1
|
Sabapaty A, Lin P, Dunn JCY. Effect of air-liquid interface on cultured human intestinal epithelial cells. FASEB Bioadv 2024; 6:41-52. [PMID: 38344411 PMCID: PMC10853644 DOI: 10.1096/fba.2023-00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 10/28/2024] Open
Abstract
The intestinal epithelium is a dynamic barrier that allows the selective exchange of ions, hormones, proteins, and nutrients. To accomplish this, the intestinal epithelium adopts a highly columnar morphology which is partially lost in submerged culturing systems. To achieve this, small intestinal tissue samples were utilized to obtain human intestinal crypts to form enteroids. The Transwell system was subsequently employed to form a monolayer of cells that was cultured in either the submerged condition or the air-liquid Interface (ALI) condition. We found that the human intestinal monolayer under the ALI condition exhibited morphology more similar to the normal intestinal epithelium. F-actin localization and brush border formation were observed apically, and the integrity of the tight junctions was preserved in the ALI condition. Fewer apoptotic cells were observed in the ALI conditions as compared to the submerged conditions. The monolayer of cells expressed a higher level of secretory cell lineage genes in the ALI condition. The ALI condition positively contributes toward a more differentiated phenotype of epithelial cells. It serves as an amplifier that enhances the existing differentiation cue. The ALI system provides a more differentiated platform to study intestinal function compared to submerged conditions.
Collapse
Affiliation(s)
- Akanksha Sabapaty
- Division of Pediatric Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Po‐Yu Lin
- Division of Pediatric Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - James C. Y. Dunn
- Division of Pediatric Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
2
|
Chepelova N, Antoshin A, Voloshin S, Usanova A, Efremov Y, Makeeva M, Evlashin S, Stepanov M, Turkina A, Timashev P. Oral Galvanism Side Effects: Comparing Alloy Ions and Galvanic Current Effects on the Mucosa-like Model. J Funct Biomater 2023; 14:564. [PMID: 38132818 PMCID: PMC10744021 DOI: 10.3390/jfb14120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The interaction of different dental alloys with the oral environment may cause severe side effects (e.g., burning sensation, inflammatory reactions, carcinogenesis) as a result of oral galvanism. However, the pathogenesis of side effects associated with oral galvanism is still unclear, and the effects of direct current and alloy corrosion ions are considered potentially contributing factors. Therefore, the aim of this study was to systemically compare the damaging effects of (1) galvanism as a synergistic process (direct current + corrosion ions), (2) direct current separately, and (3) corrosion ions separately on an in vitro mucosa-like model based on a cell line of immortalized human keratinocytes (HaCaTs) to reveal the factors playing a pivotal role in dental alloys side effects. For this, we chose and compared the dental alloys with the highest risk of oral galvanism: Ti64-AgPd and NiCr-AgPd. We showed that galvanic current may be the leading damaging factor in the cytotoxic processes associated with galvanic coupling of metallic intraoral appliances in the oral cavity, especially in the short-term period (28 days). However, the contribution of corrosion ions (Ni2+) to the synergistic toxicity was also shown, and quite possibly, in the long term, it could be no less dangerous.
Collapse
Affiliation(s)
- Natalia Chepelova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119048, Russia; (N.C.); (S.V.); (A.U.); (Y.E.); (P.T.)
| | - Artem Antoshin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119048, Russia; (N.C.); (S.V.); (A.U.); (Y.E.); (P.T.)
| | - Sergei Voloshin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119048, Russia; (N.C.); (S.V.); (A.U.); (Y.E.); (P.T.)
| | - Anna Usanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119048, Russia; (N.C.); (S.V.); (A.U.); (Y.E.); (P.T.)
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119048, Russia; (N.C.); (S.V.); (A.U.); (Y.E.); (P.T.)
| | - Maria Makeeva
- Therapeutic Dentistry Department, Institute for Dentistry, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., Moscow 119048, Russia; (M.M.); (A.T.)
- Conservative Dentistry Department, RUDN University, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Stanislav Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow 121205, Russia;
| | - Mikhail Stepanov
- Department of Dental Surgery, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., Moscow 119048, Russia;
| | - Anna Turkina
- Therapeutic Dentistry Department, Institute for Dentistry, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., Moscow 119048, Russia; (M.M.); (A.T.)
