1
|
Chipika RH, Christidi F, Finegan E, Li Hi Shing S, McKenna MC, Chang KM, Karavasilis E, Doherty MA, Hengeveld JC, Vajda A, Pender N, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O, Bede P. Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis. J Neurol Sci 2020; 417:117039. [PMID: 32713609 DOI: 10.1016/j.jns.2020.117039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Temporal lobe studies in motor neuron disease overwhelmingly focus on white matter alterations and cortical grey matter atrophy. Reports on amygdala involvement are conflicting and the amygdala is typically evaluated as single structure despite consisting of several functionally and cytologically distinct nuclei. A prospective, single-centre, neuroimaging study was undertaken to comprehensively characterise amygdala pathology in 100 genetically-stratified ALS patients, 33 patients with PLS and 117 healthy controls. The amygdala was segmented into groups of nuclei using a Bayesian parcellation algorithm based on a probabilistic atlas and shape deformations were additionally assessed by vertex analyses. The accessory basal nucleus (p = .021) and the cortical nucleus (p = .022) showed significant volume reductions in C9orf72 negative ALS patients compared to controls. The lateral nucleus (p = .043) and the cortico-amygdaloid transition (p = .024) were preferentially affected in C9orf72 hexanucleotide carriers. A trend of total volume reduction was identified in C9orf72 positive ALS patients (p = .055) which was also captured in inferior-medial shape deformations on vertex analyses. Our findings highlight that the amygdala is affected in ALS and our study demonstrates the selective involvement of specific nuclei as opposed to global atrophy. The genotype-specific patterns of amygdala involvement identified by this study are consistent with the growing literature of extra-motor clinical features. Mesial temporal lobe pathology in ALS is not limited to hippocampal pathology but, as a key hub of the limbic system, the amygdala is also affected in ALS.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Department of Neurology, Aeginition Hospital, University of Athens, Greece
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Efstratios Karavasilis
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; 2nd Department of Radiology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Niall Pender
- Department of psychology, Beaumont Hospital Dublin, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Belfast, Western Health & Social Care Trust, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
2
|
Wurm R, Klotz S, Rahimi J, Katzenschlager R, Lindeck-Pozza E, Regelsberger G, Danics K, Kapas I, Bíró ZA, Stögmann E, Gelpi E, Kovacs GG. Argyrophilic grain disease in individuals younger than 75 years: clinical variability in an under-recognized limbic tauopathy. Eur J Neurol 2020; 27:1856-1866. [PMID: 32402145 DOI: 10.1111/ene.14321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Argyrophilic grain disease (AGD) is a limbic-predominant 4R-tauopathy. AGD is thought to be an age-related disorder and is frequently detected as a concomitant pathology with other neurodegenerative conditions. There is a paucity of data on the clinical phenotype of pure AGD. In elderly patients, however, AGD pathology frequently associates with cognitive decline, personality changes, urine incontinence and cachexia. In this study, clinicopathological findings were analysed in individuals younger than 75. METHODS Patients were identified retrospectively based on neuropathological examinations during 2006-2017 and selected when AGD was the primary and dominant pathological finding. Clinical data were obtained retrospectively through medical records. RESULTS In all, 55 patients (2% of all examinations performed during that period) with AGD were identified. In seven cases (13%) AGD was the primary neuropathological diagnosis without significant concomitant pathologies. Two patients were female, median age at the time of death was 64 years (range 51-74) and the median duration of disease was 3 months (range 0.5-36). The most frequent symptoms were progressive cognitive decline, urinary incontinence, seizures and psychiatric symptoms. Brain magnetic resonance imaging revealed mild temporal atrophy. CONCLUSIONS Argyrophilic grain disease is a rarely recognized limbic tauopathy in younger individuals. Widening the clinicopathological spectrum of tauopathies may allow identification of further patients who could benefit from tau-based therapeutic strategies.
