1
|
Zhu J, Zhou L, Zhou Y, Lin Y, Cai Y, Wu J, Shi C. Diagnosis of schizophrenia by integrated saccade scores and associations with psychiatric symptoms, and functioning. Medicine (Baltimore) 2024; 103:e39935. [PMID: 39465854 PMCID: PMC11479490 DOI: 10.1097/md.0000000000039935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Eye movement as a neurobiological biomarker of schizophrenia. We aim to estimate diagnostic accuracy of integrated pro/antisaccade eye movement measurements to discriminate between healthy individuals and schizophrenic patients. We compared the eye movement performance of 85 healthy individuals and 116 schizophrenia-stable patients during prosaccade and antisaccade tasks. The difference eye movement measurements were accumulated by stepwise discriminant analysis to produce an integrated score. Finally, the diagnostic value of the integrated score was calculated by the receiver operating characteristic (ROC) area under the curve (AUC), and the best sensitivity and specificity were calculated based on the given cutoff values. Using discriminant analysis, an integrated score included the residual gain and latency (step) during the prosaccade test, the error rate, and the corrected error rate during the antisaccade test. We found that the integrated score could well classify schizophrenia patients and healthy individuals with an accuracy of 80.6%. In the ROC, Youden's index was 0.634 (sensitivity = 81.0%, specificity = 82.4%) and AUC was 0.871. There were significant difference patterns of correlation between the severity of psychiatric symptoms and daily functioning and diagnostic eye movement measurements. Using only 2 saccade tasks to discriminate well between schizophrenia patients and healthy controls, suggesting that abnormalities in saccade behavior is a potential biomarker and efficient diagnostic tool for identifying schizophrenia. The underlying neuropathologic mechanisms associated with abnormal saccades may provide insights into the intervention and diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Jiahui Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Li Zhou
- School of Education, Xinjiang Normal University, Xinjiang, China
| | - Yuanyuan Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yunhan Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yumei Cai
- Peking University Institute of Population Research, Beijing, China
| | - Jiayuan Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuan Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
2
|
Arai Y, Katagiri N, Tagata H, Uchino T, Saito J, Shido Y, Kamiya K, Hori M, Mizuno M, Nemoto T. Exploring the impact of biological alterations in the superior thalamic radiations on exploratory eye movements in attenuated psychosis syndrome. Front Psychiatry 2024; 15:1323786. [PMID: 38938465 PMCID: PMC11210316 DOI: 10.3389/fpsyt.2024.1323786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Aberrant fixation and scan paths in visual searches have been repeatedly reported in schizophrenia. The frontal eye fields (FEF) and thalamus may be responsible for fixation and scan paths. These two regions are connected by superior thalamic radiation (STR) in humans. Studies have reported reduced fixation numbers and shortened scan path lengths in individuals with attenuated psychosis syndrome (APS) and schizophrenia. In this study, we hypothesized that STRs in the white matter fiber bundles of impairments underlie abnormalities in fixation and scan path length in individuals with APS. Methods Twenty-one individuals with APS and 30 healthy controls participated in this study. All participants underwent diffusion tensor imaging, and fractional anisotropy (FA) values of the left and right STR were analyzed using the novel method TractSeg. The number of eye fixations (NEF), total eye scanning length (TESL), and mean eye scanning length (MESL), derived using the exploratory eye movement (EEM) test, were adopted to evaluate the fixation and scan path length. We compared the FA values of the bilateral STR and EEM parameters between the APS and healthy control groups. We investigated the correlation between bilateral STR and EEM parameters in the APS and healthy control groups. Results NEF, TESL, MESL, and the FA values of the left STR were significantly reduced in individuals with APS compared to healthy controls. The left STR FA value in the APS group was significantly positively correlated with the MESL (r = 0.567, p = 0.007). In addition, the right STR FA value of the APS group was significantly correlated with the TESL (r = 0.587, p = 0.005) and MESL (r = 0.756, p = 0.7×10-4). Discussion These results demonstrate that biological changes in the STR, which connects the thalamus and FEF, underlie abnormalities in fixation and scanning. Recently, aberrations in the thalamus-frontal connection have been shown to underlie the emergence of psychotic symptoms. STR impairment may be a part of the biological basis of APS in individuals with subthreshold psychotic symptoms.
