1
|
Johnson AM, Lukens JR. The innate immune response in tauopathies. Eur J Immunol 2023; 53:e2250266. [PMID: 36932726 PMCID: PMC10247424 DOI: 10.1002/eji.202250266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Tauopathies, which include frontotemporal dementia, Alzheimer's disease, and chronic traumatic encephalopathy, are a class of neurological disorders resulting from pathogenic tau aggregates. These aggregates disrupt neuronal health and function leading to the cognitive and physical decline of tauopathy patients. Genome-wide association studies and clinical evidence have brought to light the large role of the immune system in inducing and driving tau-mediated pathology. More specifically, innate immune genes are found to harbor tauopathy risk alleles, and innate immune pathways are upregulated throughout the course of disease. Experimental evidence has expanded on these findings by describing pivotal roles for the innate immune system in the regulation of tau kinases and tau aggregates. In this review, we summarize the literature implicating innate immune pathways as drivers of tauopathy.
Collapse
Affiliation(s)
- Alexis M. Johnson
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Loughman A, Adler CJ, Macpherson H. Unlocking Modifiable Risk Factors for Alzheimer's Disease: Does the Oral Microbiome Hold Some of the Keys? J Alzheimers Dis 2023; 92:1111-1129. [PMID: 36872775 DOI: 10.3233/jad-220760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-β is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Collapse
Affiliation(s)
- Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, Barwon Health, Geelong, Victoria, Australia
| | - Christina J Adler
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Helen Macpherson
- Deakin University, IPAN - the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| |
Collapse
|
3
|
Sakakibara Y, Yamashiro R, Chikamatsu S, Hirota Y, Tsubokawa Y, Nishijima R, Takei K, Sekiya M, Iijima KM. Drosophila Toll-9 is induced by aging and neurodegeneration to modulate stress signaling and its deficiency exacerbates tau-mediated neurodegeneration. iScience 2023; 26:105968. [PMID: 36718365 PMCID: PMC9883205 DOI: 10.1016/j.isci.2023.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Drosophila Toll-9 is most closely related to mammalian Toll-like receptors; however, physiological functions of Toll-9 remain elusive. We examined the roles of Toll-9 in fly brains in aging and neurodegeneration. Toll-9 mRNA levels were increased in aged fly heads accompanied by activation of nuclear factor-kappa B (NF-kB) and stress-activated protein kinase (SAPK) signaling, and many of these changes were modulated by Toll-9 in glial cells. The loss of Toll-9 did not affect lifespan or brain integrity, whereas it exacerbated hydrogen peroxide-induced lethality. Toll-9 expression was also induced by nerve injury but did not affect acute stress response or glial engulfment activity, suggesting Toll-9 may modulate subsequent neurodegeneration. In a fly tauopathy model, Toll-9 deficiency enhanced neurodegeneration and disease-related tau phosphorylation with reduced SAPK activity, and blocking SAPK enhanced tau phosphorylation and neurodegeneration. In sum, Toll-9 is induced upon aging and nerve injury and affects neurodegeneration by modulating stress kinase signaling.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Yamashiro
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Reseach Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoko Tsubokawa
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| | - Koichi M. Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| |
Collapse
|
4
|
Russo M, Humes ST, Figueroa AM, Tagmount A, Zhang P, Loguinov A, Lednicky JA, Sabo-Attwood T, Vulpe CD, Liu B. Organochlorine Pesticide Dieldrin Suppresses Cellular Interferon-Related Antiviral Gene Expression. Toxicol Sci 2021; 182:260-274. [PMID: 34051100 DOI: 10.1093/toxsci/kfab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2. Interestingly, treatment of N27 cells with dieldrin markedly downregulated the expression of many of these genes. Dieldrin exterted a similar effect in inhibiting IFIT2 and MX1 gene expression in human SH-SY5Y neuronal cells induced by an RNA viral mimic, polyinosinic: polycytidylic acid (poly I:C) and IFIT2/3 gene expression in human pulmonary epithelial cells exposed to human influenza H1N1 virus. Mechanistically, dieldrin induced a rapid rise in levels of intracellular reactive oxygen species (iROS) and a decrease in intracellular glutathione (GSH) levels in SH-SY5Y cells. Treatment with N-acetylcysteine, an antioxidant and GSH biosynthesis precursor, effectively blocked both dieldrin-induced increases in iROS and its inhibition of poly I:C-induced upregulation of IFIT and MX gene expression, suggesting a role for intracellular oxidative status in dieldrin's modulation of antiviral gene expression. This study demonstrates that dieldrin modulates key genes of the cellular innate immune responses that are normally involved in the host's cellular defense against viral infections. Our findings have potential relevance to understanding the organismal effects of environmentally persistent organochlorine contaminants on the mammalian cellular immune system.