Collapse
Affiliation(s)
- R Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - S Klotz
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - J Rahimi
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Danube Hospital, Vienna, Austria
| | - R Katzenschlager
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Danube Hospital, Vienna, Austria
| | - E Lindeck-Pozza
- Department of Neurology, Sozialmedizinisches Zentrum Süd Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - G Regelsberger
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - K Danics
- Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - I Kapas
- Neurology and Stroke Department, Szt. Janos Hospital, Budapest, Hungary
| | - Z A Bíró
- Department of Neurology, Pest County Flor Ferenc Hospital, Kistarcsa, Hungary
| | - E Stögmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - E Gelpi
- Department of Neurology, Sozialmedizinisches Zentrum Süd Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - G G Kovacs
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
3
|
Braak H, Del Tredici K. Anterior Cingulate Cortex TDP-43 Pathology in Sporadic Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2017; 77:74-83. [DOI: 10.1093/jnen/nlx104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023] Open
|
4
|
Takeda T. Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology 2017; 38:72-81. [PMID: 28960544 DOI: 10.1111/neup.12428] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
Transactivation response DNA-binding protein 43 kDa (TDP-43) has been regarded as a major component of ubiquitin-positive/tau-negative inclusions of motor neurons and the frontotemporal cortices in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Neurofibrillary tangles (NFT), an example of tau-positive inclusions, are biochemically and morphologically distinguished from TDP-43-positive inclusions, and are one of the pathological core features of Alzheimer disease (AD). Although ALS/FTLD and AD are distinct clinical entities, they can coexist in an individual patient. Whether concurrence of ALS/FTLD-TDP-43 and AD-tau is incidental is still controversial, because aging is a common risk factor for ALS/FTLD and AD development. Indeed, it remains unclear whether the pathogenesis of ALS/FTLD is a direct causal link to tau accumulation. Recent studies suggested that AD pathogenesis could cause the accumulation of TDP-43, while abnormal TDP-43 accumulation could also lead to abnormal tau expression. Overlapping presence of TDP-43 and tau, when observed in a brain during autopsy, should attract attention, and should initiate the search for the pathological substrate for this abnormal protein accumulation. In addition to tau, other proteins including α-synuclein and amyloid β should be also taken into account as candidates for an interaction with TDP-43. Awareness of a possible comorbidity between TDP-43, tau and other proteins in patients with ALS/FTLD will be useful for our understanding of the influence of these proteins on the disease development and its clinical manifestation.
Collapse
Affiliation(s)
- Takahiro Takeda
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Yokota O, Miki T, Ikeda C, Nagao S, Takenoshita S, Ishizu H, Haraguchi T, Kuroda S, Terada S, Yamada N. Neuropathological comorbidity associated with argyrophilic grain disease. Neuropathology 2017; 38:82-97. [PMID: 28906054 DOI: 10.1111/neup.12429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023]
Abstract
Argyrophilic grain disease (AGD) is a common four-repeat tauopathy in elderly people. While dementia is a major clinical picture of AGD, recent studies support the possibility that AGD may be a pathological base in some patients with mild cognitive impairment, late-onset psychosis, bipolar disorder and depression. AGD often coexists with various other degenerative changes. The frequency of AGD in progressive supranuclear palsy (PSP) cases was reported to range from 18.8% to 80%. The frequency of AGD in corticobasal degeneration (CBD) cases tends to be higher than that in PSP cases, ranging from 41.2% to 100%. Conversely, in our previous study of the frequencies of mild PSP and CBD pathologies in AGD cases, five of 20 AGD cases (25%) had a few Gallyas-positive tufted astrocytes, six cases (30%) had a few granular/fuzzy astrocytes, and one case (5.0%) had a few Gallyas-positive astrocytic plaques in the putamen, caudate nucleus and/or superior frontal gyrus. Both Gallyas-positive tufted astrocytes and Gallyas-negative tau-positive granular/fuzzy astrocytes preferentially developed in the putamen, caudate nucleus and superior frontal cortex in AGD cases, being consistent with the predilection sites of Gallyas-positive tufted astrocytes in PSP cases. Further, in AGD cases, the quantities of Gallyas-positive tufted astrocytes, overall tau-positive astrocytes, and tau-positive neurons in the subcortical nuclei and superior frontal cortex were significantly correlated with Saito AGD stage, respectively. The frequency of AGD in AD cases was reported to reach up to 25% when using four-repeat tau immunohistochemistry. Pretangles are essential pathologies in AGD; however, the Braak stage of three-repeat tau-positive NFTs, which may indicate mild AD pathology or primary age-related tauopathy, was not correlated with Saito AGD stage. Clinicians should be aware of the possibility that coexisting AGD may impact clinical and radiological features in cases of other degenerative diseases.
