1
|
Mouse Norovirus Infection Reduces the Surface Expression of Major Histocompatibility Complex Class I Proteins and Inhibits CD8 + T Cell Recognition and Activation. J Virol 2018; 92:JVI.00286-18. [PMID: 29976673 DOI: 10.1128/jvi.00286-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Human noroviruses are highly infectious single-stranded RNA (ssRNA) viruses and the major cause of nonbacterial gastroenteritis worldwide. With the discovery of murine norovirus (MNV) and the introduction of an effective model for norovirus infection and replication, knowledge about infection mechanisms and their impact on the host immune response has progressed. A major player in the immune response against viral infections is the group of major histocompatibility complex (MHC) class I proteins, which present viral antigen to immune cells. We have observed that MNV interferes with the antigen presentation pathway in infected cells by reducing the surface expression of MHC class I proteins. We have shown that MNV-infected dendritic cells or macrophages have lower levels of surface expression of MHC class I proteins than uninfected and bystander cells. Transcriptional analysis revealed that this defect is not due to a decreased amount of mRNA but is reflected at the protein level. We have determined that this defect is mediated via the MNV NS3 protein. Significantly, treatment of MNV-infected cells with the endocytic recycling inhibitor dynasore completely restored the surface expression of MHC class I proteins, whereas treatment with the proteasome inhibitor MG132 partly restored such expression. These observations indicate a role for endocytic recycling and proteasome-mediated degradation of these proteins. Importantly, we show that due to the reduced surface expression of MHC class I proteins, antigen presentation is inhibited, resulting in the inability of CD8+ T cells to become activated in the presence of MNV-infected cells.IMPORTANCE Human noroviruses (HuNoVs) are the major cause of nonbacterial gastroenteritis worldwide and impose a great burden on patients and health systems every year. So far, no antiviral treatment or vaccine is available. We show that MNV evades the host immune response by reducing the amount of MHC class I proteins displayed on the cell surface. This reduction leads to a decrease in viral antigen presentation and interferes with the CD8+ T cell response. CD8+ T cells respond to foreign antigen by activating cytotoxic pathways and inducing immune memory to the infection. By evading this immune response, MNV is able to replicate efficiently in the host, and the ability of cells to respond to consecutive infections is impaired. These findings have a major impact on our understanding of the ways in which noroviruses interact with the host immune response and manipulate immune memory.
Collapse
|
2
|
Russell TA, Velusamy T, Tseng YY, Tscharke DC. Increasing antigen presentation on HSV-1-infected cells increases lesion size but does not alter neural infection or latency. J Gen Virol 2018; 99:682-692. [PMID: 29620508 PMCID: PMC5994700 DOI: 10.1099/jgv.0.001059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CD8+ T cells have a role in the control of acute herpes simplex virus (HSV) infection and may also be important in the maintenance of latency. In this study we have explored the consequences of boosting the efficacy of CD8+ T cells against HSV by increasing the amount of an MHC I-presented epitope on the surface of infected cells. To do this we used HSVs engineered to express an extra copy of the immunodominant CD8+ T cell epitope in C57Bl/6 mice, namely gB498 (SSIEFARL). Despite greater presentation of gB498 on infected cells, CD8+ T cell responses to these viruses in mice were similar to those elicited by a control virus. Further, the expression of extra gB498 did not significantly alter the extent or stability of latency in our mouse model, and virus loads in skin and sensory ganglia of infected mice were not affected. Surprisingly, mice infected with these viruses developed significantly larger skin lesions than those infected with control viruses and notably, this phenotype was dependent on MHC haplotype. Therefore increasing the visibility of HSV-infected cells to CD8+ T cell attack did not impact neural infection or latency, but rather enhanced pathology in the skin.
Collapse
Affiliation(s)
- Tiffany A Russell
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Present address: Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Thilaga Velusamy
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Lauron EJ, Yang L, Elliott JI, Gainey MD, Fremont DH, Yokoyama WM. Cross-priming induces immunodomination in the presence of viral MHC class I inhibition. PLoS Pathog 2018; 14:e1006883. [PMID: 29444189 PMCID: PMC5812664 DOI: 10.1371/journal.ppat.1006883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Viruses have evolved mechanisms of MHCI inhibition in order to evade recognition by cytotoxic CD8+ T cells (CTLs), which is well-illustrated by our prior studies on cowpox virus (CPXV) that encodes potent MHCI inhibitors. Deletion of CPXV viral MHCI inhibitors markedly attenuated in vivo infection due to effects on CTL effector function, not priming. However, the CTL response to CPXV in C57BL/6 mice is dominated by a single peptide antigen presented by H-2Kb. Here we evaluated the effect of viral MHCI inhibition on immunodominant (IDE) and subdominant epitopes (SDE) as this has not been thoroughly examined. We found that cross-priming, but not cross-dressing, is the main mechanism driving IDE and SDE CTL responses following CPXV infection. Secretion of the immunodominant antigen was not required for immunodominance. Instead, immunodominance was caused by CTL interference, known as immunodomination. Both immunodomination and cross-priming of SDEs were not affected by MHCI inhibition. SDE-specific CTLs were also capable of exerting immunodomination during primary and secondary responses, which was in part dependent on antigen abundance. Furthermore, CTL responses directed solely against SDEs protected against lethal CPXV infection, but only in the absence of the CPXV MHCI inhibitors. Thus, both SDE and IDE responses can contribute to protective immunity against poxviruses, implying that these principles apply to poxvirus-based vaccines. The use of vaccinia virus (VACV) to eradicate smallpox is the arguably the most successful demonstration of vaccination. The VACV vaccine also provides cross-protection against related zoonotic orthopoxviruses, including monkey poxvirus (MXPV) and CPXV, which circulate between various animal hosts and humans. Interestingly, Edward Jenner first demonstrated the concept of vaccination against smallpox in the late 1700s using CPXV. He also made the curious observation that CPXV vaccination did not always protect against recurrent exposure to CPXV. Jenner’s observations may be explained by the ability for CPXV to evade antiviral CD8+ T cell immune responses. To evade CD8+ T cells, CPXV inhibits MHCI antigen presentation, which is required to prime CD8+ T cells. Importantly, CPXV is the only orthopoxvirus that inhibits MHCI and thus provides a unique opportunity to investigate the effects of viral MHCI inhibition on CD8+ T cell priming. Here, we examine the factors that contribute to priming of CPXV-specific CD8+ T cells and show that viral MHCI inhibition does not affect CD8+ T cell priming, but prior CPXV immunization does inhibit priming during subsequent exposure to CPXV. The effects of pre-existing poxvirus immunity are therefore important to consider if poxvirus-based vaccines against various diseases are to be widely used.