Collapse
Affiliation(s)
- Yu Arai
- Department of Neuropsychiatry, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
- Department of Neuropsychiatry, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Hiromi Tagata
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Takashi Uchino
- Department of Psychiatry and Implementation Science, Toho University Faculty of Medicine, Tokyo, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Yusuke Shido
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
- Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
- Department of Psychiatry and Implementation Science, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Wolf A, Ueda K, Hirano Y. Recent updates of eye movement abnormalities in patients with schizophrenia: A scoping review. Psychiatry Clin Neurosci 2021; 75:82-100. [PMID: 33314465 PMCID: PMC7986125 DOI: 10.1111/pcn.13188] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
AIM Although eye-tracking technology expands beyond capturing eye data just for the sole purpose of ensuring participants maintain their gaze at the presented fixation cross, gaze technology remains of less importance in clinical research. Recently, impairments in visual information encoding processes indexed by novel gaze metrics have been frequently reported in patients with schizophrenia. This work undertakes a scoping review of research on saccadic dysfunctions and exploratory eye movement deficits among patients with schizophrenia. It gathers promising pieces of evidence of eye movement abnormalities in attention-demanding tasks on the schizophrenia spectrum that have mounted in recent years and their outcomes as potential biological markers. METHODS The protocol was drafted based on PRISMA for scoping review guidelines. Electronic databases were systematically searched to identify articles published between 2010 and 2020 that examined visual processing in patients with schizophrenia and reported eye movement characteristics as potential biomarkers for this mental illness. RESULTS The use of modern eye-tracking instrumentation has been reported by numerous neuroscientific studies to successfully and non-invasively improve the detection of visual information processing impairments among the screened population at risk of and identified with schizophrenia. CONCLUSIONS Eye-tracking technology has the potential to contribute to the process of early intervention and more apparent separation of the diagnostic entities, being put together by the syndrome-based approach to the diagnosis of schizophrenia. However, context-processing paradigms should be conducted and reported in equally accessible publications to build comprehensive models.
Collapse
Affiliation(s)
- Alexandra Wolf
- International Research Fellow of Japan Society for the Promotion of Science, Fukuoka, Japan.,Department of Human Science, Research Center for Applied Perceptual Science, Kyushu University, Fukuoka, Japan
| | - Kazuo Ueda
- Department of Human Science, Research Center for Applied Perceptual Science, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Morita K, Miura K, Kasai K, Hashimoto R. Eye movement characteristics in schizophrenia: A recent update with clinical implications. Neuropsychopharmacol Rep 2019; 40:2-9. [PMID: 31774633 PMCID: PMC7292223 DOI: 10.1002/npr2.12087] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Eye movements are indispensable for the collection of visual information in everyday life. Many findings regarding the neural basis of eye movements have been accumulated from neurophysiological and psychophysical studies. In the field of psychiatry, studies on eye movement characteristics in mental illnesses have been conducted since the early 1900s. Participants with schizophrenia are known to have characteristic eye movements during smooth pursuit, saccade control, and visual search. Recently, studies evaluating eye movement characteristics as biomarkers for schizophrenia have attracted considerable attention. In this article, we review the neurophysiological basis of eye movement control and eye movement characteristics in schizophrenia. Furthermore, we discuss the prospects for eye movements as biomarkers for mental illnesses.
