ciona intestinalis. Sci Rep 2019; 9:2416. [PMID: 30787329 PMCID: PMC6382837 DOI: 10.1038/s41598-019-38791-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
Quantitative analysis of animal behaviour in model organisms is becoming an increasingly essential approach for tackling the great challenge of understanding how activity in the brain gives rise to behaviour. Here we used automated image-based tracking to extract behavioural features from an organism of great importance in understanding the evolution of chordates, the free-swimming larval form of the tunicate Ciona intestinalis, which has a compact and fully mapped nervous system composed of only 231 neurons. We analysed hundreds of videos of larvae and we extracted basic geometric and physical descriptors of larval behaviour. Importantly, we used machine learning methods to create an objective ontology of behaviours for C. intestinalis larvae. We identified eleven behavioural modes using agglomerative clustering. Using our pipeline for quantitative behavioural analysis, we demonstrate that C. intestinalis larvae exhibit sensory arousal and thigmotaxis. Notably, the anxiotropic drug modafinil modulates thigmotactic behaviour. Furthermore, we tested the robustness of the larval behavioural repertoire by comparing different rearing conditions, ages and group sizes. This study shows that C. intestinalis larval behaviour can be broken down to a set of stereotyped behaviours that are used to different extents in a context-dependent manner.
Collapse
|
15
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
16
|
Luttrell SM, Su YH, Swalla BJ. Getting a Head with Ptychodera flava Larval Regeneration. THE BIOLOGICAL BULLETIN 2018; 234:152-164. [PMID: 29949438 DOI: 10.1086/698510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Severe injury to the central nervous system of chordates often results in permanent and irreversible mental and physical challenges. While some chordates are able to repair and/or regenerate portions of their nervous system, no chordate has been shown to be able to regenerate all regions of its central nervous system after catastrophic injury or amputation. Some hemichordates, on the other hand, are able to efficiently regenerate all neural structures, including their dorsal, hollow neural tube after complete ablation. Solitary hemichordates are marine acorn worms and a sister group to the echinoderms. The hemichordate Ptychodera flava progresses from a pelagic, feeding tornaria larva to a tripartite benthic worm with an anterior proboscis, a middle collar region, and a long posterior trunk. The adult worm regenerates all body parts when bisected in the trunk, but it was unknown whether the regeneration process was present in tornaria larvae. Now, we show that P. flava larvae are capable of robust regeneration after bisection through the sagittal, coronal, and axial planes. We also use antibody staining to show that the apical sensory organ regenerates a rich, serotonin-positive complex of cells within two weeks after amputation. Cells labeled with 5-ethynyl-2'-deoxyuridine confirm that regeneration is occurring through epimorphic processes as new cells are added at the cut site and throughout the regenerating tissue. This study verifies that P. flava larvae can be used for future functional studies aimed at identifying the genetic and morphological mechanisms controlling central nervous system regeneration in a stem deuterostome.
Collapse
|
17
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Nishino A. Morphology and Physiology of the Ascidian Nervous Systems and the Effectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542090 DOI: 10.1007/978-981-10-7545-2_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurobiology in ascidians has made many advances. Ascidians have offered natural advantages to researchers, including fecundity, structural simplicity, invariant morphology, and fast and stereotyped developmental processes. The researchers have also accumulated on this animal a great deal of knowledge, genomic resources, and modern genetic techniques. A recent connectomic analysis has shown an ultimately resolved image of the larval nervous system, whereas recent applications of live imaging and optogenetics have clarified the functional organization of the juvenile nervous system. Progress in resources and techniques have provided convincing ways to deepen what we have wanted to know about the nervous systems of ascidians. Here, the research history and the current views regarding ascidian nervous systems are summarized.