Collapse
Affiliation(s)
- Elvin J. Lauron
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liping Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jabari I. Elliott
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria D. Gainey
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
4
|
Treat BR, Bidula SM, Ramachandran S, St Leger AJ, Hendricks RL, Kinchington PR. Influence of an immunodominant herpes simplex virus type 1 CD8+ T cell epitope on the target hierarchy and function of subdominant CD8+ T cells. PLoS Pathog 2017; 13:e1006732. [PMID: 29206240 PMCID: PMC5736228 DOI: 10.1371/journal.ppat.1006732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/19/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) latency in sensory ganglia such as trigeminal ganglia (TG) is associated with a persistent immune infiltrate that includes effector memory CD8+ T cells that can influence HSV-1 reactivation. In C57BL/6 mice, HSV-1 induces a highly skewed CD8+ T cell repertoire, in which half of CD8+ T cells (gB-CD8s) recognize a single epitope on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize, in varying proportions, 19 subdominant epitopes on 12 viral proteins. The gB-CD8s remain functional in TG throughout latency, while non-gB-CD8s exhibit varying degrees of functional compromise. To understand how dominance hierarchies relate to CD8+ T cell function during latency, we characterized the TG-associated CD8+ T cells following corneal infection with a recombinant HSV-1 lacking the immunodominant gB498-505 epitope (S1L). S1L induced a numerically equivalent CD8+ T cell infiltrate in the TG that was HSV-specific, but lacked specificity for gB498-505. Instead, there was a general increase of non-gB-CD8s with specific subdominant epitopes arising to codominance. In a latent S1L infection, non-gB-CD8s in the TG showed a hierarchy targeting different epitopes at latency compared to at acute times, and these cells retained an increased functionality at latency. In a latent S1L infection, these non-gB-CD8s also display an equivalent ability to block HSV reactivation in ex vivo ganglionic cultures compared to TG infected with wild type HSV-1. These data indicate that loss of the immunodominant gB498-505 epitope alters the dominance hierarchy and reduces functional compromise of CD8+ T cells specific for subdominant HSV-1 epitopes during viral latency.
Collapse
Affiliation(s)
- Benjamin R. Treat
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah M. Bidula
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srividya Ramachandran
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anthony J. St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Immunology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert L. Hendricks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Paul R. Kinchington
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection. J Virol 2017; 91:JVI.01793-16. [PMID: 27847359 DOI: 10.1128/jvi.01793-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8+ T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8+ T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8+ T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107a/b cytotoxic degranulation. High frequencies of multifunctional CD8+ T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14286-294), VP13/14 from amino acids 504 to 512 (VP13/14504-512), and VP13/14 from amino acids 544 to 552 (VP13/14544-552), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RAlow CD44high CCR7low CD62Llow CD8+ effector memory T cells (TEM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8+ TEM-cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8+ TEM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic and functional features of protective HSV-specific CD8+ T cells that should guide the development of a safe and effective T-cell-based herpes simplex vaccine. IMPORTANCE Although most herpes simplex virus 1 (HSV-1)-infected individuals shed the virus in their body fluids following reactivation from latently infected sensory ganglia, the majority never develop a recurrent herpetic disease and remain asymptomatic (ASYMP). In contrast, small proportions of individuals are symptomatic (SYMP) and develop frequent bouts of recurrent disease. The present study demonstrates that naturally protected ASYMP individuals have a higher frequency of effector memory CD8+ T cells (CD8+ TEM cells) specific to three epitopes derived from the HSV-1 tegument protein VP13/14 (VP13/14286-294,VP13/14504-512, and VP13/14544-552) than SYMP patients. Moreover, immunization of humanized HLA-A*02:01 transgenic mice with the three CD8+ TEM-cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8+ T cells associated with strong protective immunity against ocular herpesvirus infection and disease. The findings support the emerging concept of the development of a safe and effective asymptomatic herpes simplex vaccine that is selectively based on CD8+ T-cell epitopes from ASYMP individuals.