Collapse
Affiliation(s)
- Kentaro Morita
- Department of Rehabilitation, University of Tokyo Hospital, Tokyo, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Qiu L, Yan H, Zhu R, Yan J, Yuan H, Han Y, Yue W, Tian L, Zhang D. Correlations between exploratory eye movement, hallucination, and cortical gray matter volume in people with schizophrenia. BMC Psychiatry 2018; 18:226. [PMID: 30005610 PMCID: PMC6045825 DOI: 10.1186/s12888-018-1806-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Widespread cortical gray matter alternations in people with schizophrenia are correlated with both psychotic symptoms and cognitive/behavioral abnormalities, including the impairments of exploratory eye movement (EEM). Particularly, the loss of gray matter density is specifically related to deficits of the responsive search score (RSS) of EEM in schizophrenia. It is unknown, however, whether the schizophrenia-related RSS deficits are associated with certain psychotic symptoms, such as hallucinations. METHODS In 33 participants with schizophrenia, the measurement of EEM, assessment of the hallucination severity using Positive and Negative Syndrome Scale (PANSS) and a voxel-based morphometric analysis of cortical gray matter volume (GMV) were conducted to investigate the relationships between the RSS of EEM, symptom severity, and GMV. In 29 matched healthy controls, the measurement of EEM and a voxel-based morphometric analysis of cortical GMV were also conducted to investigate the relationship between the RSS of EEM and GMV. RESULTS In participants with schizophrenia, the hallucination severity was significantly negatively correlated with both the RSS and the GMV of a large number of brain regions in the frontal, temporal, parietal, orbitofrontal, calcarine, cingulate, and insular cortices, and rolandic operculum, hippocampus, parahippocampal gyrus, and thalamus. Also in participants with schizophrenia, the RSS was significantly positively correlated with the GMV in the left supplementary motor area (SMA), left superior frontal cortex (SFG), bilateral precentral gyri, bilateral postcentral gyri, and bilateral middle frontal cortices. More importantly, the GMV of the SMA, SFG, and precentral gyrus in the left hemisphere was not only significantly negatively correlated with the hallucination severity but also significantly positively correlated with the RSS. No significant correlation could be revealed between the RSS and the GMV of any brain regions in healthy controls. CONCLUSIONS There was a significantly negative association between the hallucination severity and the RSS of EEM, suggesting that the RSS may be a potential biomarker for predicting the hallucination severity of schizophrenia. Also, the GMV of the left SMA, SFG, and precentral gyrus may be the common substrates underlying both hallucination induction and the RSS in people with schizophrenia.
Collapse
Affiliation(s)
- Linlin Qiu
- 0000 0000 9490 772Xgrid.186775.aDepartment of Medical Psychology, Chaohu Hospital, Anhui Medical University, Hefei, Anhui China ,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders & Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui China ,0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital (Institute of Mental Health), Beijing, China ,0000 0004 1769 3691grid.453135.5National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hao Yan
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital (Institute of Mental Health), Beijing, China ,0000 0004 1769 3691grid.453135.5National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Risheng Zhu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital (Institute of Mental Health), Beijing, China ,0000 0004 1769 3691grid.453135.5National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Jun Yan
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital (Institute of Mental Health), Beijing, China ,0000 0004 1769 3691grid.453135.5National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Huishu Yuan
- 0000 0004 0605 3760grid.411642.4The Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Yonghua Han
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital (Institute of Mental Health), Beijing, China ,0000 0004 1769 3691grid.453135.5National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Weihua Yue
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital (Institute of Mental Health), Beijing, China ,0000 0004 1769 3691grid.453135.5National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lin Tian
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China. .,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China. .,Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Dai Zhang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China. .,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| |
Collapse
|
6
|
Objective assessment of exploratory behaviour in schizophrenia using wireless motion capture. Schizophr Res 2018; 195:122-129. [PMID: 28954705 DOI: 10.1016/j.schres.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/09/2017] [Accepted: 09/10/2017] [Indexed: 11/22/2022]
Abstract
Motivation deficits are a prominent feature of schizophrenia and have substantial consequences for functional outcome. The impact of amotivation on exploratory behaviour has not been extensively assessed by entirely objective means. This study evaluated deficits in exploratory behaviour in an open-field setting using wireless motion capture. Twenty-one stable adult outpatients with schizophrenia and twenty matched healthy controls completed the Novelty Exploration Task, in which participants explored a novel environment containing familiar and uncommon objects. Objective motion data were used to index participants' locomotor activity and tendency for visual and tactile object exploration. Clinical assessments of positive and negative symptoms, apathy, cognition, depression, medication side-effects, and community functioning were also administered. Relationships between task performance and clinical measures were evaluated using Spearman correlations, and group differences were evaluated using multivariate analysis of covariance tests. Although locomotor activity and tactile exploration were similar between the schizophrenia and healthy control groups, schizophrenia participants exhibited reduced visual object exploration (F(2,35)=3.40, p=0.045). Further, schizophrenia participants' geometric pattern of locomotion, visual exploration, and tactile exploration were correlated with overall negative symptoms (|ρ|=0.46-0.64, p<=0.039) and apathy (|ρ|=0.49-0.62, p<=0.028), and both visual and tactile exploration were also correlated with community functioning (|ρ|=0.46-0.48, p<=0.043). The Novelty Exploration Task may be a valuable tool to quantify exploratory behaviour beyond what is captured through standard clinical instruments and human observer ratings. Findings from this initial study suggest that locomotor activity and object interaction tendencies are impacted by motivation, and reveal deficits specifically in visual exploration in schizophrenia.
