1
|
Nakagawa N. The neuronal Golgi in neural circuit formation and reorganization. Front Neural Circuits 2024; 18:1504422. [PMID: 39703196 PMCID: PMC11655203 DOI: 10.3389/fncir.2024.1504422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The Golgi apparatus is a central hub in the intracellular secretory pathway. By positioning in the specific intracellular region and transporting materials to spatially restricted compartments, the Golgi apparatus contributes to the cell polarity establishment and morphological specification in diverse cell types. In neurons, the Golgi apparatus mediates several essential steps of initial neural circuit formation during early brain development, such as axon-dendrite polarization, neuronal migration, primary dendrite specification, and dendritic arbor elaboration. Moreover, neuronal activity-dependent remodeling of the Golgi structure enables morphological changes in neurons, which provides the cellular basis of circuit reorganization during postnatal critical period. In this review, I summarize recent findings illustrating the unique Golgi positioning and its developmental dynamics in various types of neurons. I also discuss the upstream regulators for the Golgi positioning in neurons, and functional roles of the Golgi in neural circuit formation and reorganization. Elucidating how Golgi apparatus sculpts neuronal connectivity would deepen our understanding of the cellular/molecular basis of neural circuit development and plasticity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
2
|
Feng H, Wang N, Zhang N, Liao HH. Alternative autophagy: mechanisms and roles in different diseases. Cell Commun Signal 2022; 20:43. [PMID: 35361231 PMCID: PMC8973741 DOI: 10.1186/s12964-022-00851-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
As an important mechanism to maintain cellular homeostasis, autophagy exerts critical functions via degrading misfolded proteins and damaged organelles. Recent years, alternative autophagy, a new type of autophagy has been revealed, which shares similar morphology with canonical autophagy but is independent of Atg5/Atg7. Investigations on different diseases showed the pivotal role of alternative autophagy during their physio-pathological processes, including heart diseases, neurodegenerative diseases, oncogenesis, inflammatory bowel disease (IBD), and bacterial infection. However, the studies are limited and the precise roles and mechanisms of alternative autophagy are far from clear. It is necessary to review current research on alternative autophagy and get some hint in order to provide new insight for further study. Video Abstract.
Collapse
Affiliation(s)
- Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nian Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
3
|
Xiao L, Yuan Z, Jin S, Wang T, Huang S, Zeng P. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet 2020; 11:587243. [PMID: 33329728 PMCID: PMC7714931 DOI: 10.3389/fgene.2020.587243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple causal genes associated with amyotrophic lateral sclerosis (ALS); however, the genetic architecture of ALS remains completely unknown and a large number of causal genes have yet been discovered. To full such gap in part, we implemented an integrative analysis of transcriptome-wide association study (TWAS) for ALS to prioritize causal genes with summary statistics from 80,610 European individuals and employed 13 GTEx brain tissues as reference transcriptome panels. The summary-level TWAS analysis with single brain tissue was first undertaken and then a flexible p-value combination strategy, called summary data-based Cauchy Aggregation TWAS (SCAT), was proposed to pool association signals from single-tissue TWAS analysis while protecting against highly positive correlation among tests. Extensive simulations demonstrated SCAT can produce well-calibrated p-value for the control of type I error and was often much more powerful to identify association signals across various scenarios compared with single-tissue TWAS analysis. Using SCAT, we replicated three ALS-associated genes (i.e., ATXN3, SCFD1, and C9orf72) identified in previous GWASs and discovered additional five genes (i.e., SLC9A8, FAM66D, TRIP11, JUP, and RP11-529H20.6) which were not reported before. Furthermore, we discovered the five associations were largely driven by genes themselves and thus might be new genes which were likely related to the risk of ALS. However, further investigations are warranted to verify these results and untangle the pathophysiological function of the genes in developing ALS.
Collapse
Affiliation(s)
- Lishun Xiao
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siyi Jin
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Halloran M, Ragagnin AMG, Vidal M, Parakh S, Yang S, Heng B, Grima N, Shahheydari H, Soo KY, Blair I, Guillemin GJ, Sundaramoorthy V, Atkin JD. Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress. Cell Mol Life Sci 2020; 77:3859-3873. [PMID: 31802140 PMCID: PMC11105036 DOI: 10.1007/s00018-019-03394-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells. In addition, we observed that Sec31-positive ER exit sites are clustered in UBQLN2T487I patient spinal cord tissues. Both the ER-Golgi intermediate (ERGIC) compartment and the Golgi become disorganised and fragmented. This activates ER stress and inhibits ER-associated degradation. Hence, this study highlights perturbations in secretory protein trafficking and ER homeostasis as pathogenic mechanisms associated with ALS/FTD-associated forms of UBQLN2.