Collapse
|
6
|
Russell TA, Tscharke DC. Lytic Promoters Express Protein during Herpes Simplex Virus Latency. PLoS Pathog 2016; 12:e1005729. [PMID: 27348812 PMCID: PMC4922595 DOI: 10.1371/journal.ppat.1005729] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus (HSV) has provided the prototype for viral latency with previously well-defined acute or lytic and latent phases. More recently, the deep quiescence of HSV latency has been questioned with evidence that lytic genes can be transcribed in this state. However, to date the only evidence that these transcripts might be translated has come from immunological studies that show activated T cells persist in the nervous system during latency. Here we use a highly sensitive Cre-marking model to show that lytic and latent phases are less clearly defined in two significant ways. First, around half of the HSV spread leading to latently infected sites occurred beyond the initial acute infection and second, we show direct evidence that lytic promoters can drive protein expression during latency. Herpes simplex virus, which causes cold sores and genital herpes, has active and inactive (or latent) phases of infection that have been considered to be distinct. In this study we found that the active phase of infection, including spread in the nervous system, continues longer than has been previously appreciated. We also show evidence that virus genes previously only associated with active infection are turned on during latency. These genes are of particular interest because other work has found that they are targets of the immune response to HSV. The extent and nature of residual viral activity during latency is important to understand because it may suggest therapeutic targets to reduce recurrent HSV disease.
Collapse
Affiliation(s)
- Tiffany A. Russell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
7
|
Srivastava R, Khan AA, Spencer D, Vahed H, Lopes PP, Thai NTU, Wang C, Pham TT, Huang J, Scarfone VM, Nesburn AB, Wechsler SL, BenMohamed L. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes. THE JOURNAL OF IMMUNOLOGY 2015; 194:2232-48. [PMID: 25617474 DOI: 10.4049/jimmunol.1402606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Doran Spencer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Patricia P Lopes
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nhi Thi Uyen Thai
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Christine Wang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Thanh T Pham
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Jiawei Huang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Vanessa M Scarfone
- Stem Cell Research Center, University of California Irvine, Irvine, CA 92697
| | - Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Steven L Wechsler
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697; Virology Research, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA 92697; Department of Microbiology and Molecular Genetics, University of California Irvine, School of Medicine, Irvine, CA 92697; Center for Virus Research, University of California Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697; Department of Molecular Biology and Biochemistry, University of California Irvine, School of Medicine, Irvine, CA 92697; and Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
8
|
St Leger AJ, Jeon S, Hendricks RL. Broadening the repertoire of functional herpes simplex virus type 1-specific CD8+ T cells reduces viral reactivation from latency in sensory ganglia. THE JOURNAL OF IMMUNOLOGY 2013; 191:2258-65. [PMID: 23878317 DOI: 10.4049/jimmunol.1300585] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A large proportion of the world population harbors HSV type 1 (HSV-1) in a latent state in their trigeminal ganglia (TG). TG-resident CD8(+) T cells appear important for preventing HSV-1 reactivation from latency and recurrent herpetic disease. In C57BL/6J mice, half of these cells are specific for an immunodominant epitope on HSV-1 glycoprotein B, whereas the other half are specific for 18 subdominant epitopes. In this study, we show that the CD8(+) T cell dominance hierarchy in the TG established during acute infection is maintained during latency. However, CD8(+) T cells specific for subdominant epitopes lose functionality, whereas those specific for the immunodominant epitope exhibit increased functionality in latently infected TG. Furthermore, we show that IL-10 produced by 16.4 ± 2.8% of TG-resident CD4(+) T cells maintains the immunodominance hierarchy in part through selective inhibition of subdominant CD8(+) T cell proliferation. Upon systemic anti-IL-10R Ab treatment, we observed a significant expansion of functional subdominant CD8(+) T cells, resulting in significantly improved protection from viral reactivation. In fact, systemic anti-IL-10R Ab treatment prevented viral reactivation in up to 50% of treated mice. Our results not only demonstrate that HSV-1 reactivation from latency can be prevented by expanding the repertoire of functional TG-resident CD8(+) T cells, but also that IL-10R blockade might have therapeutic potential to reduce or eliminate recurrent herpetic disease.
Collapse
Affiliation(s)
- Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
9
|
Lin LCW, Flesch IEA, Tscharke DC. Immunodomination during peripheral vaccinia virus infection. PLoS Pathog 2013; 9:e1003329. [PMID: 23633956 PMCID: PMC3635974 DOI: 10.1371/journal.ppat.1003329] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/14/2013] [Indexed: 11/20/2022] Open
Abstract
Immunodominance is a fundamental property of CD8(+) T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV) infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d.), subcutaneous (s.c.), intraperitoneal (i.p.) and intravenous (i.v.) injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c.) compared with those that allow systemic virus dissemination (i.p. and i.v.). This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+) T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1) and CD86 (B7-2), which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+) T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+) T cell immunity to viruses.