Collapse
Affiliation(s)
- Osamu Yokota
- Department of Psychiatry, Kinoko Espoir Hospital, Okayama, Japan.,Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Miki
- Department of Psychiatry, Kinoko Espoir Hospital, Okayama, Japan.,Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chikako Ikeda
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Psychiatry, Zikei Hospital, Okayama, Japan
| | - Shigeto Nagao
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Neurology, Saiseikai Nakatsu Hospital and Medical Center, Osaka, Japan
| | - Shintaro Takenoshita
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideki Ishizu
- Department of Psychiatry, Zikei Institute of Psychiatry, Okayama, Japan
| | - Takashi Haraguchi
- Department of Neurology, National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Shigetoshi Kuroda
- Department of Psychiatry, Zikei Institute of Psychiatry, Okayama, Japan
| | - Seishi Terada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
6
|
Abstract
Argyrophilic grain disease (AGD) is an under-recognized, distinct, highly frequent sporadic tauopathy, with a prevalence reaching 31.3% in centenarians. The most common AGD manifestation is slowly progressive amnestic mild cognitive impairment, accompanied by a high prevalence of neuropsychiatric symptoms. AGD diagnosis can only be achieved postmortem based on the finding of its three main pathologic features: argyrophilic grains, oligodendrocytic coiled bodies and neuronal pretangles. AGD is frequently seen together with Alzheimer's disease-type pathology or in association with other neurodegenerative diseases. Recent studies suggest that AGD may be a defense mechanism against the spread of other neuropathological entities, particularly Alzheimer's disease. This review aims to provide an in-depth overview of the current understanding on AGD.
Collapse
Affiliation(s)
- Roberta Diehl Rodriguez
- MD, Department of Pathology, University of São Paulo, SP, Brazil; Brazilian Aging Brain Study Group, LIM-22, University of São Paulo, São Paulo, Brazil
| | - Lea Tenenholz Grinberg
- MD, PhD, Department of Pathology, University of São Paulo, SP, Brazil; Memory and Aging Center, Department of Neurology and Pathology, University of California, San Francisco; Brazilian Aging Brain Study Group, LIM-22, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
TDP-43 deposition in prospectively followed, cognitively normal elderly individuals: correlation with argyrophilic grains but not other concomitant pathologies. Acta Neuropathol 2013; 126:51-7. [PMID: 23604587 DOI: 10.1007/s00401-013-1110-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/21/2013] [Indexed: 10/26/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) has been heavily researched in recent years due to its involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Several studies have also sought to investigate the frequency of TDP-43 deposition in other neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, but there has been relatively little work focused on the prevalence, distribution and histopathological associations of abnormal TDP-43 deposits in the brains of cognitively normal elderly subjects. We screened thick, free-floating coronal sections of mesial temporal lobe from 110 prospectively followed and autopsied cognitively normal subjects (age range 71-100 years) using an immunohistochemical method for phosphorylated TDP-43. We found a 36.4 % prevalence of pathologic TDP-43, mostly in the form of neurites while perikaryal cytoplasmic neuronal inclusions were uncommon and intranuclear inclusions were rare. With respect to other concomitant pathologies commonly found in elderly individuals, cases with TDP-43 had a greater prevalence of argyrophilic grains (ARG) (40 vs. 18.6 %) and overall ARG density (moderate vs. sparse). There were no additional associations with other concomitant pathologies, including cerebral white matter rarefaction, incidental Lewy bodies, neurofibrillary tangles or amyloid plaques. These results indicate deposition of TDP-43 occurs in a substantial subset of cognitively normal elderly subjects and is more common in those with ARG, supporting some previous studies linking pathological TDP-43 deposition with ARG and other pathological tau protein deposits.