Collapse
Affiliation(s)
- Mark Halloran
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Audrey M G Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Shu Yang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Natalie Grima
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Kai-Ying Soo
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ian Blair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vinod Sundaramoorthy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia.
| |
Collapse
|
5
|
Ireland SC, Huang H, Zhang J, Li J, Wang Y. Hydrogen peroxide induces Arl1 degradation and impairs Golgi-mediated trafficking. Mol Biol Cell 2020; 31:1931-1942. [PMID: 32583744 PMCID: PMC7525819 DOI: 10.1091/mbc.e20-01-0063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS)-induced oxidative stress has been associated with diseases such as amyotrophic lateral sclerosis, stroke, and cancer. While the effect of ROS on mitochondria and endoplasmic reticulum (ER) has been well documented, its consequence on the Golgi apparatus is less well understood. In this study, we characterized the Golgi structure and function in HeLa cells after exposure to hydrogen peroxide (H2O2), a reagent commonly used to introduce ROS to cells. Treatment of cells with 1 mM H2O2 for 10 min resulted in the degradation of Arl1 and dissociation of GRIP domain-containing proteins Golgin-97 and Golgin-245 from the trans-Golgi. This effect could be rescued by treatment of cells with a ROS scavenger N-acetyl cysteine or protease inhibitors. Structurally, H2O2 treatment reduced the number of cisternal membranes per Golgi stack, suggesting a loss of trans-Golgi cisternae. Functionally, H2O2 treatment inhibited both anterograde and retrograde protein transport, consistent with the loss of membrane tethers on the trans-Golgi cisternae. This study revealed membrane tethers at the trans-Golgi as novel specific targets of ROS in cells.
Collapse
Affiliation(s)
- Stephen C. Ireland
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Haoran Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085
| |
Collapse
|
6
|
Bräuer S, Günther R, Sterneckert J, Glaß H, Hermann A. Human Spinal Motor Neurons Are Particularly Vulnerable to Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci 2020; 21:ijms21103564. [PMID: 32443559 PMCID: PMC7278966 DOI: 10.3390/ijms21103564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and devastating motor neuron (MN) disease. Its pathophysiological cascade is still enigmatic. More than 90% of ALS patients suffer from sporadic ALS, which makes it specifically demanding to generate appropriate model systems. One interesting aspect considering the seeding, spreading and further disease development of ALS is the cerebrospinal fluid (CSF). We therefore asked whether CSF from sporadic ALS patients is capable of causing disease typical changes in human patient-derived spinal MN cultures and thus could represent a novel model system for sporadic ALS. By using induced pluripotent stem cell (iPSC)-derived MNs from healthy controls and monogenetic forms of ALS we could demonstrate a harmful effect of ALS-CSF on healthy donor-derived human MNs. Golgi fragmentation—a typical finding in lower organism models and human postmortem tissue—was induced solely by addition of ALS-CSF, but not control-CSF. No other neurodegenerative hallmarks—including pathological protein aggregation—were found, underpinning Golgi fragmentation as early event in the neurodegenerative cascade. Of note, these changes occurred predominantly in MNs, the cell type primarily affected in ALS. We thus present a novel way to model early features of sporadic ALS.
Collapse
Affiliation(s)
- Stefan Bräuer
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- Department of Neurology, Städtisches Klinikum Dresden, 01129 Dresden, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany;
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (S.B.); (R.G.)
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
- German Center for Neurodegenerative Diseases (DZNE) Rostock, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)-381-494-9541
| |
Collapse
|
7
|
Ireland S, Ramnarayanan S, Fu M, Zhang X, Zhang J, Li J, Emebo D, Wang Y. Cytosolic Ca 2+ Modulates Golgi Structure Through PKCα-Mediated GRASP55 Phosphorylation. iScience 2020; 23:100952. [PMID: 32179476 PMCID: PMC7078314 DOI: 10.1016/j.isci.2020.100952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well documented that the ER responds to cellular stresses through the unfolded protein response (UPR), but it is unknown how the Golgi responds to similar stresses. In this study, we treated HeLa cells with ER stress inducers, thapsigargin (TG), tunicamycin (Tm), and dithiothreitol (DTT), and found that only TG treatment resulted in Golgi fragmentation. TG induced Golgi fragmentation at a low dose and short time when UPR was undetectable, indicating that Golgi fragmentation occurs independently of ER stress. Further experiments demonstrated that TG induces Golgi fragmentation through elevating intracellular Ca2+ and protein kinase Cα (PKCα) activity, which phosphorylates the Golgi stacking protein GRASP55. Significantly, activation of PKCα with other activating or inflammatory agents, including phorbol 12-myristate 13-acetate and histamine, modulates Golgi structure in a similar fashion. Hence, our study revealed a novel mechanism through which increased cytosolic Ca2+ modulates Golgi structure and function. Thapsigargin (TG) treatment leads to Golgi fragmentation independent of ER stress TG induces Golgi fragmentation through elevated cytosolic Ca2+ TG-induced cytosolic Ca2+ spikes activate PKCα that phosphorylates GRASP55 Histamine modulates the Golgi structure and function by a similar mechanism
Collapse
Affiliation(s)
- Stephen Ireland
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Saiprasad Ramnarayanan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Mingzhou Fu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Dabel Emebo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
8
|
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci 2019; 13:1310. [PMID: 31866818 PMCID: PMC6909825 DOI: 10.3389/fnins.2019.01310] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis (ALS) continues to shift as the number of genes associated with the disease risk and pathogenesis, and the cellular processes involved, continues to grow. Despite decades of intense research and over 50 potentially causative or disease-modifying genes identified, etiology remains unexplained and treatment options remain limited for the majority of ALS patients. Various factors have contributed to the slow progress in understanding and developing therapeutics for this disease. Here, we review the genetic basis of ALS, highlighting factors that have contributed to the elusiveness of genetic heritability. The most commonly mutated ALS-linked genes are reviewed with an emphasis on disease-causing mechanisms. The cellular processes involved in ALS pathogenesis are discussed, with evidence implicating their involvement in ALS summarized. Past and present therapeutic strategies and the benefits and limitations of the model systems available to ALS researchers are discussed with future directions for research that may lead to effective treatment strategies outlined.
