1
|
Luís MA, Goes MAD, Santos FM, Mesquita J, Tavares-Ratado P, Tomaz CT. Plasmid Gene Therapy for Monogenic Disorders: Challenges and Perspectives. Pharmaceutics 2025; 17:104. [PMID: 39861752 PMCID: PMC11768343 DOI: 10.3390/pharmaceutics17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Monogenic disorders are a group of human diseases caused by mutations in single genes. While some disease-altering treatments offer relief and slow the progression of certain conditions, the majority of monogenic disorders still lack effective therapies. In recent years, gene therapy has appeared as a promising approach for addressing genetic disorders. However, despite advancements in gene manipulation tools and delivery systems, several challenges remain unresolved, including inefficient delivery, lack of sustained expression, immunogenicity, toxicity, capacity limitations, genomic integration risks, and limited tissue specificity. This review provides an overview of the plasmid-based gene therapy techniques and delivery methods currently employed for monogenic diseases, highlighting the challenges they face and exploring potential strategies to overcome these barriers.
Collapse
Affiliation(s)
- Marco A. Luís
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marcelo A. D. Goes
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD), Av. Reyes Católicos, 28040 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paulo Tavares-Ratado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Laboratory of Clinical Pathology, Sousa Martins Hospital, Unidade Local de Saúde (ULS) da Guarda, Av. Rainha D. Amélia, 6300-749 Guarda, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
2
|
Gasmi A, Nasreen A, Menzel A, Gasmi Benahmed A, Pivina L, Noor S, Peana M, Chirumbolo S, Bjørklund G. Neurotransmitters Regulation and Food Intake: The Role of Dietary Sources in Neurotransmission. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010210. [PMID: 36615404 PMCID: PMC9822089 DOI: 10.3390/molecules28010210] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Neurotransmitters (NTs) are biologically active chemicals, which mediate the electrochemical transmission between neurons. NTs control numerous organic functions particularly crucial for life, including movement, emotional responses, and the physical ability to feel pleasure and pain. These molecules are synthesized from simple, very common precursors. Many types of NTs have both excitatory and inhibitory effects. Neurotransmitters' imbalance can cause many diseases and disorders, such as Parkinson's disease, depression, insomnia, increased anxiety, memory loss, etc. Natural food sources containing NTs and/or their precursors would be a potential option to help maintain the balance of NTs to prevent brain and psychiatric disorders. The level of NTs could be influenced, therefore, by targeting dietary habits and nutritional regimens. The progressive implementation of nutritional approaches in clinical practice has made it necessary to infer more about some of the nutritional NTs in neuropsychiatry. However, the importance of the intake of nutritional NTs requires further understanding, since there are no prior significant studies about their bioavailability, clinical significance, and effects on nerve cells. Interventional strategies supported by evidence should be encouraged.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Aniqa Nasreen
- Department of Physiology, King Edward Medical University, Lahore 54000, Pakistan
| | - Alain Menzel
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg
| | - Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Lyudmila Pivina
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Sàdaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence:
| |
Collapse
|
3
|
Hong SE, Kneissl J, Cho A, Kim MJ, Park S, Lee J, Woo S, Kim S, Kim JS, Kim SY, Jung S, Kim J, Shin JY, Chae JH, Choi M. Transcriptome-based variant calling and aberrant mRNA discovery enhance diagnostic efficiency for neuromuscular diseases. J Med Genet 2022; 59:1075-1081. [PMID: 35387801 PMCID: PMC9613860 DOI: 10.1136/jmedgenet-2021-108307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Whole-exome sequencing-based diagnosis of rare diseases typically yields 40%-50% of success rate. Precise diagnosis of the patients with neuromuscular disorders (NMDs) has been hampered by locus heterogeneity or phenotypic heterogeneity. We evaluated the utility of transcriptome sequencing as an independent approach in diagnosing NMDs. METHODS The RNA sequencing (RNA-Seq) of muscle tissues from 117 Korean patients with suspected Mendelian NMD was performed to evaluate the ability to detect pathogenic variants. Aberrant splicing and CNVs were inspected to identify additional causal genetic factors for NMD. Aberrant splicing events in Dystrophin (DMD) were investigated by using antisense oligonucleotides (ASOs). A non-negative matrix factorisation analysis of the transcriptome data followed by cell type deconvolution was performed to cluster samples by expression-based signatures and identify cluster-specific gene ontologies. RESULTS Our pipeline called 38.1% of pathogenic variants exclusively from the muscle transcriptomes, demonstrating a higher diagnostic rate than that achieved via exome analysis (34.9%). The discovery of variants causing aberrant splicing allowed the application of ASOs to the patient-derived cells, providing a therapeutic approach tailored to individual patients. RNA-Seq data further enabled sample clustering by distinct gene expression profiles that corresponded to clinical parameters, conferring additional advantages over exome sequencing. CONCLUSION The RNA-Seq-based diagnosis of NMDs achieves an increased diagnostic rate and provided pathogenic status information, which is not easily accessible through exome analysis.