Collapse
Affiliation(s)
- Max Russo
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Sara T Humes
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Ariana M Figueroa
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Ping Zhang
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Alex Loguinov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Chris D Vulpe
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| |
Collapse
|
5
|
Lawrimore CJ, Crews FT. Ethanol, TLR3, and TLR4 Agonists Have Unique Innate Immune Responses in Neuron-Like SH-SY5Y and Microglia-Like BV2. Alcohol Clin Exp Res 2017; 41:939-954. [PMID: 28273337 PMCID: PMC5407472 DOI: 10.1111/acer.13368] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ethanol (EtOH) consumption leads to an increase of proinflammatory signaling via activation of Toll-like receptors (TLRs) such as TLR3 and TLR4 that leads to kinase activation (ERK1/2, p38, TBK1), transcription factor activation (NFκB, IRF3), and increased transcription of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6. This immune signaling cascade is thought to play a role in neurodegeneration and alcohol use disorders. While microglia are considered to be the primary macrophage in brain, it is unclear what if any role neurons play in EtOH-induced proinflammatory signaling. METHODS Microglia-like BV2 and retinoic acid-differentiated neuron-like SH-SY5Y were treated with TLR3 agonist Poly(I:C), TLR4 agonist lipopolysaccharide (LPS), or EtOH for 10 or 30 minutes to examine proinflammatory immune signaling kinase and transcription factor activation using Western blot, and for 24 hours to examine induction of proinflammatory gene mRNA using RT-PCR. RESULTS In BV2, both LPS and Poly(I:C) increased p-ERK1/2, p-p38, and p-NFκB by 30 minutes, whereas EtOH decreased p-ERK1/2 and increased p-IRF3. LPS, Poly(I:C), and EtOH all increased TNF-α and IL-1β mRNA, and EtOH further increased TLR2, 7, 8, and MD-2 mRNA in BV2. In SH-SY5Y, LPS had no effect on kinase or proinflammatory gene expression. However, Poly(I:C) increased p-p38 and p-IRF3, and increased expression of TNF-α, IL-1β, and IL-6, while EtOH increased p-p38, p-IRF3, p-TBK1, and p-NFκB while decreasing p-ERK1/2 and increasing expression of TLR3, 7, 8, and RAGE mRNA. HMGB1, a TLR agonist, was induced by LPS in BV2 and by EtOH in both cell types. EtOH was more potent at inducing proinflammatory gene mRNA in SH-SY5Y compared with BV2. CONCLUSIONS These results support a novel and unique mechanism of EtOH, TLR3, and TLR4 signaling in neuron-like SH-SY5Y and microglia-like BV2 that likely contributes to the complexity of brain neuroimmune signaling.