Collapse
Affiliation(s)
- Rita Mejzini
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - P. Anthony Akkari
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Golgi Fragmentation in Neurodegenerative Diseases: Is There a Common Cause? Cells 2019; 8:cells8070748. [PMID: 31331075 PMCID: PMC6679019 DOI: 10.3390/cells8070748] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
In most mammalian cells, the Golgi complex forms a continuous ribbon. In neurodegenerative diseases, the Golgi ribbon of a specific group of neurons is typically broken into isolated elements, a very early event which happens before clinical and other pathological symptoms become evident. It is not known whether this phenomenon is caused by mechanisms associated with cell death or if, conversely, it triggers apoptosis. When the phenomenon was studied in diseases such as Parkinson’s and Alzheimer’s or amyotrophic lateral sclerosis, it was attributed to a variety of causes, including the presence of cytoplasmatic protein aggregates, malfunctioning of intracellular traffic and/or alterations in the cytoskeleton. In the present review, we summarize the current findings related to these and other neurodegenerative diseases and try to search for clues on putative common causes.
Collapse
|
10
|
Ji G, Song X, Wang L, Li Z, Wu H, Dong H. Golgi apparatus fragmentation participates in oxidized low‐density lipoprotein‐induced endothelial cell injury. J Cell Biochem 2019; 120:18862-18870. [PMID: 31264250 DOI: 10.1002/jcb.29205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Guang Ji
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Xueqin Song
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Liang Wang
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Zhenfei Li
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Hongran Wu
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Hui Dong
- Department of NeurologyThe Second Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| |
Collapse
|
11
|
MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components. J Theor Biol 2019; 463:99-109. [DOI: 10.1016/j.jtbi.2018.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022]
|
12
|
Motor neuron degeneration, severe myopathy and TDP-43 increase in a transgenic pig model of SOD1-linked familiar ALS. Neurobiol Dis 2018; 124:263-275. [PMID: 30471417 DOI: 10.1016/j.nbd.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neural disorder gradually leading to paralysis of the whole body. Alterations in superoxide dismutase SOD1 gene have been linked with several variants of familial ALS. Here, we investigated a transgenic (Tg) cloned swine model expressing the human pathological hSOD1G93A allele. As in patients, these Tg pigs transmitted the disease to the progeny with an autosomal dominant trait and showed ALS onset from about 27 months of age. Post mortem analysis revealed motor neuron (MN) degeneration, gliosis and hSOD1 protein aggregates in brainstem and spinal cord. Severe skeletal muscle pathology including necrosis and inflammation was observed at the end stage, as well. Remarkably, as in human patients, these Tg pigs showed a quite long presymptomatic phase in which gradually increasing amounts of TDP-43 were detected in peripheral blood mononuclear cells. Thus, this transgenic swine model opens the unique opportunity to investigate ALS biomarkers even before disease onset other than testing novel drugs and possible medical devices.
Collapse
|
13
|
Cerebrospinal Fluid from Patients with Sporadic Amyotrophic Lateral Sclerosis Induces Degeneration of Motor Neurons Derived from Human Embryonic Stem Cells. Mol Neurobiol 2018; 56:1014-1034. [PMID: 29858777 DOI: 10.1007/s12035-018-1149-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
Disease modeling has become challenging in the context of amyotrophic lateral sclerosis (ALS), as obtaining viable spinal motor neurons from postmortem patient tissue is an unlikely possibility. Limitations in the animal models due to their phylogenetic distance from human species hamper the success of translating possible findings into therapeutic options. Accordingly, there is a need for developing humanized models as a lead towards identifying successful therapeutic possibilities. In this study, human embryonic stem cells-BJNHem20-were differentiated into motor neurons expressing HB9, Islet1, and choline acetyl transferase using retinoic acid and purmorphamine. These motor neurons discharged spontaneous action potentials with two different frequencies (< 5 and > 5 Hz), and majority of them were principal neurons firing with < 5 Hz. Exposure to cerebrospinal fluid from ALS patients for 48 h induced several degenerative changes in the motor neurons as follows: cytoplasmic changes such as beading of neurites and vacuolation; morphological alterations, viz., dilation and vacuolation of mitochondria, curled and closed Golgi architecture, dilated endoplasmic reticulum, and chromatin condensation in the nucleus; lowered activity of different mitochondrial complex enzymes; reduced expression of brain-derived neurotrophic factor; up-regulated neurofilament phosphorylation and hyperexcitability represented by increased number of spikes. All these changes along with the enhanced expression of pro-apoptotic proteins-Bax and caspase 9-culminated in the death of motor neurons.