Collapse
|
7
|
Ma Y, Li J, Yu H, Wang L, Lu T, Pan C, Han Y, Zhang D, Yue W. Association of chromosome 5q21.3 polymorphisms with the exploratory eye movement dysfunction in schizophrenia. Sci Rep 2015; 5:10299. [PMID: 26242244 PMCID: PMC4533163 DOI: 10.1038/srep10299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/07/2015] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia patients show abnormalities in many eye movement tasks. Among them, exploratory eye movements (EEM) dysfunction seems to be specific to schizophrenia. However the mechanism of EEM disturbances in schizophrenia patients remains elusive. We investigate the relationship between EEM and single nucleotide polymorphisms (SNPs) or genes to identify susceptibility loci for EEM in schizophrenia. We firstly performed EEM test, then performed a genome-wide association study (GWAS) and gene-based association study of EEM in 128 individuals with schizophrenia and 143 healthy control subjects. Comparing to healthy controls, schizophrenia patients show significant decrease in NEF (22.99 ± 3.96 vs. 26.02 ± 5.72, P <0.001), TESL (368.78 ± 123.57 vs. 603.12 ± 178.63, P <0.001), MESL (16.86 ± 5.27 vs. 24.42 ± 6.46, P <0.001), RSS (8.22 ± 1.56 vs. 10.92 ± 1.09, P <0.001), and CSS (5.06 ± 0.97 vs. 6.64 ± 0.87, P <0.001). Five SNPs of the MAN2A1, at 5q21.3, were associated with EEM abnormalities (deceased CSS) and satisfied the criteria of GWAS significance threshold. One is localized near 5'-UTR (rs17450784) and four are in intron (rs1438663, rs17162094, rs6877440 and rs10067856) of the gene. Our findings suggest that the identified loci may control the schizophrenia-related quantitative EEM trait. And the identified gene, associated with the EEM phenotype, may lead to new insights into the etiology of schizophrenia.
Collapse
Affiliation(s)
- Yuanlin Ma
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Jun Li
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Hao Yu
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China [3] School of Life Sciences, Tsinghua University, Beijing 100084, China [4] Peking University-Tsinghua University Joint Center for Life Sciences, Beijing 100871, China
| | - Lifang Wang
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Tianlan Lu
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Chao Pan
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Yonghua Han
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Dai Zhang
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China [3] School of Life Sciences, Tsinghua University, Beijing 100084, China [4] Peking University-Tsinghua University Joint Center for Life Sciences, Beijing 100871, China [5] PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Weihua Yue
- 1] Institute of Mental Health, The Sixth Hospital, Peking University, Beijing 100191, China [2] Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| |
Collapse
|
8
|
Takahashi S. Heterogeneity of schizophrenia: Genetic and symptomatic factors. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:648-52. [PMID: 24132896 DOI: 10.1002/ajmg.b.32161] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/14/2013] [Indexed: 11/08/2022]
Abstract
Schizophrenia may have etiological heterogeneity, and may reflect common symptomatology caused by many genetic and environmental factors. In this review, we show the potential existence of heterogeneity in schizophrenia based on the results of our previous studies. In our study of the NOTCH4 gene, there were no significant associations between any single nucleotide polymorphisms (SNPs) of NOTCH4 and schizophrenia. However, exploratory analyses suggested that the SNP, rs3134928 may be associated with early-onset schizophrenia, and that rs387071 may be associated with schizophrenia characterized by negative symptoms. In our highly familial schizophrenia study, the African-American cohort without environmental exposure showed a possible linkage at marker 8p23.1 in the dominant model and in the European-American cohort, a marker at 22q13.32 showed a probable linkage in the recessive model. In the less familial schizophrenia families, these linkages were not shown. Based on our eye movement study, a putative subtype of schizophrenia with severe symptoms related to excitement/hostility, negative symptoms and disorganization may be associated with chromosome 22q11. We consider that a sample stratification approach may clarify the heterogeneity of schizophrenia. Therefore, this approach may lead to a more straightforward way of identifying susceptibility genes of schizophrenia.
Collapse
Affiliation(s)
- Sakae Takahashi
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| |
Collapse
|