Collapse
Affiliation(s)
- Leon C. W. Lin
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Inge E. A. Flesch
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
10
|
Herpes simplex virus-2 glycoprotein interaction with HVEM influences virus-specific recall cellular responses at the mucosa. Clin Dev Immunol 2012; 2012:284104. [PMID: 22666282 PMCID: PMC3359786 DOI: 10.1155/2012/284104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/23/2012] [Accepted: 03/08/2012] [Indexed: 11/17/2022]
Abstract
Infection of susceptible cells by herpes simplex virus (HSV) requires the interaction of the HSV gD glycoprotein with one of two principal entry receptors, herpes virus entry mediator (HVEM) or nectins. HVEM naturally functions in immune signaling, and the gD-HVEM interaction alters innate signaling early after mucosal infection. We investigated whether the gD-HVEM interaction during priming changes lymphocyte recall responses in the murine intravaginal model. Mice were primed with attenuated HSV-2 expressing wild-type gD or mutant gD unable to engage HVEM and challenged 32 days later with virulent HSV-2 expressing wild-type gD. HSV-specific CD8+ T cells were decreased at the genital mucosa during the recall response after priming with virus unable to engage HVEM but did not differ in draining lymph nodes. CD4+ T cells, which are critical for entry of HSV-specific CD8+ T cells into mucosa in acute infection, did not differ between the two groups in either tissue. An inverse association between Foxp3+ CD4+ regulatory T cells and CD8+ infiltration into the mucosa was not statistically significant. CXCR3 surface expression was not significantly different among different lymphocyte subsets. We conclude that engagement of HVEM during the acute phase of HSV infection influences the antiviral CD8+ recall response by an unexplained mechanism.
Collapse
|
11
|
Mackay LK, Wakim L, van Vliet CJ, Jones CM, Mueller SN, Bannard O, Fearon DT, Heath WR, Carbone FR. Maintenance of T cell function in the face of chronic antigen stimulation and repeated reactivation for a latent virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2173-8. [PMID: 22271651 PMCID: PMC3378511 DOI: 10.4049/jimmunol.1102719] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persisting infections are often associated with chronic T cell activation. For certain pathogens, this can lead to T cell exhaustion and survival of what is otherwise a cleared infection. In contrast, for herpesviruses, T cells never eliminate infection once it is established. Instead, effective immunity appears to maintain these pathogens in a state of latency. We used infection with HSV to examine whether effector-type T cells undergoing chronic stimulation retained functional and proliferative capacity during latency and subsequent reactivation. We found that latency-associated T cells exhibited a polyfunctional phenotype and could secrete a range of effector cytokines. These T cells were also capable of mounting a recall proliferative response on HSV reactivation and could do so repeatedly. Thus, for this latent infection, T cells subjected to chronic Ag stimulation and periodic reactivation retain the ability to respond to local virus challenge.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- CD8-Positive T-Lymphocytes/virology
- Chronic Disease
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/toxicity
- Ganglia, Sensory/enzymology
- Ganglia, Sensory/immunology
- Ganglia, Sensory/pathology
- Granzymes/biosynthesis
- Herpes Simplex/immunology
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/toxicity
- Virus Activation/immunology
- Virus Latency/immunology
Collapse
Affiliation(s)
- Laura K. Mackay
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Linda Wakim
- The Walter and Eliza Hall Institute, Melbourne, Australia
| | - Catherine J. van Vliet
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Claerwen M. Jones
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Oliver Bannard
- Wellcome Trust Immunology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Douglas T. Fearon
- Wellcome Trust Immunology Unit, University of Cambridge, Cambridge, United Kingdom
| | - William R. Heath
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Francis R. Carbone
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
St Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL. Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:3927-33. [PMID: 21357536 DOI: 10.4049/jimmunol.1003735] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HSV type 1 (HSV-1) expresses its genes sequentially as immediate early (α), early (β), leaky late (γ1), and true late (γ2), where viral DNA synthesis is an absolute prerequisite only for γ2 gene expression. The γ1 protein glycoprotein B (gB) contains a strongly immunodominant CD8(+) T cell epitope (gB(498-505)) that is recognized by 50% of both the CD8(+) effector T cells in acutely infected trigeminal ganglia (TG) and the CD8(+) memory T cells in latently infected TG. Of 376 predicted HSV-1 CD8(+) T cell epitopes in C57BL/6 mice, 19 (gB(498-505) and 18 subdominant epitopes) stimulated CD8(+) T cells in the spleens and TG of HSV-1 acutely infected mice. These 19 epitopes identified virtually all CD8(+) T cells in the infected TG that represent all or the vast majority of the HSV-specific CD8(+) TCR repertoire. Only 11 of ∼84 HSV-1 proteins are recognized by CD8(+) T cells, and most (∼80%) are expressed before viral DNA synthesis. Neither the immunodominance of gB(498-505) nor the dominance hierarchy of the subdominant epitopes is due solely to MHC or TCR affinity. We conclude that the vast majority of CD8(+) T cells in HSV-1 acutely infected TG are HSV specific, that HSV-1 β and γ1 proteins that are expressed before viral DNA synthesis are favored targets of CD8(+) T cells, and that dominance within the TCR repertoire is likely due to the frequency or expansion and survival characteristics of CD8(+) T cell precursors.