Collapse
|
14
|
Abstract
During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation.
Collapse
|
15
|
Huang S, Wang Y. Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Res 2017; 6:2050. [PMID: 29225785 PMCID: PMC5710388 DOI: 10.12688/f1000research.11900.1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Antón-Fernández A, Aparicio-Torres G, Tapia S, DeFelipe J, Muñoz A. Morphometric alterations of Golgi apparatus in Alzheimer's disease are related to tau hyperphosphorylation. Neurobiol Dis 2016; 97:11-23. [PMID: 27793637 PMCID: PMC5176038 DOI: 10.1016/j.nbd.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/19/2022] Open
Abstract
The Golgi apparatus (GA) is a highly dynamic organelle, which is mainly involved in the post-translational processing and targeting of cellular proteins and which undergoes significant morphological changes in response to different physiological and pathological conditions. In the present study, we have analyzed the possible alterations of GA in neurons from the temporal neocortex and hippocampus of Alzheimer's disease (AD) patients, using double immunofluorescence techniques, confocal microscopy and 3D quantification techniques. We found that in AD patients, the percentage of temporal neocortical and CA1 hippocampal pyramidal neurons with a highly altered GA is much higher (approximately 65%) in neurons with neurofibrillary tangles (NFT) than in NFT-free neurons (approximately 6%). Quantitative analysis of the surface area and volume of GA elements in neurons revealed that, compared with NFT-free neurons, NFT-bearing neurons had a reduction of approximately one half in neocortical neurons and one third in CA1 neurons. In both regions, neurons with a pre-tangle stage of phospho-tau accumulation had surface area and GA volume values that were intermediate, that is, between those of NFT-free and NFT-bearing neurons. These findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA including fragmentation and a decrease in the surface area and volume of GA elements. These alterations likely impact the processing and trafficking of proteins, which might contribute to neuronal dysfunction in AD.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Guillermo Aparicio-Torres
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Silvia Tapia
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Alberto Muñoz
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; Department of Cell Biology, Complutense University, Madrid, Spain.
| |
Collapse
|
17
|
Fifita JA, Williams KL, Sundaramoorthy V, Mccann EP, Nicholson GA, Atkin JD, Blair IP. A novel amyotrophic lateral sclerosis mutation in OPTN induces ER stress and Golgi fragmentation in vitro. Amyotroph Lateral Scler Frontotemporal Degener 2016; 18:126-133. [DOI: 10.1080/21678421.2016.1218517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jennifer A. Fifita
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Kelly L. Williams
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Vinod Sundaramoorthy
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Emily P. Mccann
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Garth A. Nicholson
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia,
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia,
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia, and
| | - Julie D. Atkin
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Ian P. Blair
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia,
| |
Collapse
|
18
|
Yang R, Zhang C, Gao R, Zhang L. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data. Int J Mol Sci 2016; 17:218. [PMID: 26861308 PMCID: PMC4783950 DOI: 10.3390/ijms17020218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew's Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions.
Collapse
Affiliation(s)
- Runtao Yang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China.
| | - Chengjin Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China.
- School of Mechanical, Electrical and Information Engineering, Shandong University atWeihai, Weihai 264209, China.
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan 250061, China.
| | - Lina Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
19
|
Joshi G, Bekier ME, Wang Y. Golgi fragmentation in Alzheimer's disease. Front Neurosci 2015; 9:340. [PMID: 26441511 PMCID: PMC4585163 DOI: 10.3389/fnins.2015.00340] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
The Golgi apparatus is an essential cellular organelle for post-translational modifications, sorting, and trafficking of membrane and secretory proteins. Proper functionality of the Golgi requires the formation of its unique cisternal-stacking morphology. The Golgi structure is disrupted in a variety of neurodegenerative diseases, suggesting a common mechanism and contribution of Golgi defects in neurodegenerative disorders. A recent study on Alzheimer's disease (AD) revealed that phosphorylation of the Golgi stacking protein GRASP65 disrupts its function in Golgi structure formation, resulting in Golgi fragmentation. Inhibiting GRASP65 phosphorylation restores the Golgi morphology from Aβ-induced fragmentation and reduces Aβ production. Perturbing Golgi structure and function in neurons may directly impact trafficking, processing, and sorting of a variety of proteins essential for synaptic and dendritic integrity. Therefore, Golgi defects may ultimately promote the development of AD. In the current review, we focus on the cellular impact of impaired Golgi morphology and its potential relationship to AD disease development.
Collapse
Affiliation(s)
- Gunjan Joshi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Michael E Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, University of Michigan School of Medicine Ann Arbor, MI, USA
| |
Collapse
|
20
|
Abstract
Increased amyloid beta (Aβ) production by sequential cleavage of the amyloid precursor protein (APP) by the β- and γ-secretases contributes to the etiological basis of Alzheimer's disease (AD). This process requires APP and the secretases to be in the same subcellular compartments, such as the endosomes. Since all membrane organelles in the endomembrane system are kinetically and functionally linked, any defects in the trafficking and sorting machinery would be expected to change the functional properties of the whole system. The Golgi is a primary organelle for protein trafficking, sorting and modifications, and Golgi defects have been reported in AD. Here we hypothesize that Golgi fragmentation in AD accelerates APP trafficking and Aβ production. Furthermore, Golgi defects may perturb the proper trafficking and processing of many essential neuronal proteins, resulting in compromised neuronal function. Therefore, molecular tools that can restore Golgi structure and function could prove useful as potential drugs for AD treatment.