Collapse
Affiliation(s)
- Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan.
| |
Collapse
|
19
|
Battistoni M, Mercurio S, Ficetola GF, Metruccio FC, Menegola E, Pennati R. The Ascidian Embryo Teratogenicity assay in Ciona intestinalis as a new teratological screening to test the mixture effect of the co-exposure to ethanol and fluconazole. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:76-85. [PMID: 29223040 DOI: 10.1016/j.etap.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to evaluate the Ascidian Embryo Teratogenicity assay (AET) as new alternative invertebrate model to test the developmental effects of the co-exposure to ethanol and fluconazole. Ciona intestinalis embryos were exposed to the azolic fungicide fluconazole, (FLUCO, 7.8-250μM), to ethanol (Eth, 0.01-0.5%) and to their mixture (0.01% Eth+FLUCO 7.8-250μM) from neurula to larval stage. At the end of the exposure period, larvae were morphologically evaluated and benchmark analysis performed by using the PROAST modelling software. Both compounds were teratogenic in a concentration-related manner, particularly affecting the pigmented organs. The co-exposure to Eth enhanced the effects of FLUCO, the additive hypothesis was not rejected by the modelling. The results demonstrated that AET could be considered a good vertebrate-free alternative model for toxicological investigation in embryos.
Collapse
Affiliation(s)
- Maria Battistoni
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Silvia Mercurio
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Francesca Cristiana Metruccio
- International Centre for Pesticides and Health Risk Prevention (ICPS), University Hospital Luigi Sacco, via G.B. Grassi 74, 20157 Milan, Italy
| | - Elena Menegola
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | - Roberta Pennati
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
20
|
Abstract
Transgenesis is an indispensable method for elucidating the cellular and molecular mechanisms underlying biological phenomena. In Ciona, transgenic lines that have a transgene insertion in their genomes have been created. The transgenic lines are valuable because they express reporter genes in a nonmosaic manner. This nonmosaic manner allows us to accurately observe tissues and organs. The insertions of transgenes can destroy genes to create mutants. The insertional mutagenesis is a splendid method for investigating functions of genes. In Ciona intestinalis, expression of the gfp reporter gene is subjected to epigenetic silencing in the female germline. This epigenetic silencing has been used to establish a novel method for knocking down maternal expression of genes. The genetic procedures based on germline transgenesis facilitate studies for addressing gene functions in Ciona.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| |
Collapse
|
21
|
Sasakura Y, Hozumi A. Formation of adult organs through metamorphosis in ascidians. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29105358 DOI: 10.1002/wdev.304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 02/05/2023]
Abstract
The representative characteristic of ascidians is their vertebrate-like, tadpole shape at the larval stage. Ascidians lose the tadpole shape through metamorphosis to become adults with a nonmotile, sessile body and a shape generally considered distinct from that of vertebrates. Solitary ascidians including Ciona species are extensively studied to understand the developmental mechanisms of ascidians, and to compare these mechanisms with their counterparts in vertebrates. In these ascidian species, the digestive and circulatory systems are not well developed in the larval trunk and the larvae do not take food. This is in contrast with the inner conditions of vertebrate tadpoles, which have functional organs comparable to those of adults. The adult organs and tissues of these ascidians become functional during metamorphosis that is completed quickly, suggesting that the ascidian larvae of solitary species are a transient stage of development. We here discuss how the cells and tissues in the ascidian larval body are converted into those of adults. The hearts of ascidians and vertebrates use closely related cellular and molecular mechanisms that suggest their shared origin. Hox genes of ascidians are essential for forming adult endodermal structures. To fully understand the development and evolution of chordates, a complete elucidation of the mechanisms underlying the adult tissue/organ formation of ascidians will be needed. WIREs Dev Biol 2018, 7:e304. doi: 10.1002/wdev.304 This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Development to the Basic Body Plan.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
22
|
Ryan K, Lu Z, Meinertzhagen IA. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. eLife 2016; 5. [PMID: 27921996 PMCID: PMC5140270 DOI: 10.7554/elife.16962] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
Left-right asymmetries in brains are usually minor or cryptic. We report brain asymmetries in the tiny, dorsal tubular nervous system of the ascidian tadpole larva, Ciona intestinalis. Chordate in body plan and development, the larva provides an outstanding example of brain asymmetry. Although early neural development is well studied, detailed cellular organization of the swimming larva's CNS remains unreported. Using serial-section EM we document the synaptic connectome of the larva's 177 CNS neurons. These formed 6618 synapses including 1772 neuromuscular junctions, augmented by 1206 gap junctions. Neurons are unipolar with at most a single dendrite, and few synapses. Some synapses are unpolarised, others form reciprocal or serial motifs; 922 were polyadic. Axo-axonal synapses predominate. Most neurons have ciliary organelles, and many features lack structural specialization. Despite equal cell numbers on both sides, neuron identities and pathways differ left/right. Brain vesicle asymmetries include a right ocellus and left coronet cells.
