1
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
2
|
Chatterjee N, Sharma R, Kale PR, Trehanpati N, Ramakrishna G. Is the liver resilient to the process of ageing? Ann Hepatol 2024; 30:101580. [PMID: 39276981 DOI: 10.1016/j.aohep.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
The liver's unique regenerative capacity, immunotolerant feature, and polyploidy status distinguish it as a metabolic organ unlike any other in the body. Despite aging, the liver generally exhibits fewer pathological abnormalities than other organs (such as the kidney), maintaining its functions near-normal balanced manner. Subtle changes in the liver, including reduced blood flow, detoxification alterations, pseudo-capillarization, and lipofuscin deposition, may occur with chronological age. Research indicates that carefully selected liver grafts from octogenarian donors can perform well post-transplant, emphasizing instances where age doesn't necessarily compromise liver function. Notably, a recent report suggests that the liver is a youthful organ, with hepatocytes averaging an age of only 3 years. Despite the liver's impressive regenerative capabilities and cellular reserve, a lingering question persists: how does the liver maintain its youthful characteristic amidst the chronological aging of the entire organism? The various adaptive mechanism possibly include:(a) cellular hypertrophy to maintain physiological capacity even before proliferation initiates, (b) the "ploidy conveyor" as a genetic adaptation to endure aging-related stress, (c) sustained telomere length indicative of youthfulness (d) active extracellular matrix remodelling for normal cellular functioning, (e) Mitochondria-Endoplasmic Reticulum based metabolic adaptation and (c) cellular plasticity as fitness mechanisms for healthy aging. However, it is crucial to note that aged livers may have compromised regenerative capacity and chronic liver disease is often associated with declining function due to premature hepatocyte senescence. This review delves into varied cellular adaptations sustaining liver homeostasis with chronological aging and briefly explores the role of accelerated hepatocyte aging as a precursor to chronic liver disease.
Collapse
Affiliation(s)
- Nirupama Chatterjee
- Artemis Education and Research Foundation, Artemis Health Institute, Sector 51 Gurugram, India
| | - Rishabh Sharma
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana Amity Education Valley, Panchgaon, Manesar Gurugram, HR 122413, India
| | - Pratibha R Kale
- Department of Clinical Microbiology, Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India.
| |
Collapse
|
3
|
Senescence-Associated β-Galactosidase Detection in Pathology. Diagnostics (Basel) 2022; 12:diagnostics12102309. [PMID: 36291998 PMCID: PMC9599972 DOI: 10.3390/diagnostics12102309] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Activity of β-galactosidase at pH 6 is a classic maker of senescence in cellular biology. Cellular senescence, a state of highly stable cell cycle arrest, is often compared to apoptosis as an intrinsic tumor suppression mechanism. It is also thought that SA-β-gal is crucial in malignant cell transformation. High levels of senescence-associated β-galactosidase (SA-β-gal) can be found in cancer and benign lesions of various localizations making the enzyme a highly promising diagnostic marker for visualization of tumor margins and metastases. These findings facilitate the research of therapy induced senescence as a promising therapeutic strategy. In this review, we address the need to collect and analyze the bulk of clinical and biological data on SA-β-gal mechanisms of action to support wider implementation of this enzyme in medical diagnostics. The review will be of interest to pathologists, biologists, and biotechnologists investigating cellular senescence for purposes of regenerative medicine and oncology.
Collapse
|
4
|
Prominent Pseudoacini in Focal Nodular Hyperplasia: A Potential Diagnostic Pitfall. Am J Surg Pathol 2022; 46:1380-1385. [PMID: 35749760 DOI: 10.1097/pas.0000000000001931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pseudoacini are generally a morphologic feature of hepatocellular carcinoma (HCC), being absent or rare in benign hepatocytic tumors, such as hepatocellular adenoma. However, rarely these can be seen in focal nodular hyperplasia (FNH) and may pose diagnostic challenges, especially when prominent. The study was aimed to evaluate the occurrence of pseudoacini in FNH and their clinicopathologic correlations. A total of 95 FNH cases diagnosed from 2005 to 2020 were included in the study. A pseudoacinus was defined as a circular arrangement of hepatocytes around a central dilated lumen present within the lobular parenchyma of the lesion with or without inspissated bile. Among the 95 FNH cases, 28 (29.5%) showed pseudoacini, which were prominent in 12 (12.6%) cases. Of these 3 occurred in patients above 50 years old. The pseudoacini were numerous in 3 cases, leading to an initial consideration of HCC in the differential diagnosis, and 1 case was diagnosed as well-differentiated hepatocellular neoplasm on initial biopsy. All 12 cases showed map-like staining pattern for glutamine synthetase. The hepatocytes forming the pseudoacini were positive for CK7 and HepPar1, while the inner lumina were highlighted by CD10 and bile salt export pump immunostains similar to adjacent canaliculi. The presence of prominent pseudoacini was not significantly associated with any clinical or pathologic features. The findings suggest that pseudoacini are likely manifestation of hepatocyte biliary transdifferentiation associated with chronic cholestasis in the lesion. This feature may pose a potential diagnostic pitfall especially on needle biopsies and awareness is needed to avoid misdiagnosing this as HCC.