Collapse
Affiliation(s)
- Sung Eun Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jana Kneissl
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Anna Cho
- Department of Pediatrics, Rare Disease Center, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Soojin Park
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Jeongeun Lee
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Sijae Woo
- Graduate School of Medical Science and Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sora Kim
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Korea
| | - Jun-Soon Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Geyonggi-do, Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea
| | - Jinkuk Kim
- Graduate School of Medical Science and Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Je-Young Shin
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2022; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Al-Khalili Szigyarto C. Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application. Expert Rev Proteomics 2020; 17:365-375. [PMID: 32713262 DOI: 10.1080/14789450.2020.1773806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Early biomarker discovery studies have praised the value of their emerging results, predicting an unprecedented impact on health care. Biomarkers are expected to provide tests with increased specificity and sensitivity compared to existing measures, improve the decision-making process, and accelerate the development of therapies. For rare disorders, like Duchenne Muscular Dystrophy (DMD) such biomarkers can assist the development of therapies, therefore also helping to find a cure for the disease. AREA COVERED State-of-the-art technologies have been used to identify blood biomarkers for DMD and efforts have been coordinated to develop and promote translation of biomarkers for clinical practice. Biomarker translation to clinical practice is however, adjoined by challenges related to the complexity of the disease, involving numerous biological processes, and the limited sample resources. This review highlights the current progress on the development of biomarkers, describing the proteomics technologies used, the most promising findings and the challenges encountered. EXPERT OPINION Strategies for effective use of samples combined with orthogonal proteomics methods for protein quantification are essential for translating biomarkers to the patient's bed side. Progress is achieved only if strong evidence is provided that the biomarker constitutes a reliable indicator of the patient's health status for a specific context of use.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Science for Life Laboratory, KTH - Royal Institute of Technology , Solna, Sweden.,School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology , Stockholm, Sweden
| |
Collapse
|
6
|
Punetha J, Kesari A, Uapinyoying P, Giri M, Clarke NF, Waddell LB, North KN, Ghaoui R, O'Grady GL, Oates EC, Sandaradura SA, Bönnemann CG, Donkervoort S, Plotz PH, Smith EC, Tesi-Rocha C, Bertorini TE, Tarnopolsky MA, Reitter B, Hausmanowa-Petrusewicz I, Hoffman EP. Targeted Re-Sequencing Emulsion PCR Panel for Myopathies: Results in 94 Cases. J Neuromuscul Dis 2018; 3:209-225. [PMID: 27854218 DOI: 10.3233/jnd-160151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Molecular diagnostics in the genetic myopathies often requires testing of the largest and most complex transcript units in the human genome (DMD, TTN, NEB). Iteratively targeting single genes for sequencing has traditionally entailed high costs and long turnaround times. Exome sequencing has begun to supplant single targeted genes, but there are concerns regarding coverage and needed depth of the very large and complex genes that frequently cause myopathies. OBJECTIVE To evaluate efficiency of next-generation sequencing technologies to provide molecular diagnostics for patients with previously undiagnosed myopathies. METHODS We tested a targeted re-sequencing approach, using a 45 gene emulsion PCR myopathy panel, with subsequent sequencing on the Illumina platform in 94 undiagnosed patients. We compared the targeted re-sequencing approach to exome sequencing for 10 of these patients studied. RESULTS We detected likely pathogenic mutations in 33 out of 94 patients with a molecular diagnostic rate of approximately 35%. The remaining patients showed variants of unknown significance (35/94 patients) or no mutations detected in the 45 genes tested (26/94 patients). Mutation detection rates for targeted re-sequencing vs. whole exome were similar in both methods; however exome sequencing showed better distribution of reads and fewer exon dropouts. CONCLUSIONS Given that costs of highly parallel re-sequencing and whole exome sequencing are similar, and that exome sequencing now takes considerably less laboratory processing time than targeted re-sequencing, we recommend exome sequencing as the standard approach for molecular diagnostics of myopathies.
