1
|
Gavrish M, Kustova A, Celis Suescún JC, Bessa P, Mitina N, Tarabykin V. Molecular mechanisms of corpus callosum development: a four-step journey. Front Neuroanat 2024; 17:1276325. [PMID: 38298831 PMCID: PMC10827913 DOI: 10.3389/fnana.2023.1276325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
The Corpus Callosum (CC) is a bundle of axons connecting the cerebral hemispheres. It is the most recent structure to have appeared during evolution of placental mammals. Its development is controlled by a very complex interplay of many molecules. In humans it contains almost 80% of all commissural axons in the brain. The formation of the CC can be divided into four main stages, each controlled by numerous intracellular and extracellular molecular factors. First, a newborn neuron has to specify an axon, leave proliferative compartments, the Ventricular Zone (VZ) and Subventricular Zone (SVZ), migrate through the Intermediate Zone (IZ), and then settle at the Cortical Plate (CP). During the second stage, callosal axons navigate toward the midline within a compact bundle. Next stage is the midline crossing into contralateral hemisphere. The last step is targeting a defined area and synapse formation. This review provides an insight into these four phases of callosal axons development, as well as a description of the main molecular players involved.
Collapse
Affiliation(s)
- Maria Gavrish
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Angelina Kustova
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Juan C. Celis Suescún
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Paraskevi Bessa
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Natalia Mitina
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victor Tarabykin
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| |
Collapse
|
2
|
Papp T, Ferenczi Z, Szilagyi B, Petro M, Varga A, Kókai E, Berenyi E, Olah G, Halmos G, Szucs P, Meszar Z. Ultrasound Used for Diagnostic Imaging Facilitates Dendritic Branching of Developing Neurons in the Mouse Cortex. Front Neurosci 2022; 16:803356. [PMID: 35368285 PMCID: PMC8968872 DOI: 10.3389/fnins.2022.803356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal differentiation and synaptogenesis are regulated by precise orchestration of intrinsic and extrinsic chemical and mechanical factors throughout all developmental steps critical for the assembly of neurons into functional circuits. While ultrasound is known to alter neuronal migration and activity acutely, its chronic effect on neuronal behavior or morphology is not well characterized. Furthermore, higher-frequency (3–5 MHz) ultrasound (HFU) is extensively used in gynecological practice for imaging, and while it has not been shown harmful for the developing brain, it might be associated with mild alterations that may have functional consequences. To shed light on the neurobiological effects of HFU on the developing brain, we examined cortical pyramidal cell morphology in a transgenic mouse model, following a single and short dose of high-frequency ultrasound. Layer V neurons in the retrosplenial cortex of mouse embryos were labeled with green and red fluorescent proteins by in utero electroporation at the time of their appearance (E14.5). At the time of their presumptive arrival to layer V (E18.5), HFU stimulation was performed with parameters matched to those used in human prenatal examinations. On the third postnatal day (P3), basic morphometric analyses were performed on labeled neurons reconstructed with Neurolucida. Low-intensity HFU-treated cells showed significantly increased dendritic branching compared to control (non-stimulated) neurons and showed elevated c-fos immunoreactivity. Labeled neurons were immunopositive for the mechanosensitive receptor TRPC4 at E18.5, suggesting the role of this receptor and the associated signaling pathways in the effects of HFU stimulation.
Collapse
Affiliation(s)
- Tamas Papp
- Department of Medical Imaging, University of Debrecen, Debrecen, Hungary
- *Correspondence: Tamas Papp,
| | - Zsuzsanna Ferenczi
- Department of Medical Imaging, University of Debrecen, Debrecen, Hungary
| | | | - Matyas Petro
- Department of Medical Imaging, University of Debrecen, Debrecen, Hungary
| | - Angelika Varga
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Eva Kókai
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Ervin Berenyi
- Department of Medical Imaging, University of Debrecen, Debrecen, Hungary
| | - Gabor Olah
- Department of Biopharmacy, University of Debrecen, Debrecen, Hungary
| | - Gabor Halmos
- Department of Biopharmacy, University of Debrecen, Debrecen, Hungary
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
- MTA-Debreceni Egyetem, Neuroscience Research Group, Debrecen, Hungary
| | - Zoltan Meszar
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
- MTA-Debreceni Egyetem, Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
3
|
Mechanisms of axon polarization in pyramidal neurons. Mol Cell Neurosci 2020; 107:103522. [PMID: 32653476 DOI: 10.1016/j.mcn.2020.103522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Neurons are highly polarized cells that have specialized regions for synaptic input, the dendrites, and synaptic output, the axons. This polarity is critical for appropriate neural circuit formation and function. One of the central gaps in our knowledge is understanding how developing neurons initiate axon polarity. Given the critical nature of this polarity on neural circuit formation and function, neurons have evolved multiple mechanisms comprised of extracellular and intracellular cues that allow them to initiate and form axons. These mechanisms engage a variety of signaling cascades that provide positive and negative cues to ensure axon polarization. This review highlights our current knowledge of the molecular underpinnings of axon polarization in pyramidal neurons and their relevance to the development of the brain.