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119048, Russia; (N.C.); (S.V.); (A.U.); (Y.E.); (P.T.)
| |
Collapse
|
3
|
Abo KM, Sainz de Aja J, Lindstrom-Vautrin J, Alysandratos KD, Richards A, Garcia-de-Alba C, Huang J, Hix OT, Werder RB, Bullitt E, Hinds A, Falconer I, Villacorta-Martin C, Jaenisch R, Kim CF, Kotton DN, Wilson AA. Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. JCI Insight 2022; 7:155589. [PMID: 35315362 PMCID: PMC8986076 DOI: 10.1172/jci.insight.155589] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 alveolar epithelial cells (AT2s), facultative progenitor cells of the lung alveolus, play a vital role in the biology of the distal lung. In vitro model systems that incorporate human cells, recapitulate the biology of primary AT2s, and interface with the outside environment could serve as useful tools to elucidate functional characteristics of AT2s in homeostasis and disease. We and others recently adapted human induced pluripotent stem cell–derived AT2s (iAT2s) for air-liquid interface (ALI) culture. Here, we comprehensively characterize the effects of ALI culture on iAT2s and benchmark their transcriptional profile relative to both freshly sorted and cultured primary human fetal and adult AT2s. We find that iAT2s cultured at ALI maintain an AT2 phenotype while upregulating expression of transcripts associated with AT2 maturation. We then leverage this platform to assay the effects of exposure to clinically significant, inhaled toxicants including cigarette smoke and electronic cigarette vapor.
Collapse
Affiliation(s)
- Kristine M Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Julio Sainz de Aja
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Lindstrom-Vautrin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Olivia T Hix
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University, Boston, Massachusetts, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Isaac Falconer
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Nakamura K, Shiozaki A, Kosuga T, Shimizu H, Kudou M, Ohashi T, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Otsuji E. The expression of the alpha1 subunit of Na +/K +-ATPase is related to tumor development and clinical outcomes in gastric cancer. Gastric Cancer 2021; 24:1278-1292. [PMID: 34251542 DOI: 10.1007/s10120-021-01212-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Na+/K+-ATPase alpha1 subunit (ATP1A1) is a critical component of Na+/K+-ATPase (NKA), a membrane pump that maintains a low intracellular Na+/K+ ratio and retains cellular volume and osmolarity. ATP1A1 was recently implicated in tumor behavior. Therefore, the present study investigated the role of ATP1A1 in patients with gastric cancer (GC). METHODS Knockdown experiments were conducted on human GC cell lines using ATP1A1 siRNA, and its effects on proliferation, the cell cycle, apoptosis, and cellular movement were examined. Gene expression profiling was performed by a microarray analysis. Primary tumor samples from 192 GC patients who underwent gastrectomy were subjected to an immunohistochemical analysis. RESULTS High ATP1A1 expression levels were observed in NUGC4 and MKN74 cells. Cell proliferation was suppressed and apoptosis was induced by the siRNA-induced knockdown of ATP1A1. The microarray analysis showed that knockdown of ATP1A1 leads to the up-regulated expression of genes involved in the interferon (IFN) signaling pathway, such as STAT1, STAT2, IRF1, and IRF9. Furthermore, the depletion of ATP1A1 altered the phosphorylation of the MAPK pathway. The immunohistochemical analysis revealed that the expression of ATP1A1 was associated with the histological type, venous invasion, and the pathological T stage. Furthermore, the prognostic analysis showed a relationship between high ATP1A1 expression levels and poor postoperative survival. CONCLUSIONS ATP1A1 appears to regulate tumor progression by altering IFN signaling, and high ATP1A1 expression levels were associated with poor postoperative survival in GC patients. The present results provide novel insights into the function of ATP1A1 as a mediator and/or biomarker of GC.
Collapse
Affiliation(s)
- Kei Nakamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Pathology, Kyoto City Hospital, Kyoto, 604-8845, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
5
|
García-Posadas L, Hodges RR, Diebold Y, Dartt DA. Context-Dependent Regulation of Conjunctival Goblet Cell Function by Allergic Mediators. Sci Rep 2018; 8:12162. [PMID: 30111832 PMCID: PMC6093861 DOI: 10.1038/s41598-018-30002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
In the eye, goblet cells responsible for secreting mucins are found in the conjunctiva. When mucin production is not tightly regulated several ocular surface disorders may occur. In this study, the effect of the T helper (Th) 2-type cytokines IL4, IL5, and IL13 on conjunctival goblet cell function was explored. Goblet cells from rat conjunctiva were cultured and characterized. The presence of cytokine receptors was confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Changes in intracellular [Ca2+], high molecular weight glycoconjugate secretion, and proliferation were measured after stimulation with Th2 cytokines with or without the allergic mediator histamine. We found that IL4 and IL13 enhance cell proliferation and, along with histamine, stimulate goblet cell secretion. We conclude that the high levels of IL4, IL5, and IL13 that characterize allergic conjunctivitis could be the reason for higher numbers of goblet cells and mucin overproduction found in this condition.