Collapse
Affiliation(s)
- Jaya Punetha
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Akanchha Kesari
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Prech Uapinyoying
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Mamta Giri
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Nigel F Clarke
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Leigh B Waddell
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Kathryn N North
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Roula Ghaoui
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Gina L O'Grady
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Emily C Oates
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Sarah A Sandaradura
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Center, Bethesda, MD, USA
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Center, Bethesda, MD, USA
| | - Paul H Plotz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward C Smith
- Department of Pediatrics, Division of Pediatric Neurology, Duke University Medical Center, Durham, NC, USA
| | - Carolina Tesi-Rocha
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Tulio E Bertorini
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mark A Tarnopolsky
- Departments of Pediatrics and Medicine, McMaster University, Neuromuscular Disease Clinic, Health Sciences Centre, ON, Canada
| | - Bernd Reitter
- Children's Hospital, Johannes Gutenberg University, Mainz, Germany
| | | | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
7
|
McDonald J. Twelve tips for teaching child development and disability to medical students. MEDICAL TEACHER 2018; 40:135-139. [PMID: 28826297 DOI: 10.1080/0142159x.2017.1365118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Child development is a marker of well-being in childhood and recognition of developmental delay allows timely investigation and intervention for children with developmental disabilities. Despite this, child development and disabilities are not given emphasis in the medical curriculum. This under representation of teaching combined with the stigma associated with disabilities contributes to the sub-optimal health care of people with disabilities. As well as, addressing the stigma of disability a medical undergraduate curriculum should include: the key concepts of child development; the clinical presentation of the most common developmental disabilities; developmental history taking and the infant neurodevelopmental examination. The following twelve tips provide practical advice about how to teach this knowledge and these skills during medical training.
Collapse
Affiliation(s)
- Jenny McDonald
- a Medical Education Unit, School of Medicine , Western Sydney University , Penrith South DC , NSW , Australia
| |
Collapse
|
8
|
Reza MM, Sim CM, Subramaniyam N, Ge X, Sharma M, Kambadur R, McFarlane C. Irisin treatment improves healing of dystrophic skeletal muscle. Oncotarget 2017; 8:98553-98566. [PMID: 29228710 PMCID: PMC5716750 DOI: 10.18632/oncotarget.21636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Background Irisin is an exercise induced myokine that is shown to promote browning of adipose tissue and hence, increase energy expenditure. Furthermore, our unpublished results indicate that Irisin improves myogenic differentiation and induces skeletal muscle hypertrophy. Since exercise induced skeletal muscle hypertrophy improves muscle strength, we wanted to investigate if ectopic injection of Irisin peptide improves skeletal muscle function in a mouse model of muscular dystrophy. This utility of Irisin peptide is yet to be studied in animal models. Methods In order to test this hypothesis, we expressed and purified recombinant murine Irisin peptide from E. coli. Three- to six-week-old male mdx mice were injected IP with either vehicle (dialysis buffer) or Irisin recombinant peptide for two or four weeks, three times-a-week. Results Irisin injection increased muscle weights and enhanced grip strength in mdx mice. Improved muscle strength can be attributed to the significant hypertrophy observed in the Irisin injected mdx mice. Moreover, Irisin treatment resulted in reduced accumulation of fibrotic tissue and myofiber necrosis in mdx mice. In addition, Irisin improved sarcolemmal stability, which is severely compromised in mdx mice. Conclusion Irisin injection induced skeletal muscle hypertrophy, improved muscle strength and reduced necrosis and fibrotic tissue in a murine dystrophy model. These results demonstrate the potential therapeutic value of Irisin in muscular dystrophy.