Collapse
|
4
|
Allnutt AB, Waters AK, Kesari S, Yenugonda VM. Physiological and Pathological Roles of Cdk5: Potential Directions for Therapeutic Targeting in Neurodegenerative Disease. ACS Chem Neurosci 2020; 11:1218-1230. [PMID: 32286796 DOI: 10.1021/acschemneuro.0c00096] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine (ser)/threonine (Thr) kinase that has been demonstrated to be one of the most functionally diverse kinases within neurons. Cdk5 is regulated via binding with its neuron-specific regulatory subunits, p35 or p39. Cdk5-p35 activity is critical for a variety of developmental and cellular processes in the brain, including neuron migration, memory formation, microtubule regulation, and cell cycle suppression. Aberrant activation of Cdk5 via the truncated p35 byproduct, p25, is implicated in the pathogenesis of several neurodegenerative diseases. The present review highlights the importance of Cdk5 activity and function in the brain and demonstrates how deregulation of Cdk5 can contribute to the development of neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Additionally, we cover past drug discovery attempts at inhibiting Cdk5-p25 activity and discuss which types of targeting strategies may prove to be the most successful moving forward.
Collapse
|
5
|
Ambrozkiewicz MC, Schwark M, Kishimoto-Suga M, Borisova E, Hori K, Salazar-Lázaro A, Rusanova A, Altas B, Piepkorn L, Bessa P, Schaub T, Zhang X, Rabe T, Ripamonti S, Rosário M, Akiyama H, Jahn O, Kobayashi T, Hoshino M, Tarabykin V, Kawabe H. Polarity Acquisition in Cortical Neurons Is Driven by Synergistic Action of Sox9-Regulated Wwp1 and Wwp2 E3 Ubiquitin Ligases and Intronic miR-140. Neuron 2018; 100:1097-1115.e15. [PMID: 30392800 DOI: 10.1016/j.neuron.2018.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/31/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
The establishment of axon-dendrite polarity is fundamental for radial migration of neurons during cortex development of mammals. We demonstrate that the E3 ubiquitin ligases WW-Containing Proteins 1 and 2 (Wwp1 and Wwp2) are indispensable for proper polarization of developing neurons. We show that knockout of Wwp1 and Wwp2 results in defects in axon-dendrite polarity in pyramidal neurons, and their aberrant laminar cortical distribution. Knockout of miR-140, encoded in Wwp2 intron, engenders phenotypic changes analogous to those upon Wwp1 and Wwp2 deletion. Intriguingly, transcription of the Wwp1 and Wwp2/miR-140 loci in neurons is induced by the transcription factor Sox9. Finally, we provide evidence that miR-140 supervises the establishment of axon-dendrite polarity through repression of Fyn kinase mRNA. Our data delineate a novel regulatory pathway that involves Sox9-[Wwp1/Wwp2/miR-140]-Fyn required for axon specification, acquisition of pyramidal morphology, and proper laminar distribution of cortical neurons.
Collapse
Affiliation(s)
- Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstrasse 5, 37077 Göttingen, Germany; Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Mika Kishimoto-Suga
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Ekaterina Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, 603950 Nizhny Novgorod, Russian Federation
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Andrea Salazar-Lázaro
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexandra Rusanova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, 603950 Nizhny Novgorod, Russian Federation
| | - Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstrasse 5, 37077 Göttingen, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Paraskevi Bessa
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Xin Zhang
- Molecular Oncology, Medical University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Tamara Rabe
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University, 1-1 Yanagito, Gifu 501-1193, Japan
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Tatsuya Kobayashi
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, 603950 Nizhny Novgorod, Russian Federation
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
6
|
Sakakibara A, Hatanaka Y. Neuronal polarization in the developing cerebral cortex. Front Neurosci 2015; 9:116. [PMID: 25904841 PMCID: PMC4389351 DOI: 10.3389/fnins.2015.00116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/22/2015] [Indexed: 12/17/2022] Open
Abstract
Cortical neurons consist of excitatory projection neurons and inhibitory GABAergic interneurons, whose connections construct highly organized neuronal circuits that control higher order information processing. Recent progress in live imaging has allowed us to examine how these neurons differentiate during development in vivo or in in vivo-like conditions. These analyses have revealed how the initial steps of polarization, in which neurons establish an axon, occur. Interestingly, both excitatory and inhibitory cortical neurons establish neuronal polarity de novo by undergoing a multipolar stage reminiscent of the manner in which polarity formation occurs in hippocampal neurons in dissociated culture. In this review, we focus on polarity formation in cortical neurons and describe their typical morphology and dynamic behavior during the polarization period. We also discuss cellular and molecular mechanisms underlying polarization, with reference to polarity formation in dissociated hippocampal neurons in vitro.
