1
|
Park EJ, Kim SN, Lee GH, Jo YM, Yoon C, Kim DW, Cho JW, Han JS, Lee SJ, Seong E, Park EJ, Oh I, Lee HS. Inhaled underground subway dusts may stimulate multiple pathways of cell death signals and disrupt immune balance. ENVIRONMENTAL RESEARCH 2020; 191:109839. [PMID: 32810496 DOI: 10.1016/j.envres.2020.109839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, we aimed to identify a toxic mechanism and the potential health effects of ambient dusts in an underground subway station. At 24 h exposure to human bronchial epithelial (BEAS-2B) cells (0, 2.5, 10, and 40 μg/mL), dusts located within autophagosome-like vacuoles, whereas a series of autophagic processes appeared to be blocked. The volume, potential and activity of mitochondria decreased in consistent with a condensed configuration, and the percentage of late apoptotic cells increased accompanying S phase arrest. While production of reactive oxygen species, expression of ferritin (heavy chain) protein, secretion of IL-6, IL-8 and matrix metalloproteinases, and the released LDH level notably increased in dust-treated cells (40 μg/mL), intracellular calcium level decreased. At day 14 after a single instillation to mice (0, 12.5, 50, and 200 μg/head), the total number of cells increased in the lungs of dust-treated mice with no significant change in cell composition. The pulmonary levels of TGF-β, GM-CSF, IL-12 and IL-13 clearly increased following exposure to dusts, whereas that of CXCL-1 was dose-dependently inhibited. Additionally, the population of cytotoxic T cells in T lymphocytes in the spleen increased relative to that of helper T cells, and the levels of IgA and IgM in the bloodstream were significantly reduced in the dust-treated mice. Subsequently, to improve the possibility of extrapolating our findings to humans, we repeatedly instilled dusts (1 time/week, 4 weeks, 0.25 and 1.0 mg/head) to monkeys. The total number of cells, the relative portion of neutrophils, the level of TNF-α significantly increased in the lungs of dust-treated monkeys, and the expression of cytochrome C was enhanced in the lung tissues. Meanwhile, the pulmonary level of MIP-α was clearly reduced, and the expression of caveolin-1 was inhibited in the lung tissues. More importantly, inflammatory lesions, such as granuloma, were seen in both mice and monkeys instilled with dusts. Taken together, we conclude that dusts may impair the host's immune function against foreign bodies by inhibiting the capacity for production of antibodies. In addition, iron metabolism may be closely associated with dust-induced cell death and inflammatory response.
Collapse
Affiliation(s)
- Eun-Jung Park
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea.
| | - Soo-Nam Kim
- Bio-Health Convergence Institute GLP Lab, Korea Testing Certification Institute, Cheongju, 28115, South Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Young-Min Jo
- Department of Environmental Science and Engineering, Global Campus, Kyung Hee University, Yongin-Si, 17104, South Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, 126-16, South Korea
| | - Dong-Wan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Jae-Woo Cho
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Ji-Seok Han
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Sang Jin Lee
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, South Korea
| | - Eunsol Seong
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
| | - Eun-Jun Park
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
| | - Inkyung Oh
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Hong-Soo Lee
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, South Korea.
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Diabetic nephropathy, a major microvascular complication of diabetes and the most common cause of end-stage renal disease, is characterized by prominent accumulation of extracellular matrix. The membrane microdomains caveolae, and their integral protein caveolin-1, play critical roles in the regulation of signal transduction. In this review we discuss current knowledge of the contribution of caveolin-1/caveolae to profibrotic signaling and the pathogenesis of diabetic kidney disease, and assess its potential as a therapeutic target. RECENT FINDINGS Caveolin (cav)-1 is key to facilitating profibrotic signal transduction induced by several stimuli known to be pathogenic in diabetic nephropathy, including the most prominent factors hyperglycemia and angiotensin II. Phosphorylation of cav-1 on Y14 is an important regulator of these responses. In vivo studies support a pathogenic role for caveolae in the progression of diabetic nephropathy. Targeting caveolin-1/caveolae would enable inhibition of multiple profibrotic pathways, representing a novel and potentially potent therapeutic option for diabetic nephropathy.