Collapse
Affiliation(s)
- Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
13
|
Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2010; 2011:812742. [PMID: 21253509 PMCID: PMC3021883 DOI: 10.1155/2011/812742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/27/2010] [Indexed: 11/17/2022] Open
Abstract
The advent of cloning herpesviral genomes as bacterial artificial chromosomes (BACs) has made herpesviruses accessible to bacterial genetics and has thus revolutionised their mutagenesis. This opened all possibilities of reverse genetics to ask scientific questions by introducing precisely accurate mutations into the viral genome for testing their influence on the phenotype under study or to create phenotypes of interest. Here, we report on our experience with using BAC technology for a designed modulation of viral antigenicity and immunogenicity with focus on the CD8 T-cell response. One approach is replacing an intrinsic antigenic peptide in a viral carrier protein with a foreign antigenic sequence, a strategy that we have termed "orthotopic peptide swap". Another approach is the functional deletion of an antigenic peptide by point mutation of its C-terminal MHC class-I anchor residue. We discuss the concepts and summarize recently published major scientific results obtained with immunological mutants of murine cytomegalovirus.
Collapse
|
14
|
Rosenberg CS, Martin DL, Tarleton RL. CD8+ T cells specific for immunodominant trans-sialidase epitopes contribute to control of Trypanosoma cruzi infection but are not required for resistance. THE JOURNAL OF IMMUNOLOGY 2010; 185:560-8. [PMID: 20530265 DOI: 10.4049/jimmunol.1000432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD8(+) T cells are essential for controlling Trypanosoma cruzi infection. During Brazil strain infection, C57BL/6 mice expand parasite-specific CD8(+) T cells recognizing the dominant TSKB20 (ANYKFTLV) and subdominant TSKB74 (VNYDFTLV) trans-sialidase gene (TS)-encoded epitopes with up to 40% of all CD8(+) T cells specific for these epitopes. Although this is one of the largest immunodominant T cell responses described for any infection, most mice fail to clear T. cruzi and subsequently develop chronic disease. To determine if immunodominant TS-specific CD8(+) T cells are necessary for resistance to infection, we epitope-tolerized mice by high-dose i.v. injections of TSKB20 or TSKB74 peptides. Tolerance induction led to deletion of TS-specific CD8(+) T cells but did not prevent the expansion of other effector CD8(+) T cell populations. Mice tolerized against either TSKB20 or TSKB74, or both epitopes simultaneously, exhibited transient increases in parasite loads, although ultimately they controlled the acute infection. Furthermore, BALB/c mice tolerized against the TSKD14 peptide effectively controlled acute T. cruzi infection. These data are consistent with the hypothesis that development of high-frequency CD8(+) T cell populations focused on TS-derived epitopes contributes to optimal control of acute infection but is not required for the development of immune resistance.
Collapse
Affiliation(s)
- Charles S Rosenberg
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
15
|
Fryer HR, Scherer A, Oxenius A, Phillips R, McLean AR. No evidence for competition between cytotoxic T-lymphocyte responses in HIV-1 infection. Proc Biol Sci 2009; 276:4389-97. [PMID: 19776069 PMCID: PMC2817101 DOI: 10.1098/rspb.2009.1232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/28/2009] [Indexed: 12/25/2022] Open
Abstract
Strong competition between cytotoxic T-lymphocytes (CTLs) specific for different epitopes in human immunodeficiency virus (HIV) infection would have important implications for the design of an HIV vaccine. To investigate evidence for this type of competition, we analysed CTL response data from 97 patients with chronic HIV infection who were frequently sampled for up to 96 weeks. For each sample, CTL responses directed against a range of known epitopes in gag, pol and nef were measured using an enzyme-linked immunospot assay. The Lotka-Volterra model of competition was used to predict patterns that would be expected from these data if competitive interactions materially affect CTL numbers. In this application, the model predicts that when hosts make responses to a larger number of epitopes, they would have diminished responses to each epitope and that if one epitope-specific response becomes dramatically smaller, others would increase in size to compensate; conversely if one response grows, others would shrink. Analysis of the experimental data reveals results that are wholly inconsistent with these predictions. In hosts who respond to more epitopes, the average epitope-specific response tends to be larger, not smaller. Furthermore, responses to different epitopes almost always increase in unison or decrease in unison. Our findings are therefore inconsistent with the hypothesis that there is competition between CTL responses directed against different epitopes in HIV infection. This suggests that vaccines that elicit broad responses would be favourable because they would direct a larger total response against the virus, in addition to being more robust to the effects of CTL escape.
Collapse
Affiliation(s)
- Helen R Fryer
- The Institute for Emerging Infections, The James Martin 21st Century School, University of Oxford, South Parks Road, Oxford, UK.