Collapse
Affiliation(s)
- Gunjan Joshi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
21
|
van Dis V, Kuijpers M, Haasdijk ED, Teuling E, Oakes SA, Hoogenraad CC, Jaarsma D. Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathol Commun 2014; 2:38. [PMID: 24708899 PMCID: PMC4023628 DOI: 10.1186/2051-5960-2-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022] Open
Abstract
Background Fragmentation of stacked cisterns of the Golgi apparatus into dispersed smaller elements is a feature associated with degeneration of neurons in amyotrophic lateral sclerosis (ALS) and some other neurodegenerative disorders. However, the role of Golgi fragmentation in motor neuron degeneration is not well understood. Results Here we use a SOD1-ALS mouse model (low-copy Gurney G93A-SOD1 mouse) to show that motor neurons with Golgi fragmentation are retrogradely labeled by intramuscularly injected CTB (beta subunit of cholera toxin), indicating that Golgi fragmentation precedes neuromuscular denervation and axon retraction. We further show that Golgi fragmentation may occur in the absence of and precede two other pathological markers, i.e. somatodendritic SOD1 inclusions, and the induction of ATF3 expression. In addition, we show that Golgi fragmentation is associated with an altered dendritic organization of the Golgi apparatus, does not depend on intact apoptotic machinery, and is facilitated in transgenic mice with impaired retrograde dynein-dependent transport (BICD2-N mice). A connection to altered dynein-dependent transport also is suggested by reduced expression of endosomal markers in neurons with Golgi fragmentation, which also occurs in neurons with impaired dynein function. Conclusions Together the data indicate that Golgi fragmentation is a very early event in the pathological cascade in ALS that is associated with altered organization of intracellular trafficking.
Collapse
|
22
|
Wang Y, Hu Z, Lu W. Danhong injection: A modulator for Golgi structural stability after cerebral ischemia-reperfusion injury. Neural Regen Res 2013; 8:2343-9. [PMID: 25206544 PMCID: PMC4146046 DOI: 10.3969/j.issn.1673-5374.2013.25.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
The cerebral ischemia-reperfusion model was established using the suture occlusion method, and rats were intraperitoneally given 8 mL/kg Danhong injection once a day prior to model establishment. Rat brain tissues were harvested at 6, 24, 48, 72 hours after reperfusion. Immunohistochemical staining showed that transforming growth factor-β1 expression increased, while Golgi matrix protein GM130 expression decreased after cerebral ischemia-reperfusion. Danhong injection was shown to significantly up-regulate the expression of transforming growth factor-β1 and GM130, and expression levels peaked at 7 days after reperfusion. At 7 days after cerebral ischemia-reperfusion, Golgi morphology was damaged in untreated rats, while Golgi morphology breakage was not observed after intervention with Danhong injection. These experimental findings indicate that Danhong injection can up-regulate the expression of transforming growth factor-β1 and GM130, and maintain Golgi stability, thus playing a neuroprotective role in rats after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei Lu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
23
|
Guo J, Qiu W, Soh SLY, Wei S, Radda GK, Ong WY, Pang ZP, Han W. Motor neuron degeneration in a mouse model of seipinopathy. Cell Death Dis 2013; 4:e535. [PMID: 23470542 PMCID: PMC3613842 DOI: 10.1038/cddis.2013.64] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterozygosity for missense mutations (N88S/S90L) in BSCL2 (Berardinelli–Seip congenital lipodystrophy type 2)/Seipin is associated with a broad spectrum of motoneuron diseases. To understand the underlying mechanisms how the mutations lead to motor neuropathy, we generated transgenic mice with neuron-specific expression of wild-type (tgWT) or N88S/S90L mutant (tgMT) human Seipin. Transgenes led to the broad expression of WT or mutant Seipin in the brain and spinal cord. TgMT, but not tgWT, mice exhibited late-onset altered locomotor activities and gait abnormalities that recapitulate symptoms of seipinopathy patients. We found loss of alpha motor neurons in tgMT spinal cord. Mild endoreticular stress was present in both tgMT and tgWT neurons; however, only tgMT mice exhibited protein aggregates and disrupted Golgi apparatus. Furthermore, autophagosomes were significantly increased, along with elevated light chain 3 (LC3)-II level in tgMT spinal cord, consistent with the activation of autophagy pathway in response to mutant Seipin expression and protein aggregation. These results suggest that induction of autophagy pathway is involved in the cellular response to mutant Seipin in seipinopathy and that motoneuron loss is a key pathogenic process underlying the development of locomotor abnormalities.