Collapse
Affiliation(s)
- Laura García-Posadas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
- Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
- Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Yolanda Diebold
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
6
|
Langella A, Calcagno V, De Gregorio V, Urciuolo F, Imparato G, Vecchione R, Netti PA. In vitro study of intestinal epithelial interaction with engineered oil in water nanoemulsions conveying curcumin. Colloids Surf B Biointerfaces 2018; 164:232-239. [PMID: 29413601 DOI: 10.1016/j.colsurfb.2018.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
The development of innovative nano-bio-encapsulation systems continues to be an area of intense activity as the demand of improved delivery systems is constantly increasing in several fields including nanomedicine. For this purpose, an important goal is carrying out appropriate engineering of the surface of these nanocarriers to satisfy the organ target features for an effective in situ release and elucidate the mechanism of action which most of the time is neglected. Here, an oil-in-water (O/W) nanoemulsion coated with a polysaccharide layer film - i.e. a glycol chitosan modified with a thiol moiety - was used as nanocarrier to convey a promising poorly water-soluble nature based drug, curcumin. The final nanocarrier was completely bio-compatible and bio-stable. We investigated the enhancement of the effect of curcumin loaded in our system across monolayers of intestinal epithelial cells CaCo-2 in Transwell culture. Such in vitro platform resulted suitable to evaluate the functionality of the proposed nanocarrier and its adhesion towards the mucosal epithelial layer and, as applicative example, to investigate the anti-inflammatory effects exerted by the encapsulation of curcumin.
Collapse
Affiliation(s)
- Angela Langella
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy; Centro di Ricerca Interdipartimentale sui Biomateriali (CRIB), Università di Napoli Federico II, P.le Tecchio 80, Napoli, Italy; Dipartimento di Chimica, Materiali e Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, Napoli, Italy
| | - Vincenzo Calcagno
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - Vincenza De Gregorio
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy.
| | - Raffaele Vecchione
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy.
| | - Paolo A Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy; Centro di Ricerca Interdipartimentale sui Biomateriali (CRIB), Università di Napoli Federico II, P.le Tecchio 80, Napoli, Italy; Dipartimento di Chimica, Materiali e Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, Napoli, Italy
| |
Collapse
|
7
|
García-Posadas L, Soriano-Romaní L, López-García A, Diebold Y. An engineered human conjunctival-like tissue to study ocular surface inflammatory diseases. PLoS One 2017; 12:e0171099. [PMID: 28248962 PMCID: PMC5331958 DOI: 10.1371/journal.pone.0171099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to develop a three-dimensional model of the human conjunctiva that can be used to perform physiology and pathophysiology experiments. Fibrin-based matrices (derived from human plasma or plasma cryoprecipitate) were used as scaffolds, and primary cells were obtained from conjunctival tissue. Conjunctival constructs were analyzed by immunofluorescent staining and scanning electron microscopy and cell proliferation was measured with alamarBlue® assay. After characterizing the constructs, four different experimental conditions were analyzed in cryoprecipitate matrices: controls, air-lifted cultures (to increase cell stratification), partially desiccated cultures (to mimic dry eye disease), and IL-13-treated cultures (to mimic allergy). Constructs were stained with hematoxylin/eosin to observe changes in morphology. High molecular weight glycoconjugates were identified by HPA staining. MUC5AC and IL-6 secretion was evaluated by ELISA. The fibrin-based matrices supported conjunctival cell growth. Epithelial cells grew on the surface of the scaffolds and underwent stratification that increased over time. These cells had microvilli, which suggests cell polarization and functionality. Fibroblasts were integrated in the scaffold and showed elongated shape. Compared to controls, air-lifted construct had increased epithelial stratification and upregulated MUC5AC secretion. Increased MUC5AC secretion also occurred in partially desiccated and IL-13-treated cultures. The inflammatory status of cells was evaluated by IL-6 levels which were increased in air-lifted and partially desiccated cultures, but not in IL-13-treated ones. In conclusion, we have developed a new three-dimensional model of human conjunctiva that can be used to study ocular surface inflammatory diseases.
Collapse
Affiliation(s)
- Laura García-Posadas
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine), Valladolid, Spain
- * E-mail:
| | - Laura Soriano-Romaní
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine), Valladolid, Spain
| | - Antonio López-García
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine), Valladolid, Spain
| | - Yolanda Diebold
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine), Valladolid, Spain
| |
Collapse
|
8
|
Nossol C, Diesing AK, Walk N, Faber-Zuschratter H, Hartig R, Post A, Kluess J, Rothkötter HJ, Kahlert S. Air-liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC). Histochem Cell Biol 2011; 136:103-15. [PMID: 21681518 PMCID: PMC3132278 DOI: 10.1007/s00418-011-0826-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 11/30/2022]
Abstract
The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro.
Collapse
Affiliation(s)
- Constanze Nossol
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|