Collapse
|
5
|
Pehlivanoglu B, Aysal A, Agalar C, Egeli T, Ozbilgin M, Unek T, Unek T, Oztop I, Sagol O. Peritumoral histopathologic findings in patients with chronic viral hepatitis-associated hepatocellular carcinoma. APMIS 2022; 130:346-356. [PMID: 35302674 DOI: 10.1111/apm.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Data on peritumoral histopathologic findings in patients with hepatocellular carcinoma (HCC) is limited. In this retrospective study, we evaluated the peritumoral histopathologic changes in patients with chronic viral hepatitis (CVH)-associated HCC (CVH-HCC) and their prognostic value. 61 consecutive cirrhotic patients who underwent liver transplantation due to CVH-HCC were included. Histopathologic features within 1 cm distance of the tumor, and their association with clinicopathological characteristics and prognosis were evaluated. A random representative slide of cirrhotic parenchyma unrelated to invasive and/or dysplastic foci was also evaluated for the same histopathologic criteria. The majority (85%, n = 52) were male with a median age of 55 ± 6.38 (range, 39-67). The etiologic agent was only HBV in 90% (n = 55). The most common peritumoral findings were portal inflammation (100%; n = 61), ductular reaction (100%; n = 61) and sinusoidal dilatation (95%; n = 58). Macrovascular invasion was observed only in four cases (7%) with mild peritumoral portal inflammation. Neutrophilic infiltration of the peritumoral portal tracts (n = 18; 30%) was significantly associated with pT4 tumor stage, tumor grade, macrovascular invasion, and pretransplant therapy. Patients with moderate or severe peritumoral sinusoidal dilatation tended to have worse prognosis, albeit not significantly. Peritumoral ballooning degeneration was associated with multifocality, recurrence and recurrence-free survival in both uni- and multivariate analysis. Peritumoral histopathologic changes in CVH-HCC can be classified as: changes related to pathogenesis, changes indirectly affecting prognosis, and changes directly affecting prognosis. Peritumoral prominent ballooning degeneration may be a predictor of recurrence while portal neutrophilic infiltration and sinusoidal dilatation seem to indicate poor prognosis.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Department of Pathology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Anil Aysal
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Department of Pathology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Cihan Agalar
- Department of General Surgery, Faculty of Medicine, Dokuz Eylul University Izmir, Turkey
| | - Tufan Egeli
- Department of General Surgery, Faculty of Medicine, Dokuz Eylul University Izmir, Turkey
| | - Mucahit Ozbilgin
- Department of General Surgery, Faculty of Medicine, Dokuz Eylul University Izmir, Turkey
| | - Tarkan Unek
- Department of General Surgery, Faculty of Medicine, Dokuz Eylul University Izmir, Turkey
| | - Tugba Unek
- Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ilhan Oztop
- Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ozgul Sagol
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Department of Pathology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
6
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G. Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology 2019; 69:420-430. [PMID: 30070383 PMCID: PMC6324973 DOI: 10.1002/hep.30150] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Ductular reaction (DR) is characterized by the proliferation of reactive bile ducts induced by liver injuries. DR is pathologically recognized as bile duct hyperplasia and is commonly observed in biliary disorders. It can also be identified in various liver disorders including nonalcoholic fatty liver disease. DR is associated with liver fibrosis and damage, and the extent of DR parallels to patient mortality. DR raises scientific interests because it is associated with transdifferentiation of liver cells and may play an important role in hepatic regeneration. The origin of active cells during DR can be cholangiocytes, hepatocytes, or hepatic progenitor cells, and associated signaling pathways could differ depending on the specific liver injury or animal models used in the study. Although further studies are needed to elucidate detailed mechanisms and the functional roles in liver diseases, DR can be a therapeutic target to inhibit liver fibrosis and to promote liver regeneration. This review summarizes previous studies of DR identified in patients and animal models as well as currently understood mechanisms of DR.