Collapse
Affiliation(s)
- J Guo
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
25
|
Huang C, Tong J, Bi F, Wu Q, Huang B, Zhou H, Xia XG. Entorhinal cortical neurons are the primary targets of FUS mislocalization and ubiquitin aggregation in FUS transgenic rats. Hum Mol Genet 2012; 21:4602-14. [PMID: 22833456 DOI: 10.1093/hmg/dds299] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-positive inclusion containing Fused in Sarcoma (FUS) defines a new subtype of frontotemporal lobar degeneration (FTLD). FTLD is characterized by progressive alteration in cognitions and it preferentially affects the superficial layers of frontotemporal cortex. Mutation of FUS is linked to amyotrophic lateral sclerosis and to motor neuron disease with FTLD. To examine FUS pathology in FTLD, we developed the first mammalian animal model expressing human FUS with pathogenic mutation and developing progressive loss of memory. In FUS transgenic rats, ubiquitin aggregation and FUS mislocalization were developed primarily in the entorhinal cortex of temporal lobe, particularly in the superficial layers of affected cortex. Overexpression of mutant FUS led to Golgi fragmentation and mitochondrion aggregation. Intriguingly, aggregated ubiquitin was not colocalized with either fragmented Golgi or aggregated mitochondria, and neurons with ubiquitin aggregates were deprived of endogenous TDP-43. Agonists of peroxisome proliferator-activated receptor gamma (PPAR-γ) possess anti-glial inflammation effects and are also shown to preserve the dendrite and dendritic spines of cortical neurons in culture. Here we show that rosiglitazone, a PPAR-γ agonist, rescued the dendrites and dendritic spines of neurons from FUS toxicity and preserved rats' spatial memory. Our FUS transgenic rats would be useful to the mechanistic study of cortical dementia in FTLD. As rosiglitazone is clinically used to treat diabetes, our results would encourage immediate application of PPAR-γ agonists in treating patients with cortical dementia.
Collapse
Affiliation(s)
- Cao Huang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bendotti C, Marino M, Cheroni C, Fontana E, Crippa V, Poletti A, De Biasi S. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Prog Neurobiol 2011; 97:101-26. [PMID: 22033150 DOI: 10.1016/j.pneurobio.2011.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/29/2011] [Accepted: 10/11/2011] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major intracellular proteolytic mechanism controlling the degradation of misfolded/abnormal proteins. A common hallmark in amyotrophic lateral sclerosis (ALS) and in other neurodegenerative disorders is the accumulation of misfolded/abnormal proteins into the damaged neurons, leading to the formation of cellular inclusions that are mostly ubiquitin-positive. Although proteolysis is a complex mechanism requiring the participation of different pathways, the abundant accumulation of ubiquitinated proteins strongly suggests an important contribution of UPS to these neuropathological features. The use of cellular and animal models of ALS, particularly those expressing mutant SOD1, the gene mutation most represented in familiar ALS, has provided significant evidence for a role of UPS in protein inclusions formation and motor neuron death. This review will specifically discuss this piece of evidence and provide suggestions of potential strategies for therapeutic intervention. We will also discuss the finding that, unlike the constitutive proteasome subunits, the inducible subunits are overexpressed early during disease progression in SOD1 mice models of ALS. These subunits form the immunoproteasome and generate peptides for the major histocompatibility complex class I molecules, suggesting a role of this system in the immune responses associated with the pathological features of ALS. Since recent discoveries indicate that innate and adaptive immunity may influence the disease process, in this review we will also provide evidence of a possible connection between immune-inflammatory reactions and UPS function, in the attempt to better understand the etiopathology of ALS and to identify appropriate targets for novel treatment strategies of this devastating disease.
Collapse
Affiliation(s)
- Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via La Masa, 19, 20156 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Fujita Y, Watabe K, Ikeda K, Mizuno Y, Okamoto K. Morphological changes of Golgi apparatus in adult rats after facial nerve injuries. Neuropathology 2011; 31:42-7. [DOI: 10.1111/j.1440-1789.2010.01123.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Nassif M, Matus S, Castillo K, Hetz C. Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway. Antioxid Redox Signal 2010; 13:1955-89. [PMID: 20560784 DOI: 10.1089/ars.2009.2991] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motoneuron degenerative disease characterized by the selective loss of motoneurons in the spinal ventral horn, most brainstem nuclei, and the cerebral cortex. Although approximately 90% of ALS cases are sporadic (sALS), analyses of familial ALS (fALS)-causative genes have generated relevant insight into molecular events involved in the pathology. Here we overview an emerging concept indicating the occurrence of secretory pathway stress in the disease process. These alterations include a failure in the protein folding machinery at the endoplasmic reticulum (ER), engagement of the unfolded protein response (UPR), modifications of the Golgi apparatus network, impaired vesicular trafficking, inhibition of protein quality control mechanisms, oxidative damage to ER proteins, and sustained activation of degradative pathways such as autophagy. A common feature predicted for most of these alterations is abnormal protein homeostasis associated with the accumulation of misfolded proteins at the ER, possibly leading to chronic ER stress and neuronal dysfunction. Signs of ER stress are observed even during presymptomatic stages in fALS mouse models, and pharmacological strategies to alleviate protein misfolding slow disease progression. Because the secretory pathway stress occurs in both sALS and several forms of fALS, it may offer a unique common target for possible therapeutic strategies to treat this devastating disease.