| | | | | | | | | |
Collapse
|
16
|
Muller WJ, Dong L, Vilalta A, Byrd B, Wilhelm KM, McClurkan CL, Margalith M, Liu C, Kaslow D, Sidney J, Sette A, Koelle DM. Herpes simplex virus type 2 tegument proteins contain subdominant T-cell epitopes detectable in BALB/c mice after DNA immunization and infection. J Gen Virol 2009; 90:1153-1163. [PMID: 19264627 PMCID: PMC2675279 DOI: 10.1099/vir.0.008771-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic T cells are important in controlling herpes simplex virus type 2 (HSV-2) reactivation and peripheral lesion resolution. Humans latently infected with HSV-2 have cytotoxic T cells directed against epitopes present in tegument proteins. Studies in mice of immunity to HSV have commonly focused on immunodominant responses in HSV envelope glycoproteins. These antigens have not proved to be an effective prophylactic vaccine target for most of the human population. The murine immune response against HSV tegument proteins has not been explored. We analysed cellular responses in BALB/c mice directed against the tegument proteins encoded by UL46, UL47 and UL49 and against the envelope glycoprotein gD after DNA vaccination or HSV-2 infection. After DNA vaccination, the splenocyte T-cell response to overlapping peptides from UL46 and UL47 was more than 500 gamma interferon spot-forming units per 10(6) responder cells. Peptide truncation studies, responder cell fractionation and major histocompatibility complex binding studies identified several CD8(+) and CD4(+) epitopes. Cellular responses to tegument protein epitopes were also detected after HSV-2 infection. Tegument proteins are rational candidates for further HSV-2 vaccine research.
Collapse
Affiliation(s)
- William J. Muller
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Benjamin Byrd
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kai M. Wilhelm
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Chao Liu
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health Medicine, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
17
|
Mintern JD, Bedoui S, Davey GM, Moffat JM, Doherty PC, Turner SJ. Transience of MHC Class I-restricted antigen presentation after influenza A virus infection. Proc Natl Acad Sci U S A 2009; 106:6724-9. [PMID: 19346476 PMCID: PMC2672519 DOI: 10.1073/pnas.0901128106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
Antigen expressed as MHC Class I glycoprotein (pMHCI) complexes on dendritic cells is the primary driver of CD8(+) T cell clonal expansion and differentiation. As we seek to define the molecular differences between acutely stimulated cytotoxic T lymphocyte (CTL) effectors and long-lived memory T cells, it is essential that we understand the duration of in vivo pMHCI persistence. Although infectious influenza A virus is readily cleared by mammalian hosts, that does not necessarily mean that all influenza antigen is totally eliminated. An exhaustive series of carefully controlled adoptive transfer experiments using 3 different carboxy fluorescein diacetate succinimidyl ester-labeled T cell receptor-transgenic CTL populations and a spectrum of genetically engineered and wild-type influenza A viruses provided no evidence for pMHCI persistence over the 30-60-d interval after virus challenge. Molecular profiles identified in antigen-specific T cells at this time may thus be considered to reflect established immunologic memory and not recent CTL activation from a persistent pMHCI pool.
Collapse
Affiliation(s)
- Justine D. Mintern
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia
| | - Sammy Bedoui
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Gayle M. Davey
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Jessica M. Moffat
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
18
|
Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 2009; 10:524-30. [PMID: 19305395 DOI: 10.1038/ni.1718] [Citation(s) in RCA: 887] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/10/2009] [Indexed: 12/22/2022]
Abstract
Effective immunity is dependent on long-surviving memory T cells. Various memory subsets make distinct contributions to immune protection, especially in peripheral infection. It has been suggested that T cells in nonlymphoid tissues are important during local infection, although their relationship with populations in the circulation remains poorly defined. Here we describe a unique memory T cell subset present after acute infection with herpes simplex virus that remained resident in the skin and in latently infected sensory ganglia. These T cells were in disequilibrium with the circulating lymphocyte pool and controlled new infection with this virus. Thus, these cells represent an example of tissue-resident memory T cells that can provide protective immunity at points of pathogen entry.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne Victoria, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Woelfing B, Traulsen A, Milinski M, Boehm T. Does intra-individual major histocompatibility complex diversity keep a golden mean? Philos Trans R Soc Lond B Biol Sci 2009; 364:117-28. [PMID: 18926972 PMCID: PMC2666699 DOI: 10.1098/rstb.2008.0174] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An adaptive immune response is usually initiated only if a major histocompatibility complex (MHC) molecule presents pathogen-derived peptides to T-cells. Every MHC molecule can present only peptides that match its peptide-binding groove. Thus, it seems advantageous for an individual to express many different MHC molecules to be able to resist many different pathogens. However, although MHC genes are the most polymorphic genes of vertebrates, each individual has only a very small subset of the diversity at the population level. This is an evolutionary paradox. We provide an overview of the current data on infection studies and mate-choice experiments and conclude that overall evidence suggests that intermediate intra-individual MHC diversity is optimal. Selective forces that may set an upper limit to intra-individual MHC diversity are discussed. An updated mathematical model based on recent findings on T-cell selection can predict the natural range of intra-individual MHC diversity. Thus, the aim of our review is to evaluate whether the number of MHC alleles usually present in individuals may be optimal to balance the advantages of presenting an increased range of peptides versus the disadvantages of an increased loss of T-cells.