Collapse
Affiliation(s)
- Kerrianne Ryan
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada.,Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada
| | - Zhiyuan Lu
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada.,Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada
| | - Ian A Meinertzhagen
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada.,Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada
| |
Collapse
|
23
|
Ogura Y, Sasakura Y. Switching the rate and pattern of cell division for neural tube closure. NEUROGENESIS 2016; 3:e1235938. [PMID: 27928549 PMCID: PMC5120683 DOI: 10.1080/23262133.2016.1235938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 01/04/2023]
Abstract
The morphogenetic movement associated with neural tube closure (NTC) requires both positive and negative regulations of cell proliferation. The dual requirement of cell division control during NTC underscores the importance of the developmental control of cell division. In the chordate ascidian, midline fusions of the neural ectoderm and surface ectoderm (SE) proceed in the posterior-to-anterior direction, followed by a single wave of asynchronous and patterned cell division in SE. Before NTC, SE exhibits synchronous mitoses; disruption of the synchrony causes a failure of NTC. Therefore, NTC is the crucial turning point at which SE switches from synchronous to patterned mitosis. Our recent work discovered that the first sign of patterned cell division in SE appears was an asynchronous S-phase length along the anterior-posterior axis before NTC: the asynchrony of S-phase is offset by the compensatory G2-phase length, thus maintaining the apparent synchrony of cell division. By the loss of compensatory G2 phase, the synchronized cell division harmoniously switches to a patterned cell division at the onset of NTC. Here we review the developmental regulation of rate and pattern of cell division during NTC with emphasis on the switching mechanism identified in our study.
Collapse
Affiliation(s)
- Yosuke Ogura
- Shimoda Marine Research Center, University of Tsukuba , Shimoda, Shizuoka, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba , Shimoda, Shizuoka, Japan
| |
Collapse
|
24
|
Cahill PL, Atalah J, Selwood AI, Kuhajek JM. Metamorphosis of the invasive ascidian Ciona savignyi: environmental variables and chemical exposure. PeerJ 2016; 4:e1739. [PMID: 26966668 PMCID: PMC4782722 DOI: 10.7717/peerj.1739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL−1 in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL−1 to high µg mL−1 range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure.
Collapse
|
25
|
Brozovic M, Martin C, Dantec C, Dauga D, Mendez M, Simion P, Percher M, Laporte B, Scornavacca C, Di Gregorio A, Fujiwara S, Gineste M, Lowe EK, Piette J, Racioppi C, Ristoratore F, Sasakura Y, Takatori N, Brown TC, Delsuc F, Douzery E, Gissi C, McDougall A, Nishida H, Sawada H, Swalla BJ, Yasuo H, Lemaire P. ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Res 2016; 44:D808-18. [PMID: 26420834 PMCID: PMC4702943 DOI: 10.1093/nar/gkv966] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022] Open
Abstract
Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr.