Collapse
Affiliation(s)
- Melissa Nassif
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences , Faculty of Medicine, NEMO Millennium Nucleus, Santiago, Chile
| | | | | | | |
Collapse
|
29
|
Okamoto K, Fujita Y, Mizuno Y. Pathology of protein synthesis and degradation systems in ALS. Neuropathology 2010; 30:189-93. [PMID: 20102523 DOI: 10.1111/j.1440-1789.2009.01088.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein synthesis and degradation systems in neurons are among the major subjects of study in neurobiology. These systems are believed to be the main pathways involved in ALS; however, the essential pathomechanisms that underlie this disease remain obscure. In addition to the ubiquitin-proteasomal and autophagic systems, several cytoplasmic organelles are also involved in ALS. Here, we present our data and discuss the main morphological abnormalities detected in the anterior horn cells of ALS patients.
Collapse
Affiliation(s)
- Koichi Okamoto
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | | | | |
Collapse
|
30
|
Czöndör K, Ellwanger K, Fuchs YF, Lutz S, Gulyás M, Mansuy IM, Hausser A, Pfizenmaier K, Schlett K. Protein kinase D controls the integrity of Golgi apparatus and the maintenance of dendritic arborization in hippocampal neurons. Mol Biol Cell 2009; 20:2108-20. [PMID: 19211839 DOI: 10.1091/mbc.e08-09-0957] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein kinase D (PKD) is known to participate in various cellular functions, including secretory vesicle fission from the Golgi and plasma membrane-directed transport. Here, we report on expression and function of PKD in hippocampal neurons. Expression of an enhanced green fluorescent protein (EGFP)-tagged PKD activity reporter in mouse embryonal hippocampal neurons revealed high endogenous PKD activity at the Golgi complex and in the dendrites, whereas PKD activity was excluded from the axon in parallel with axonal maturation. Expression of fluorescently tagged wild-type PKD1 and constitutively active PKD1(S738/742E) (caPKD1) in neurons revealed that both proteins were slightly enriched at the trans-Golgi network (TGN) and did not interfere with its thread-like morphology. By contrast, expression of dominant-negative kinase inactive PKD1(K612W) (kdPKD1) led to the disruption of the neuronal Golgi complex, with kdPKD1 strongly localized to the TGN fragments. Similar findings were obtained from transgenic mice with inducible, neuron-specific expression of kdPKD1-EGFP. As a prominent consequence of kdPKD1 expression, the dendritic tree of transfected neurons was reduced, whereas caPKD1 increased dendritic arborization. Our results thus provide direct evidence that PKD activity is selectively involved in the maintenance of dendritic arborization and Golgi structure of hippocampal neurons.
Collapse
Affiliation(s)
- Katalin Czöndör
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary H-1117
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fujita Y, Mizuno Y, Takatama M, Okamoto K. Anterior horn cells with abnormal TDP-43 immunoreactivities show fragmentation of the Golgi apparatus in ALS. J Neurol Sci 2008; 269:30-4. [DOI: 10.1016/j.jns.2007.12.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
32
|
Golgi apparatus and neurodegenerative diseases. Int J Dev Neurosci 2008; 26:523-34. [PMID: 18599251 DOI: 10.1016/j.ijdevneu.2008.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/26/2008] [Accepted: 05/16/2008] [Indexed: 11/24/2022] Open
Abstract
Neurodegenerative disorders are typically characterized by progressive and extensive neuronal loss in specific populations of neurons and brain areas which lead to the observed clinical manifestations. Despite the recent advances in molecular neuroscience, the subcellular bases such as Golgi apparatus (GA) for most neurodegenerative diseases are poorly understood. This review gives a brief overview of the contribution of the neuronal GA in the pathogeneses of neurodegeneration, summarizes what is known of the GA machinery in these diseases, and present the relationship between GA fragmentation and the aggregation and accumulation of misfolded or aberrant proteins including mutant SOD1, a-synuclein, tau, which is considered to be a key event in the pathogenic process, and perturbating in calcium homeostasis, regulation of hormones, lipid metabolism are also linkage to the function of the GA thought to underlie neurodegeneration. Although these precise diseases mechanisms remain to be clarified, more research is needed to better understand how GA function for it and to enable physicians to use this knowledge for the benefit of the patients.
Collapse
|
33
|
Hu Z, Zeng L, Xie L, Lu W, Zhang J, Li T, Wang X. Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-beta1 in Golgi apparatus in gerbils following transient forebrain ischemia. Neurochem Res 2007; 32:1927-31. [PMID: 17564835 DOI: 10.1007/s11064-007-9382-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
Golgi apparatus (GA) is a very important organelle involved in the metabolism of numerous proteins. TGF-beta1 plays an important role in supporting neuronal survival after ischemic insults. Little is known, however, about the morphological alteration of GA and subcellular compartmentalization of TGF-beta1 in brain after ischemia. Therefore, our present study was designed to check for GA morphological alterations and TGF-beta1 subcellular localization. GA immunoreactivities were examined in the somatosensory cortex of gerbils after 10 min transient forebrain ischemia. Confocal Immunofluorographs of TGF-beta1 and TGN38 were also taken. Results indicated that no fragmentation of GA was found in gerbils of norm, shams and 6, 24 and 72 h postocclusion, but some of the cortical cells showed fragmentation of GA in gerbils 7 days postocclusion. TGF-beta1 was colocalized with TGN38, a marker molecule for the GA. We conclude that there was morphological alterations of GA and TGF-beta1 was present in GA in the somatosensory cortex after 10 min ischemia.