Collapse
Affiliation(s)
- Akira Sakakibara
- College of Life and Health Sciences, Chubu University Kasugai, Japan
| | - Yumiko Hatanaka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences Okazaki, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
7
|
Kawauchi T. Cdk5 regulates multiple cellular events in neural development, function and disease. Dev Growth Differ 2014; 56:335-48. [PMID: 24844647 DOI: 10.1111/dgd.12138] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) generally regulate cell proliferation in dividing cells, including neural progenitors. In contrast, an unconventional CDK, Cdk5, is predominantly activated in post-mitotic cells, and involved in various cellular events, such as microtubule and actin cytoskeletal organization, cell-cell and cell-extracellular matrix adhesions, and membrane trafficking. Interestingly, recent studies have indicated that Cdk5 is associated with several cell cycle-related proteins, Cyclin-E and p27(kip1) . Taking advantage of multiple functionality, Cdk5 plays important roles in neuronal migration, layer formation, axon elongation and dendrite arborization in many regions of the developing brain, including cerebral cortex and cerebellum. Cdk5 is also required for neurogenesis at least in the cerebral cortex. Furthermore, Cdk5 is reported to control neurotransmitter release at presynaptic sites, endocytosis of the NMDA receptor at postsynaptic sites and dendritic spine remodeling, and thereby regulate synaptic plasticity and memory formation and extinction. In addition to these physiological roles in brain development and function, Cdk5 is associated with many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. In this review, I will introduce the physiological and pathological roles of Cdk5 in mammalian brains from the viewpoint of not only in vivo phenotypes but also its molecular and cellular functions.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
8
|
Affiliation(s)
- Samuel Tozer
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris F-75005, France; Inserm, U1024, Paris F-75005, France; CNRS, UMR 8197, Paris F-75005, France
| | | |
Collapse
|
9
|
Etxebeste O, Villarino M, Markina-Iñarrairaegui A, Araújo-Bazán L, Espeso EA. Cytoplasmic dynamics of the general nuclear import machinery in apically growing syncytial cells. PLoS One 2013; 8:e85076. [PMID: 24376868 PMCID: PMC3869923 DOI: 10.1371/journal.pone.0085076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/21/2013] [Indexed: 12/20/2022] Open
Abstract
Karyopherins are transporters involved in the bidirectional, selective and active transport of macromolecules through nuclear pores. Importin-β1 is the paradigm of karyopherins and, together with its cargo-adapter importin-α, mediates the general nuclear import pathway. Here we show the existence of different cellular pools of both importin-α and -β1 homologues, KapA and KapB, in the coenocytic ascomycete Aspergillus nidulans. Fluorescence analysis of haploid and diploid strains expressing KapB::GFP and/or KapA::mRFP showed patches of both karyopherins concurrently translocating long distances in apically-growing cells. Anterograde and retrograde movements allowed those patches to reach cell tips and distal regions with an average speed in the range of μm/s. This bidirectional traffic required microtubules as well as kinesin and dynein motors, since it is blocked by benomyl and also by the inactivation of the dynein/dynactin complex through nudA1 or nudK317 mutations. Deletion of Kinesin-3 motor UncA, required for the transport through detyrosinated microtubules, strongly inhibited KapA and KapB movement along hyphae. Overall, this is the first report describing the bidirectional dynamics of the main nuclear import system in coenocytic fungi. A functional link is proposed between two key cellular machines of the filamentous fungal cell: nuclear transport and the tip-growth apparatus.
Collapse
Affiliation(s)
- Oier Etxebeste
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain
| | - María Villarino
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ane Markina-Iñarrairaegui
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain
| | - Lidia Araújo-Bazán
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo A. Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
10
|
Abstract
Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be critical for axonogenesis. Axons and dendrites exhibit different patterns of MT organization, underlying the divergent functions of these processes. Centrosomal positioning has drawn the attention of researchers because it is a major clue to understanding neuronal MT organization. In this review, we focus on how recent advances in live imaging have revealed the dynamics of MT organization and centrosome positioning during neural development.
Collapse
Affiliation(s)
- Akira Sakakibara
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | |
Collapse
|