Collapse
Affiliation(s)
- Colleen J Lawrimore
- Bowles Center for Alcohol Studies , School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Neurobiology , University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fulton T Crews
- Bowles Center for Alcohol Studies , School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
White JD, Eimerbrink MJ, Hayes HB, Hardy A, Van Enkevort EA, Peterman JL, Chumley MJ, Boehm GW. Hippocampal Aβ expression, but not phosphorylated tau, predicts cognitive deficits following repeated peripheral poly I:C administration. Behav Brain Res 2016; 313:219-225. [PMID: 27449203 DOI: 10.1016/j.bbr.2016.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is marked by the accumulation of the amyloid-beta (Aβ) peptide, and increases in phosphorylation of the microtubule associated protein, tau. Changes in these proteins are considered responsible, in part, for the progressive neuronal degeneration and cognitive deficits seen in AD. We examined the effect of repeated consecutive peripheral poly I:C injections on cognitive deficits, central Aβ, and phosphorylated tau accumulation, following three treatment durations: 7, 14, and 21 days. Forty-eight hours after the final injection, animals were trained in a contextual fear-conditioning paradigm, and tested 24h later. Immediately after testing, the hippocampus was collected to quantify Aβ and phosphorylated tau accumulation. Results showed that, although poly I:C-induced Aβ was significantly elevated at all time points examined, poly I:C only disrupted cognition after 14 and 21 days of administration. Moreover, elevations in phosphorylated tau were not seen until the 14-day time point. Interestingly, phosphorylated tau expression then declined at the 21-day time point. Finally, we demonstrated that Aβ levels are a stronger predictor of cognitive dysfunction, explaining 37% of the variance, whereas phosphorylated tau levels only accounted for 0.2%. Taken together, these results support the hypothesis that inflammation-induced elevation in Aβ disrupts cognition, independently of phosphorylated tau, and suggest that long-term administration of poly I:C may provide a model to investigate the contribution of long-term inflammation toward the development of Alzheimer's-like pathology.
Collapse
Affiliation(s)
- J D White
- Department of Psychology, Texas Christian University, United States
| | - M J Eimerbrink
- Department of Psychology, Texas Christian University, United States
| | - H B Hayes
- Department of Biology, Texas Christian University, United States
| | - A Hardy
- Department of Biology, Texas Christian University, United States
| | - E A Van Enkevort
- Department of Psychology, Texas Christian University, United States
| | - J L Peterman
- Department of Psychology, Texas Christian University, United States
| | - M J Chumley
- Department of Biology, Texas Christian University, United States
| | - G W Boehm
- Department of Psychology, Texas Christian University, United States.
| |
Collapse
|
7
|
Azmitia EC, Singh JS, Hou XP, Wegiel J. Dystrophic serotonin axons in postmortem brains from young autism patients. Anat Rec (Hoboken) 2011; 294:1653-62. [PMID: 21901837 PMCID: PMC4112519 DOI: 10.1002/ar.21243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/01/2010] [Indexed: 02/04/2023]
Abstract
Autism causes neuropathological changes in varied anatomical loci. A coherent neural mechanism to explain the spectrum of autistic symptomatology has not been proposed because most anatomical researchers focus on point-to-point functional neural systems (e.g., auditory and social networks) rather than considering global chemical neural systems. Serotonergic neurons have a global innervation pattern. Disorders Research Program, AS073234, Program Project (JW). Their cell bodies are found in the midbrain but they project their axons throughout the neural axis beginning in the fetal brain. This global system is implicated in autism by animal models and by biochemical, imaging, pharmacological, and genetics studies. However, no anatomical studies of the 5-HT innervation of autistic donors have been reported. Our review presents immunocytochemical evidence of an increase in 5-HT axons in postmortem brain tissue from autism donors aged 2.8-29 years relative to controls. This increase is observed in the principle ascending fiber bundles of the medial and lateral forebrain bundles, and in the innervation density of the amygdala and the piriform, superior temporal, and parahippocampal cortices. In autistic donors 8 years of age and up, several types of dystrophic 5-HT axons were seen in the termination fields. One class of these dystrophic axons, the thick heavily stained axons, was not seen in the brains of patients with neurodegenerative diseases. These findings provide morphological evidence for the involvement of serotonin neurons in the early etiology of autism, and suggest new therapies may be effective to blunt serotonin's trophic actions during early brain development in children.