Collapse
Affiliation(s)
- Benno Woelfing
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August Thienemann Strasse 2, 24306 Plön, Germany.
| | | | | | | |
Collapse
|
20
|
Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J Virol 2008; 83:2237-45. [PMID: 19073721 DOI: 10.1128/jvi.01699-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In C57BL/6 (B6) mice, most herpes simplex virus (HSV)-specific CD8 T cells recognize a strongly immunodominant epitope on glycoprotein B (gB498) and can inhibit HSV type 1 (HSV-1) reactivation from latency in trigeminal ganglia (TG). However, half of the CD8 T cells retained in latently infected TG of B6 mice are not gB498 specific and have been largely ignored. The following observations from our current study indicate that these gB498-nonspecific CD8 T cells are HSV specific and may contribute to the control of HSV-1 latency. First, following corneal infection, OVA257-specific OT-1 CD8 T cells do not infiltrate the infected TG unless mice are simultaneously immunized with OVA257 peptide, and then they are not retained. Second, 30% of CD8 T cells in acutely infected TG that produce gamma interferon in response to HSV-1 stimulation directly ex vivo are gB498 nonspecific, and these cells maintain an activation phenotype during viral latency. Finally, gB498-nonspecific CD8 T cells are expanded in ex vivo cultures of latently infected TG and inhibit HSV-1 reactivation from latency in the absence of gB498-specific CD8 T cells. We conclude that many of the CD8 T cells that infiltrate and are retained in infected TG are HSV specific and potentially contribute to maintenance of HSV-1 latency. Identification of the viral proteins recognized by these cells will contribute to a better understanding of the dynamics of HSV-1 latency.
Collapse
|
21
|
Analysis of frequency and phenotype of antigen-specific T cells. Methods Mol Biol 2008. [PMID: 19048209 DOI: 10.1007/978-1-60327-527-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Over the last decade, our understanding of the cellular immune system has been greatly advanced through the development of methods to identify antigen-specific T cells directly ex vivo. The major reagents and techniques used for this purpose are (i) tetramerised MHC:peptide complexes (tetramers) which bind to specific T-cell receptors (TCR) and (ii) assays that detect T cells which synthesise cytokines in response to cognate stimulation (intracellular cytokine staining (ICS)). Here, we provide a detailed description of the procedure for generating and using class I MHC:peptide tetramers to label peptide-specific T cells and for carrying out ICS to measure antigen-specific T lymphocytes.
Collapse
|
22
|
The CD8 T-cell response against murine gammaherpesvirus 68 is directed toward a broad repertoire of epitopes from both early and late antigens. J Virol 2008; 82:12205-12. [PMID: 18922872 DOI: 10.1128/jvi.01463-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of mice with murine gammaherpesvirus 68 (MHV-68) robustly activates CD8 T cells, but only six class I major histocompatibility complex (MHC)-restricted epitopes have been described to date for the widely used H-2(b) haplotype mice. To explore the specificity and kinetics of the cytotoxic T-lymphocyte response in MHV-68-infected C57BL/6 mice, we screened for H-2K(b)- and H-2D(b)-restricted epitopes using a set of 384 candidate epitopes in an MHC tetramer-based approach and identified 19 new epitopes in 16 different open reading frames. Of the six known H-2K(b)- and H-2D(b)-restricted epitopes, we confirmed a response against three and did not detect CD8 T-cell-specific responses for the remaining three. The peak of the CD8 T-cell response to most peptides occurs between 6 and 10 days postinfection. The respective MHC tetramer-positive CD8 T cells display an activated/effector phenotype (CD62L(lo) and CD44(hi)) and produce gamma interferon upon peptide stimulation ex vivo. MHV-68 infection in vivo elicits a response to multiple viral epitopes, derived from both early and late viral antigens, illustrating a far broader T-cell repertoire and more-rapid activation than those previously recorded.
Collapse
|
23
|
Muller WJ, Orgun NN, Dong L, Koelle DM, Huang ML, Way SS. Recombinant Listeria monocytogenes expressing an immunodominant peptide fails to protect after intravaginal challenge with herpes simplex virus-2. Arch Virol 2008; 153:1165-9. [PMID: 18443737 DOI: 10.1007/s00705-008-0089-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/14/2008] [Indexed: 11/28/2022]
Abstract
Recombinant Listeria monocytogenes expressing a type-common herpes simplex virus (HSV) gB-peptide was shown previously to protect against footpad inoculation with HSV-1. We tested this construct for protection against vaginal challenge with HSV-2. Primed mice demonstrated strong recall responses, had modest reductions in HSV-2 DNA in vaginal mucosa, but were not protected from disease.
Collapse
Affiliation(s)
- William J Muller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Mintern JD, Guillonneau C, Carbone FR, Doherty PC, Turner SJ. Cutting edge: Tissue-resident memory CTL down-regulate cytolytic molecule expression following virus clearance. THE JOURNAL OF IMMUNOLOGY 2008; 179:7220-4. [PMID: 18025163 DOI: 10.4049/jimmunol.179.11.7220] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL express lytic proteins that mediate the cytolysis of virus-infected cells. In this study, cytolytic transcriptional profiles were determined for individual CTL responding to influenza A virus and HSV-1. During acute infection, influenza-specific CTL in the spleen and respiratory airways displayed highly activated cytolytic profiles, as did HSV-1-specific CTL localized in the spleen, skin, and dorsal root ganglia (DRG). In contrast, memory CTL dramatically down-regulated cytolytic molecule transcription. This occurred for both lymphoid (spleen) and tissue-resident (skin and/or lung) memory CTL. In contrast, HSV-1-specific CTL localized in the dorsal root ganglia in the presence latent HSV-1 Ag did not down-regulate cytolytic molecule transcription. Therefore, both lymphoid and tissue-resident memory CTL down-regulate cytolytic molecule transcription following virus clearance unless localized Ag is present.