Collapse
Affiliation(s)
- Keisaku Sato
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti - University Hospital, Ancona, Italy
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
- Academic Research Integration, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| |
Collapse
|
8
|
Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells. Exp Cell Res 2016; 345:17-24. [PMID: 27177832 DOI: 10.1016/j.yexcr.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 11/23/2022]
Abstract
Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression.
Collapse
|
9
|
Irvine KM, Skoien R, Bokil NJ, Melino M, Thomas GP, Loo D, Gabrielli B, Hill MM, Sweet MJ, Clouston AD, Powell EE. Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World J Gastroenterol 2014; 20:17851-17862. [PMID: 25548483 PMCID: PMC4273135 DOI: 10.3748/wjg.v20.i47.17851] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/13/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a model of stress-induced senescence to study the hepatocyte senescence associated secretory phenotype (SASP).
METHODS: Hydrogen peroxide treatment was used to induce senescence in the human HepG2 hepatocyte cell line. Senescence was confirmed by cytochemical staining for a panel of markers including Ki67, p21, heterochromatin protein 1β, and senescence-associated-β-galactosidase activity. Senescent hepatocytes were characterised by gene expression arrays and quantitative polymerase chain reaction (qPCR), and conditioned media was used in proteomic analyses, a human chemokine protein array, and cell migration assays to characterise the composition and function of the hepatocyte SASP.
RESULTS: Senescent hepatocytes induced classical markers of senescence (p21, heterochromatin protein 1β, and senescence-associated-β-galactosidase activity); and downregulated the proliferation marker, Ki67. Hepatocyte senescence induced a 4.6-fold increase in total secreted protein (P = 0.06) without major alterations in the protein profile. Senescence-induced genes were identified by microarray (Benjamini Hochberg-corrected P < 0.05); and, consistent with the increase in secreted protein, gene ontology analysis revealed a significant enrichment of secreted proteins among inducible genes. The hepatocyte SASP included characteristic factors such as interleukin (IL)-8 and IL-6, as well as novel components such as SAA4, IL-32 and Fibrinogen, which were validated by qPCR and/or chemokine protein array. Senescent hepatocyte-conditioned medium elicited migration of inflammatory (granulocyte-macrophage colony stimulating factor, GM-CSF-derived), but not non-inflammatory (CSF-1-derived) human macrophages (P = 0.022), which could contribute to a pro-inflammatory microenvironment in vivo, or facilitate the clearance of senescent cells.
CONCLUSION: Our novel model of hepatocyte senescence provides insights into mechanisms by which senescent hepatocytes may promote chronic liver disease pathogenesis.
Collapse
|
10
|
Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 2010; 52:966-74. [PMID: 20583212 DOI: 10.1002/hep.23769] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Senescence induction could be used as an effective treatment for hepatocellular carcinoma (HCC). However, major senescence inducers (p53 and p16(Ink4a)) are frequently inactivated in these cancers. We tested whether transforming growth factor-beta (TGF-beta) could serve as a potential senescence inducer in HCC. First, we screened for HCC cell lines with intact TGF-beta signaling that leads to small mothers against decapentaplegic (Smad)-targeted gene activation. Five cell lines met this condition, and all of them displayed a strong senescence response to TGF-beta1 (1-5 ng/mL) treatment. Upon treatment, c-myc was down-regulated, p21(Cip1) and p15(Ink4b) were up-regulated, and cells were arrested at G(1). The expression of p16(Ink4a) was not induced, and the senescence response was independent of p53 status. A short exposure of less than 1 minute was sufficient for a robust senescence response. Forced expression of p21(Cip1) and p15(Ink4b) recapitulated TGF-beta1 effects. Senescence response was associated with reduced nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) induction and intracellular reactive oxygen species (ROS) accumulation. The treatment of cells with the ROS scavenger N-acetyl-L-cysteine, or silencing of the NOX4 gene, rescued p21(Cip1) and p15(Ink4b) accumulation as well as the growth arrest in response to TGF-beta. Human HCC tumors raised in immunodeficient mice also displayed TGF-beta1-induced senescence. More importantly, peritumoral injection of TGF-beta1 (2 ng) at 4-day intervals reduced tumor growth by more than 75%. In contrast, the deletion of TGF-beta receptor 2 abolished in vitro senescence response and greatly accelerated in vivo tumor growth. CONCLUSION TGF-beta induces p53-independent and p16(Ink4a)-independent, but Nox4-dependent, p21(Cip1)-dependent, p15(Ink4b)-dependent, and ROS-dependent senescence arrest in well-differentiated HCC cells. Moreover, TGF-beta-induced senescence in vivo is associated with a strong antitumor response against HCC.
Collapse
Affiliation(s)
- Serif Senturk
- BilGen Research Center and Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|