Collapse
Affiliation(s)
- Matija Brozovic
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Cyril Martin
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Christelle Dantec
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Delphine Dauga
- Institut de Biologie du Développement de Marseille (IBDM), UMR7288 CNRS-Aix Marseille Université, Parc Scientifique de Luminy, Case 907, F-13288 Marseille Cedex 9, France Bioself Communication, 28 rue de la Bibliothèque, F-13001 Marseille, France
| | - Mickaël Mendez
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Paul Simion
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS-IRD-Université de Montpellier, F-34090 Montpellier, France
| | - Madeline Percher
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Baptiste Laporte
- Institut de Biologie du Développement de Marseille (IBDM), UMR7288 CNRS-Aix Marseille Université, Parc Scientifique de Luminy, Case 907, F-13288 Marseille Cedex 9, France
| | - Céline Scornavacca
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS-IRD-Université de Montpellier, F-34090 Montpellier, France
| | - Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Shigeki Fujiwara
- Department of Applied Science, Kochi University, Kochi-shi, Kochi 780-8520, Japan
| | - Mathieu Gineste
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Elijah K Lowe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Jacques Piette
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Naohito Takatori
- Developmental Biology Laboratory, Department of Biological Sciences, School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiooji, Tokyo 192-0397, Japan Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Titus C Brown
- Population Health and Reproduction, UC Davis, Davis, CA 95616, USA
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS-IRD-Université de Montpellier, F-34090 Montpellier, France
| | - Emmanuel Douzery
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS-IRD-Université de Montpellier, F-34090 Montpellier, France
| | - Carmela Gissi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Alex McDougall
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
| | - Billie J Swalla
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250-9299, USA
| | - Hitoyoshi Yasuo
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Patrick Lemaire
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France Institut de Biologie du Développement de Marseille (IBDM), UMR7288 CNRS-Aix Marseille Université, Parc Scientifique de Luminy, Case 907, F-13288 Marseille Cedex 9, France
| |
Collapse
|
26
|
Detection of periodic patterns in microarray data reveals novel oscillating transcripts of biological rhythms in Ciona intestinalis. ARTIFICIAL LIFE AND ROBOTICS 2015. [DOI: 10.1007/s10015-015-0237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Hozumi A, Horie T, Sasakura Y. Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev Dyn 2015; 244:1375-93. [PMID: 26250096 DOI: 10.1002/dvdy.24317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The dorsally located central nervous system (CNS) is an important hallmark of chordates. Among chordates, tunicate ascidians change their CNS remarkably by means of a metamorphosis from a highly regionalized larval CNS to an oval-shaped juvenile CNS without prominent morphological features. The neuronal organization of the CNS of ascidian tadpole larvae has been well described, but that in the CNS of postmetamorphosis juveniles has not been characterized well. RESULTS We investigated the number of neural cells, the number and position of differentiated neurons, and their axonal trajectories in the juvenile CNS of the ascidian Ciona intestinalis. The cell bodies of cholinergic, glutamatergic, and GABAergic/glycinergic neurons exhibited different localization patterns along the anterior-posterior axis in the juvenile CNS. Cholinergic neurons extended their axons toward the oral, atrial and body wall muscles and pharyngeal gill to regulate muscle contraction and ciliary movement. CONCLUSIONS Unlike its featureless shape, the juvenile CNS is highly patterned along the anterior-posterior axis. This patterning may be necessary for exerting multiple roles in the regulation of adult tissues distributed throughout the body. This basic information of the juvenile CNS of Ciona will allow in-depth studies of molecular mechanisms underlying the reconstruction of the CNS during ascidian metamorphosis.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Takeo Horie
- Japan Science and Technology Agency, PRESTO, Honcho, Kawaguchi, Saitama, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
28
|
Veeman M, Reeves W. Quantitative and in toto imaging in ascidians: working toward an image-centric systems biology of chordate morphogenesis. Genesis 2015; 53:143-59. [PMID: 25262824 PMCID: PMC4378666 DOI: 10.1002/dvg.22828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Developmental biology relies heavily on microscopy to image the finely controlled cell behaviors that drive embryonic development. Most embryos are large enough that a field of view with the resolution and magnification needed to resolve single cells will not span more than a small region of the embryo. Ascidian embryos, however, are sufficiently small that they can be imaged in toto with fine subcellular detail using conventional microscopes and objectives. Unlike other model organisms with particularly small embryos, ascidians have a chordate embryonic body plan that includes a notochord, hollow dorsal neural tube, heart primordium and numerous other anatomical details conserved with the vertebrates. Here we compare the size and anatomy of ascidian embryos with those of more traditional model organisms, and relate these features to the capabilities of both conventional and exotic imaging methods. We review the emergence of Ciona and related ascidian species as model organisms for a new era of image-based developmental systems biology. We conclude by discussing some important challenges in ascidian imaging and image analysis that remain to be solved.