Collapse
Affiliation(s)
- Richard Van Krieken
- Department of Medicine, Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave E, T3311, Hamilton, ON, L8N 4A6, Canada
| | - Joan C Krepinsky
- Department of Medicine, Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave E, T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
3
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
4
|
Moriyama T, Tsuruta Y, Shimizu A, Itabashi M, Takei T, Horita S, Uchida K, Nitta K. The significance of caveolae in the glomeruli in glomerular disease. J Clin Pathol 2011; 64:504-9. [PMID: 21450752 DOI: 10.1136/jcp.2010.087023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS The aim of this study was to demonstrate expression of cell membrane invagination 'caveolae' in glomeruli and to correlate this with functional and structural characteristics of the human glomerular diseases. METHODS The expression of caveolin-1 (Cav-1), which is the main component of caveolae, was examined in the glomeruli, and the relationship between Cav-1 expression and pathological and clinical findings was determined in 99 patients with glomerular disease and in 50 renal transplantation donors as controls. RESULTS Cav-1 was expressed very weakly in the controls, and the area of Cav-1 expression relative to the total glomerular area was 0.57±0.65%. However, the area of Cav-1 expression was significantly larger in each glomerular disease (IgA nephropathy, 1.05±1.36%, p<0.05; crescent glomerulonephritis, 1.86±1.19%, p<0.001; minimal change disease, 2.38±1.24%, p<0.001; focal segmental glomerulosclerosis, 2.88±2.05%, p<0.01; membranous nephritis, 4.27±2.95%, p<0.001; membranoproliferative glomerulonephritis, 4.49±3.15%, p<0.001; and diabetic nephropathy, 2.45±1.52%, p<0.001; compared with the controls. Cav-1 expression was significantly decreased in glomerular disease treated with steroids. Co-localisation of Cav-1 and the endothelial marker 'pathologische anatomie leiden-endothelium' was prominent in an immunofluorescence study, and caveolae on the glomerular endothelial cells were observed in electron microscopy. CONCLUSIONS The expression of Cav-1 was significantly increased in the glomeruli of patients with glomerular disease, and it was related to urinary albumin excretion. Cav-1 expression and caveolae were observed in glomerular endothelial cells. It is hypothesised that they play a role in the recovery phase of capillary injury or endocytosis of albumin into endothelial cells. Basic research should be performed to elucidate the role played by Cav-1 and caveolae.
Collapse
Affiliation(s)
- Takahito Moriyama
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Marin E, Sessa WC. Role of endothelial-derived nitric oxide in hypertension and renal disease. Curr Opin Nephrol Hypertens 2007; 16:105-10. [PMID: 17293684 DOI: 10.1097/mnh.0b013e328017f893] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW To highlight recent advances in the field of endothelial-derived nitric oxide regulation of blood pressure and renal homeostasis. RECENT FINDINGS Many laboratories have dissected a role for nitric oxide in regulating blood pressure and renal function. In models of hypertension, and chronic and acute renal disease, the loss of nitric oxide bioavailability may occur due to inactivation of endothelial nitric oxide synthase, synthesis of endogenous inhibitors or oxidative inactivation of nitric oxide. SUMMARY Understanding the molecular mechanisms of nitric oxide synthesis may lead to novel diagnostics and treatments for cardiovascular disorders.
Collapse
Affiliation(s)
- Ethan Marin
- Departments of Pharmacology and Nephrology and Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
7
|
McGuire BB, Watson RWG, Pérez-Barriocanal F, Fitzpatrick JM, Docherty NG. Gender differences in the renin-angiotensin and nitric oxide systems: relevance in the normal and diseased kidney. Kidney Blood Press Res 2007; 30:67-80. [PMID: 17268203 DOI: 10.1159/000099150] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Female gender is associated with better renal function and resistance to renal injury, suggesting that an oestrogen-based effect or increased androgenic effects are responsible. Studies in rodents have confirmed a biological basis for this, based on the differential effects of androgens and oestrogens on the normal and diseased kidney. Many researchers in the field believe that the pre-menopausal levels of oestrogen are key to the protection observed in females. The key pressor effects of the renin-angiotensin (RA) system are due to both direct vasoconstrictory properties and alterations in renal control of extracellular fluid volume. Additionally, the RA has been shown to promote diverse aspects of renal injury. RA activity is positively modulated by androgens and antagonized by oestrogens. Nitric oxide (NO) is a potent vasorelaxant with a key role in renal control of extracellular fluid homeostasis. NO can variously have both protective and deleterious effects on renal injury. Endogenous oestrogen has an anti-hypertensive effect as well as protective effects against cell and organ damage, many of which are mediated via increases in NO generation. We examine how the RA- and NO-generating systems may underpin key aspects of gender differences in normal renal function and renal disease.
Collapse
Affiliation(s)
- Barry B McGuire
- UCD School of Medicine and Medical Sciences, Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Republic of Ireland
| | | | | | | | | |
Collapse
|