Collapse
Affiliation(s)
- Efrain C Azmitia
- Department of Biology, New York University, New York, 10003, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
The etiology of schizophrenia remains unclear, while there has been a growing amount of evidence for the neuroinflammation and immunogenetics, which are characterized by an increased serum concentration of several pro-inflammatory cytokines. Despite the fact that microglia comprise only <10% of the total brain cells, microglia respond rapidly to even minor pathological changes in the brain and may contribute directly to the neuronal degeneration by producing various pro-inflammatory cytokines and free radicals. In many aspects, the neuropathology of schizophrenia has recently been reported to be closely associatedwith microglial activation. Previous studies have shown the inhibitory effects of some typical/atypical antipsychotics on the release of inflammatory cytokines and free radicals from activated microglia, both of which have recently been known to cause a decrease in neurogenesis as well as white matter abnormalities in the brains of patients with schizophrenia. The microglia hypothesis of schizophrenia may shed new light on the therapeutic strategy for schizophrenia.
Collapse
Affiliation(s)
- Akira Monji
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
9
|
Atkinson TJ. Toll-like receptors, transduction-effector pathways, and disease diversity: evidence of an immunobiological paradigm explaining all human illness? Int Rev Immunol 2008; 27:255-81. [PMID: 18574739 DOI: 10.1080/08830180801959072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane-bound Toll-like receptors (TLRs) are frontline guardians in the mammalian innate immune system. They primarily function to recognize pathogen-associated molecular patterns (PAMPs) of invading microorganisms and on activation mount rapid, nonspecific innate responses and trigger sequential delayed specific adaptive cellular responses, which are mediated by complex signal transduction pathways involving adaptor molecules, costimulatory ligands and receptors, kinases, transcription factors, and modulated gene expression. Increasing evidence of multiple functionality and diversity suggests TLRs play critical roles in noninfective medical conditions such as cardiovascular, gastrointestinal, neurologic, musculoskeletal, obstetric, renal, liver, and dermatologic diseases, allergy, autoimmunity, and tissue regeneration. The significance of TLR heterogeneity underscores the possibility for establishing a universal immunobiological model to explain all human disease. Novel immunomodulatory therapies targeting specific or multiple TLRs may in the future offer new tools to combat or eradicate pathogenesis potentially transforming the landscape of current medical treatments.
Collapse
|
10
|
Kim H, Yang E, Lee J, Kim SH, Shin JS, Park JY, Choi SJ, Kim SJ, Choi IH. Double-stranded RNA mediates interferon regulatory factor 3 activation and interleukin-6 production by engaging Toll-like receptor 3 in human brain astrocytes. Immunology 2008; 124:480-8. [PMID: 18248388 DOI: 10.1111/j.1365-2567.2007.02799.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptor 3 (TLR3) participates in the innate immune response by recognizing viral pathogens. In this study, human brain astrocytes were found to constitutively express TLR3, and this expression was increased by interferon-gamma (IFN-gamma) or double-stranded RNA (dsRNA). Treatment employing dsRNA in astrocytes induced IFN regulatory factor 3 (IRF3) phosphorylation, dimer formation and nuclear translocation followed by STAT1 activation. This treatment also activated nuclear factor-kappaB, p38 and c-Jun N-terminal kinase significantly, while activating extracellular signal-regulated kinase to a lesser extent. Treatment with anti-TLR3 antibody inhibited dsRNA-mediated interleukin-6 (IL-6) production. In the presence of mitogen-activated protein kinase inhibitors, astrocytes failed to secrete IL-6 in response to dsRNA treatment. Therefore, dsRNA-induced IL-6 production is dependent on mitogen-activated protein kinases and type I IFN production is dependent on IRF3 in brain astrocytes. These results suggest that brain inflammation, which produces inflammatory cytokines and type I IFNs, may enhance TLR3 expression in astrocytes. Additionally, upregulated TLR3 might modulate inflammatory processes by producing proinflammatory cytokines.
Collapse
Affiliation(s)
- Hyemi Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|