Collapse
Affiliation(s)
| | - Chu Ming Sim
- Singapore Institute for Clinical Sciences (ASTAR), Brenner Centre for Molecular Medicine, Singapore
| | - Nathiya Subramaniyam
- Singapore Institute for Clinical Sciences (ASTAR), Brenner Centre for Molecular Medicine, Singapore
| | - Xiaojia Ge
- Singapore Institute for Clinical Sciences (ASTAR), Brenner Centre for Molecular Medicine, Singapore
| | - Mridula Sharma
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore.,Currently not affiliated with Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore
| | - Ravi Kambadur
- School of Biological Sciences, Nanyang Technological University, Singapore.,Singapore Institute for Clinical Sciences (ASTAR), Brenner Centre for Molecular Medicine, Singapore.,Currently not affiliated with School of Biological Sciences, Nanyang Technological University, Singapore
| | - Craig McFarlane
- Singapore Institute for Clinical Sciences (ASTAR), Brenner Centre for Molecular Medicine, Singapore.,Current/Present address: Department of Molecular & Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
9
|
Guo Y, Menezes MJ, Menezes MP, Liang J, Li D, Riley LG, Clarke NF, Andrews PI, Tian L, Webster R, Wang F, Liu X, Shen Y, Thorburn DR, Keating BJ, Engel A, Hakonarson H, Christodoulou J, Xu X. Delayed diagnosis of congenital myasthenia due to associated mitochondrial enzyme defect. Neuromuscul Disord 2014; 25:257-61. [PMID: 25557462 DOI: 10.1016/j.nmd.2014.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/15/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022]
Abstract
Clinical phenotypes of congenital myasthenic syndromes and primary mitochondrial disorders share significant overlap in their clinical presentations, leading to challenges in making the correct diagnosis. Next generation sequencing is transforming molecular diagnosis of inherited neuromuscular disorders by identifying novel disease genes and by identifying previously known genes in undiagnosed patients. This is evident in two patients who were initially suspected to have a mitochondrial myopathy, but in whom a clear diagnosis of congenital myasthenic syndromes was made through whole exome sequencing. In patient 1, whole exome sequencing revealed compound heterozygous mutations c.1228C > T (p.Arg410Trp) and c.679C > T (p.Arg227*) in collagen-like tail subunit (single strand of homotrimer) of asymmetric acetylcholinesterase (COLQ). In patient 2, in whom a deletion of exon 52 in Dystrophin gene was previously detected by multiplex ligation-dependent probe amplification, Sanger sequencing revealed an additional homozygous mutation c.1511_1513delCTT (p.Pro504Argfs*183) in docking protein7 (DOK7). These case reports highlight the need for careful diagnosis of clinically heterogeneous syndromes like congenital myasthenic syndromes, which are treatable, and for which delayed diagnosis is likely to have implications for patient health. The report also demonstrates that whole exome sequencing is an effective diagnostic tool in providing molecular diagnosis in patients with complex phenotypes.