Collapse
|
8
|
Soma K, Fu YJ, Wakabayashi K, Onodera O, Kakita A, Takahashi H. Co-occurrence of argyrophilic grain disease in sporadic amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2012; 38:54-60. [PMID: 21702760 DOI: 10.1111/j.1365-2990.2011.01175.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Phosphorylated TDP-43 (pTDP-43) is the pathological protein responsible for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Recently, it has been reported that accumulation of pTDP-43 can occur in the brains of patients with argyrophilic grain disease (AGD), in which phosphorylated 4-repeat tau is the pathological protein. To elucidate the association of ALS with AGD, we examined the brains from 37 consecutively autopsied patients with sporadic ALS (age range 45-84 years, mean 71.5 ± 9.0 years). METHODS Sections from the frontotemporal lobe were stained with the Gallyas-Braak method and also immunostained with antibodies against phosphorylated tau, 4-repeat tau and pTDP-43. RESULTS Fourteen (38%) of the 37 ALS patients were found to have AGD. With regard to staging, 5 of these 14 cases were rated as I, 4 as II and 5 as III. pTDP-43 immunohistochemistry revealed the presence of positive neuronal and glial cytoplasmic inclusions in the affected medial temporal lobe in many cases (93% and 64%, respectively). On the other hand, pTDP-43-positive small structures corresponding to argyrophilic grains were observed only in one case. A significant correlation was found between AGD and the Braak stage for neurofibrillary pathology (stage range 0-V, mean 2.1). However, there were no significant correlations between AGD and any other clinicopathological features, including dementia. CONCLUSIONS The present findings suggest that co-occurrence of AGD in ALS is not uncommon, and in fact comparable with that in a number of diseases belonging to the tauopathies or α-synucleinopathies.
Collapse
Affiliation(s)
- K Soma
- Department of Pathology, Center for Bioresources, Brain Research Institute, University of Niigata, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Yokota O. Frontotemporal lobar degeneration and dementia with Lewy bodies: clinicopathological issues associated with antemortem diagnosis. Psychogeriatrics 2009; 9:91-102. [PMID: 19604332 DOI: 10.1111/j.1479-8301.2009.00286.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, the clinical diagnostic criteria of frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB) are well known to neurologists and psychiatrists. However, the accuracy of the clinical diagnosis of these diseases in autopsy series is not always adequate. For example, FTLD is a syndrome rather than a clinicopathological disease entity that is comprised of various pathological substrates, including Pick's disease, FTLD with microtubule-associated protein tau gene mutation, FTLD with tau-negative ubiquitin-positive inclusions (FTLD-U), FTLD-U with progranulin gene mutation, corticobasal degeneration, basophilic inclusion body disease, and neuronal intermediate filament inclusion disease. Whether these underlying pathologies can be identified clinically is one of the greatest interests in neuropathological research. The pathophysiological relationship between Lewy pathology and Alzheimer pathology in DLB is explored with interest because it may be associated with the accuracy of clinical diagnoses. For example, although Lewy pathology may progress from the brain stem nuclei to the cerebral cortex in Parkinson's disease, recent studies have demonstrated that the progression pattern in DLB is not always identical to that in Parkinson's disease. It is also considered that the progression pattern of Lewy pathology correlates with the evolution of clinical symptoms and that the progression pattern of Lewy pathology may be altered when Alzheimer pathology coexists. In the present paper, the clinicopathological features of two demented cases are presented, and some pathological issues associated with the clinical diagnosis of FTLD and DLB are discussed.
Collapse
Affiliation(s)
- Osamu Yokota
- Department of Neuropathology, Tokyo Institute of Psychiatry, Tokyo, Japan.
| |
Collapse
|