Collapse
Affiliation(s)
- Michael Veeman
- Division of Biology, Kansas State University, Manhattan KS, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
29
|
Medina BNSP, Santos de Abreu I, Cavalcante LA, Silva WAB, da Fonseca RN, Allodi S, de Barros CM. 3-acetylpyridine-induced degeneration in the adult ascidian neural complex: Reactive and regenerative changes in glia and blood cells. Dev Neurobiol 2014; 75:877-93. [PMID: 25484282 DOI: 10.1002/dneu.22255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/02/2014] [Indexed: 11/07/2022]
Abstract
Ascidians are interesting neurobiological models because of their evolutionary position as a sister-group of vertebrates and the high regenerative capacity of their central nervous system (CNS). We investigated the degeneration and regeneration of the cerebral ganglion complex of the ascidian Styela plicata following injection of the niacinamide antagonist 3-acetylpyridine (3AP), described as targeting the CNS of several vertebrates. For the analysis and establishment of a new model in ascidians, the ganglion complex was dissected and prepared for transmission electron microscopy (TEM), routine light microscopy (LM), immunohistochemistry and Western blotting, 1 or 10 days after injection of 3AP. The siphon stimulation test (SST) was used to quantify the functional response. One day after the injection of 3AP, CNS degeneration and recruitment of a non-neural cell type to the site of injury was observed by both TEM and LM. Furthermore, weaker immunohistochemical reactions for astrocytic glial fibrillary acidic protein (GFAP) and neuronal βIII-tubulin were observed. In contrast, the expression of caspase-3, a protein involved in the apoptotic pathway, and the glycoprotein CD34, a marker for hematopoietic stem cells, increased. Ten days after the injection of 3AP, the expression of markers tended toward the original condition. The SST revealed attenuation and subsequent recovery of the reflexes from 1 to 10 days after 3AP. Therefore, we have developed a new method to study ascidian neural degeneration and regeneration, and identified the decreased expression of GFAP and recruitment of blood stem cells to the damaged ganglion as reasons for the success of neuroregeneration in ascidians.
Collapse
Affiliation(s)
- Bianca N S P Medina
- Laboratório Integrado de Morfologia, Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé, NUPEM, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil.,Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil.,Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil.,Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Isadora Santos de Abreu
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil.,Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil.,Pós-graduação em Ciências Biológicas-Fisiologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Leny A Cavalcante
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil.,Pós-graduação em Ciências Biológicas-Fisiologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Wagner A B Silva
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil.,Pós-graduação em Ciências Biológicas-Fisiologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Rodrigo N da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé, NUPEM, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil.,Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil.,Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil.,Pós-graduação em Ciências Biológicas-Fisiologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Cintia M de Barros
- Laboratório Integrado de Morfologia, Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé, NUPEM, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil.,Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil
| |
Collapse
|
30
|
Karaiskou A, Swalla BJ, Sasakura Y, Chambon JP. Metamorphosis in solitary ascidians. Genesis 2014; 53:34-47. [PMID: 25250532 DOI: 10.1002/dvg.22824] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/19/2022]
Abstract
Embryonic and postembryonic development in ascidians have been studied for over a century, but it is only in the last 10 years that the complex molecular network involved in coordinating postlarval development and metamorphosis has started to emerge. In most ascidians, the transition from the larval to the sessile juvenile/adult stage, or metamorphosis, requires a combination of environmental and endogenous signals and is characterized by coordinated global morphogenetic changes that are initiated by the adhesion of the larvae. Cloney was the first to describe cellular events of ascidians' metamorphosis in 1978 and only recently elements of the molecular regulation of this crucial developmental step have been revealed. This review aims to present a thorough view of this crucial developmental step by combining recent molecular data to the already established cellular events.
Collapse
Affiliation(s)
- Anthi Karaiskou
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
| | | | | | | |
Collapse
|
31
|
Wagner E, Stolfi A, Gi Choi Y, Levine M. Islet is a key determinant of ascidian palp morphogenesis. Development 2014; 141:3084-92. [PMID: 24993943 DOI: 10.1242/dev.110684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anterior-most ectoderm of ascidian larvae contains the adhesive papillae, or palps, which play an important role in triggering the metamorphosis of swimming tadpoles. In Ciona intestinalis, the palps consist of three conical protrusions within a field of thickened epithelium that form late in embryogenesis, as tailbuds mature into larvae. The palp protrusions express the LIM-homeodomain transcription factor Islet. Protrusion occurs through differential cell elongation, probably mediated by Islet, as we find that ectopic expression of Islet is sufficient to promote cell lengthening. FGF signaling is required for both Islet expression and palp morphogenesis. Importantly, we show that Islet expression can rescue the palp-deficient phenotype that results from inhibition of FGF signaling. We conclude that Islet is a key regulatory factor governing morphogenesis of the palps. It is conceivable that Islet is also essential for the cellular morphogenesis of placode-derived sensory neurons in vertebrates.