Collapse
Affiliation(s)
- Yiran Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Minal J Menezes
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Manoj P Menezes
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | - Dong Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lisa G Riley
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Nigel F Clarke
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - P Ian Andrews
- Department of Neurology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Lifeng Tian
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Richard Webster
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Fengxiang Wang
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | | | - David R Thorburn
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Brendan J Keating
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China; The Guangdong Enterprise Key Laboratory of Human Disease Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
10
|
Abstract
Assessments of pulmonary function play an integral part in the clinical management of school age children as well as providing objective outcome measures in clinical and epidemiological research studies. Pulmonary function tests (PFTs) can also be undertaken in sleeping infants and in awake young children from 3 years of age. However, the clinical utility of such assessments, which are generally confined to specialist centres, has yet to be established. Whether requesting or undertaking paediatric PFTs, or simply reading about how these tests have been applied in research studies, it is essential to question whether results have been interpreted in a meaningful way. This review summarises some of the issues that need to be considered, including: why the tests are being performed; which tests are most likely to detect the suspected pathophysiology; how often such tests should be repeated; whether results are likely to be reliable (in terms of data quality, repeatability and the availability of suitable reference equations with which to distinguish the effects of disease from those of growth and development), and whether the selected tests are likely to be feasible in the individual child or study group under investigation.
Collapse
|
11
|
Ghaoui R, Clarke N, Hollingworth P, Needham M. Muscle disorders: the latest investigations. Intern Med J 2014; 43:970-8. [PMID: 24004391 DOI: 10.1111/imj.12234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/22/2013] [Indexed: 12/14/2022]
Abstract
Patients with muscle disorders can present a diagnostic challenge to physicians because of the different ways they can present and the large number of different underlying causes. Recognition of the 'myopathic phenotype' coupled with investigations usually including electrodiagnostic and histological investigations have been essential for diagnosing the underlying cause of a myopathy. Despite these standard investigations, some patients can remain undiagnosed. New tests including more specific antibody tests for immune-mediated myopathies and the introduction of next-generation sequencing promise to revolutionise diagnostic approaches for immune and inherited myopathies, but clinical expertise remains essential to choose the most appropriate tests and interpret the results. The aim of this review is to provide an overview of the different presentations to the neuromuscular clinic and the latest investigations that can be helpful in the diagnosis of muscle disorders.
Collapse
Affiliation(s)
- R Ghaoui
- Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
12
|
D'Arcy CE, Feeney SJ, McLean CA, Gehrig SM, Lynch GS, Smith JE, Cowling BS, Mitchell CA, McGrath MJ. Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy. Hum Mol Genet 2013; 23:618-36. [PMID: 24087791 DOI: 10.1093/hmg/ddt449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Utrophin is a potential therapeutic target for the fatal muscle disease, Duchenne muscular dystrophy (DMD). In adult skeletal muscle, utrophin is restricted to the neuromuscular and myotendinous junctions and can compensate for dystrophin loss in mdx mice, a mouse model of DMD, but requires sarcolemmal localization. NFATc1-mediated transcription regulates utrophin expression and the LIM protein, FHL1 which promotes muscle hypertrophy, is a transcriptional activator of NFATc1. By generating mdx/FHL1-transgenic mice, we demonstrate that FHL1 potentiates NFATc1 activation of utrophin to ameliorate the dystrophic pathology. Transgenic FHL1 expression increased sarcolemmal membrane stability, reduced muscle degeneration, decreased inflammation and conferred protection from contraction-induced injury in mdx mice. Significantly, FHL1 expression also reduced progressive muscle degeneration and fibrosis in the diaphragm of aged mdx mice. FHL1 enhanced NFATc1 activation of the utrophin promoter and increased sarcolemmal expression of utrophin in muscles of mdx mice, directing the assembly of a substitute utrophin-glycoprotein complex, and revealing a novel FHL1-NFATc1-utrophin signaling axis that can functionally compensate for dystrophin.
Collapse
Affiliation(s)
- Colleen E D'Arcy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|