Collapse
Affiliation(s)
- Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Ramamohan PY, Gourie-Devi M, Nalini A, Shobha K, Ramamohan Y, Joshi P, Raju TR. Cerebrospinal fluid from amyotrophic lateral sclerosis patients causes fragmentation of the Golgi apparatus in the neonatal rat spinal cord. ACTA ACUST UNITED AC 2007; 8:79-82. [PMID: 17453633 DOI: 10.1080/08037060601145489] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously shown in our laboratory that cerebrospinal fluid from ALS patients (ALS-CSF) contains putative toxic factor(s). In the present study we determined the effect of ALS-CSF on the integrity of the Golgi apparatus of spinal motor neurons in the neonatal rats. CSF was injected intrathecally into three-day-old rat pups and subsequently the ultrastructural changes in the motor neurons were studied after 48 h, 1, 2 and 3 weeks. We observed that ALS-CSF causes fragmentation of the Golgi apparatus in a considerable number of motor neurons in the spinal cord. This was further confirmed when motor neurons were stained with an antibody against a medial Golgi protein (MG160). Thus, we suggest that the putative toxin(s) present in ALS-CSF may cause impairment in the protein processing leading to motor neuron death.
Collapse
Affiliation(s)
- Priti Y Ramamohan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
35
|
Sarkanen JR, Nykky J, Siikanen J, Selinummi J, Ylikomi T, Jalonen TO. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells. J Neurochem 2007; 102:1941-1952. [PMID: 17540009 DOI: 10.1111/j.1471-4159.2007.04676.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic vesicle formation, vesicle activation and exo/endocytosis in the pre-synaptic area are central steps in neuronal communication. The formation and localization of synaptic vesicles in human SH-SY5Y neuroblastoma cells, differentiated with 12-o-tetradecanoyl-phorbol-13-acetate, dibutyryl cyclic AMP, all-trans-retinoic acid (RA) and cholesterol, was studied by fluorescence microscopy and immunocytochemical methods. RA alone or together with cholesterol, produced significant neurite extension and formation of cell-to-cell contacts. Synaptic vesicle formation was followed by anti-synaptophysin (SypI) and AM1-43 staining. SypI was only weakly detected, mainly in cell somata, before 7 days in vitro, after which it was found in neurites. Depolarization of the differentiated cells with high potassium solution increased the number of fluorescent puncta, as well as SypI and AM1-43 co-localization. In addition to increase in the number of synaptic vesicles, RA and cholesterol also increased the number and distribution of lysosome-associated membrane protein 2 labeled lysosomes. RA-induced Golgi apparatus fragmentation was partly avoided by co-treatment with cholesterol. The SH-SY5Y neuroblastoma cell line, differentiated by RA and cholesterol and with good viability in culture, is a valuable tool for basic studies of neuronal metabolism, specifically as a model for dopaminergic neurons.
Collapse
Affiliation(s)
- Jertta-Riina Sarkanen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jonna Nykky
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jutta Siikanen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jyrki Selinummi
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Timo Ylikomi
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Tuula O Jalonen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
36
|
Tashiro J, Kikuchi S, Shinpo K, Kishimoto R, Tsuji S, Sasaki H. Role of p53 in neurotoxicity induced by the endoplasmic reticulum stress agent tunicamycin in organotypic slice cultures of rat spinal cord. J Neurosci Res 2007; 85:395-401. [PMID: 17131418 DOI: 10.1002/jnr.21120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is important for maintaining the quality of cellular proteins. Various stimuli can disrupt ER homeostasis and cause the accumulation of unfolded or misfolded proteins, i.e., a state of ER stress. Recently, ER stress has been reported to play an important role in the pathogenesis of neurological disorders such as cerebral ischemia and neurodegenerative diseases, but its involvement in the spinal cord diseases has not been fully discussed. We conducted this study using tunicamycin (Tm) as an ER stress inducer for rat spinal cord in organotypic slice culture, a system that we have recently established. Tm was shown to induce ER stress by increased expression of GRP78. The viability rate of spinal cord neurons decreased in a dose-dependent manner with Tm treatment, and dorsal horn interneurons were more vulnerable to Tm-induced neurotoxicity. A p53 inhibitor significantly increased the viability of dorsal horn interneurons, and immunofluorescence studies showed nuclear accumulation of p53 in the dorsal horns of Tm-treated spinal cord slices. These findings suggest that p53 plays an important role in the killing of dorsal horn interneurons by Tm. In contrast, motor neurons were not protected by the p53 inhibitor, suggesting that the role of p53 may vary between different cell types. This difference might be a clue to the mechanism of the stress-response pathway and might also contribute to the potential application of p53 inhibitors for the treatment of spinal cord diseases, including amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jun Tashiro
- Department of Neurology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|