Collapse
Affiliation(s)
- Eileen Wagner
- Center for Integrative Genomics, Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Alberto Stolfi
- New York University, Center for Developmental Genetics, Department of Biology, 1009 Silver Center, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Yoon Gi Choi
- Functional Genomics Laboratory, Department of Molecular and Cell Biology, University of California-Berkeley, 255 Life Sciences Addition #3200, Berkeley, CA 94720-3200, USA
| | - Mike Levine
- Center for Integrative Genomics, Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
Bouldin CM, Kimelman D. Cdc25 and the importance of G2 control: insights from developmental biology. Cell Cycle 2014; 13:2165-71. [PMID: 24914680 DOI: 10.4161/cc.29537] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While cell proliferation is an essential part of embryonic development, cells within an embryo cannot proliferate freely. Instead, they must balance proliferation and other cellular events such as differentiation and morphogenesis throughout embryonic growth. Although the G1 phase has been a major focus of study in cell cycle control, it is becoming increasingly clear that G2 regulation also plays an essential role during embryonic development. Here we discuss the role of Cdc25, a key regulator of mitotic entry, with a focus on several recent examples that show how the precise control of Cdc25 activity and the G2/M transition are critical for different aspects of embryogenesis. We finish by discussing a promising technology that allows easy visualization of embryonic and adult cells potentially regulated at mitotic entry, permitting the rapid identification of other instances where the exit from G2 plays an essential role in development and tissue homeostasis.
Collapse
Affiliation(s)
- Cortney M Bouldin
- Department of Biochemistry; University of Washington; Seattle, WA USA
| | - David Kimelman
- Department of Biochemistry; University of Washington; Seattle, WA USA
| |
Collapse
|
33
|
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK. Evolution of bilaterian central nervous systems: a single origin? EvoDevo 2013; 4:27. [PMID: 24098981 PMCID: PMC3856589 DOI: 10.1186/2041-9139-4-27] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022] Open
Abstract
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
34
|
Mikhailov AT. Exploring the past through the present. Evol Dev 2013. [DOI: 10.1111/ede.12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alexander T. Mikhailov
- Developmental Biology Unit, Institute of Health Sciences, University of La Coruña; Campus de Oza, Building “El Fortín,” Las Jubias Str. s/n, La Coruña; 15006 Spain
| |
Collapse
|
35
|
Enhancer activity sensitive to the orientation of the gene it regulates in the chordate genome. Dev Biol 2012; 375:79-91. [PMID: 23274690 DOI: 10.1016/j.ydbio.2012.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/22/2012] [Accepted: 12/13/2012] [Indexed: 12/26/2022]
Abstract
Enhancers are flexible in terms of their location and orientation relative to the genes they regulate. However, little is known about whether the flexibility can be applied in every combination of enhancers and genes. Enhancer detection with transposable elements is a powerful method to identify enhancers in the genome and to create marker lines expressing fluorescent proteins in a tissue-specific manner. In the chordate Ciona intestinalis, this method has been established with a Tc1/mariner superfamily transposon Minos. Previously, we created the enhancer detection line E[MiTSAdTPOG]15 (E15) that specifically expresses green fluorescent protein (GFP) in the central nervous system (CNS) after metamorphosis. In this study, we identified the causal insertion site of the transgenic line. There are two genes flanking the causal insertion of the E15 line, and the genomic region around the insertion site contains the enhancers responsible for the expression in the endostyle and gut in addition to the CNS. We found that the endostyle and gut enhancers show sensitivity to the orientation of the GFP gene for their enhancer activity. Namely, the enhancers cannot enhance the expression of GFP which is inserted at the same orientation as the E15 line, while the enhancers can enhance GFP expression inserted at the opposite orientation. The CNS enhancer can enhance GFP expression in both orientations. The DNA element adjacent to the endostyle enhancer is responsible for the orientation sensitivity of the enhancer. The different sensitivity of the enhancers to the orientation of the transgene is a cause of CNS-specific GFP expression in the E15 line.
Collapse
|