Collapse
Affiliation(s)
- Justine D Mintern
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
25
|
Analysis of the evolutionary forces in an immunodominant CD8 epitope in hepatitis C virus at a population level. J Virol 2008; 82:3438-51. [PMID: 18216107 PMCID: PMC2268453 DOI: 10.1128/jvi.01700-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Failure of the adaptive immune response to control infection with the hepatitis C virus (HCV) can result from mutational escape in targeted T-cell epitopes. Recent studies suggest that T-cell immune pressure is an important factor in the evolution of the nonstructural proteins in HCV. The aim of this study was to characterize the forces that contribute to viral evolution in an HLA-A*01-restricted epitope in HCV NS3. This epitope represents a potentially attractive target for vaccination strategies since it is conserved across all genotypes. In our cohort of subjects with chronic HCV infection (genotype 1b or 3a), it is a frequently recognized CD8 epitope in HLA-A*01-positive subjects. Viral sequence data reveal that an escape variant is the dominant residue in both genotypes. The predominant Y1444F substitution seemingly impairs binding to the HLA-A*01 molecule, which may have an important impact on the ability to prime a functional CD8 response upon infection. Interestingly, a case of evolution toward the prototype sequence was observed during chronic infection, possibly because the helicase activity of the protein containing the Y1444F substitution is reduced compared to the prototype sequence. Comparison of HCV sequences from Asia and Europe suggests that the frequency of the HLA-A*01 allele in a population may influence the frequency of the escape variant in circulating strains. These data suggest a complex interaction of multiple forces shaping the evolution of HCV in which immune pressure both within the individual and also at the population level in addition to functional constraints are important contributing factors.
Collapse
|
26
|
Vallbracht S, Jessen B, Mrusek S, Enders A, Collins PL, Ehl S, Krempl CD. Influence of a Single Viral Epitope on T Cell Response and Disease After Infection of Mice with Respiratory Syncytial Virus. THE JOURNAL OF IMMUNOLOGY 2007; 179:8264-73. [DOI: 10.4049/jimmunol.179.12.8264] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Kastenmuller W, Gasteiger G, Gronau JH, Baier R, Ljapoci R, Busch DH, Drexler I. Cross-competition of CD8+ T cells shapes the immunodominance hierarchy during boost vaccination. ACTA ACUST UNITED AC 2007; 204:2187-98. [PMID: 17709425 PMCID: PMC2118691 DOI: 10.1084/jem.20070489] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD8+ T cell responses directed against multiple pathogen-derived epitopes are characterized by defined immunodominance hierarchy patterns. A possible explanation for this phenomenon is that CD8+ T cells of different specificities compete for access to epitopes on antigen-presenting cells, and that the outcome of this so-called cross-competition reflects the number of induced T cells. In our study using a vaccinia virus infection model, we found that T cell cross-competition is highly relevant during boost vaccination, thereby shaping the immunodominance hierarchy in the recall. We demonstrate that competition was of no importance during priming and was unaffected by the applied route of immunization. It strongly depended on the timing of viral antigen expression in infected APCs, and it was characterized by poor proliferation of T cells recognizing epitopes derived from late viral proteins. To our knowledge, this is the first demonstration of the functional importance of T cell cross-competition during a viral infection. Our findings provide a basis for novel strategies for how boost vaccination to defined antigens can be selectively improved. They give important new insights into the design of more efficient poxviral vectors for immunotherapy.
Collapse
Affiliation(s)
- Wolfgang Kastenmuller
- Institute of Molecular Virology, Antigen-specific Immunotherapy Clinical Cooperation Group, National Research Center for Environment and Health, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Richter K, Baur K, Ackermann A, Schneider U, Hausmann J, Staeheli P. Pathogenic potential of borna disease virus lacking the immunodominant CD8 T-cell epitope. J Virol 2007; 81:11187-94. [PMID: 17686872 PMCID: PMC2045572 DOI: 10.1128/jvi.00742-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a highly neurotropic, noncytolytic virus. Experimentally infected B10.BR mice remain healthy unless specific antiviral T cells that infiltrate the infected brain are triggered by immunization. In contrast, infected MRL mice spontaneously mount an antiviral T-cell response that can result in meningoencephalitis and neurological disease. The antiviral T cells may, alternatively, eliminate the virus without inducing disease if they are present in sufficient numbers before the virus replicates to high titers. Since the immune response of H-2(k) mice is directed mainly against the epitope TELEISSI located in the viral nucleoprotein N, we generated BDV mutants that feature TQLEISSI in place of TELEISSI. We show that adoptive transfer of BDV N-specific CD8 T cells induced neurological disease in B10.BR mice persistently infected with wild-type BDV but not with the mutant virus expressing TQLEISSI. Surprisingly, the mutant virus replicated less well in adult MRL wild-type mice than in mutant mice lacking mature CD8 T cells. Furthermore, when MRL mice were infected with the TQLEISSI-expressing BDV mutant as newborns, neurological disease was observed, although at a lower rate and with slower kinetics than in mice infected with wild-type virus. These results confirm that TELEISSI is the major CD8 T-cell epitope in H-2(k) mice and suggest that unidentified minor epitopes are present in the BDV proteome which are recognized rather efficiently by antiviral T cells if the dominant epitope is absent.
Collapse
Affiliation(s)
- Kirsten Richter
- Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|