1
|
Su Q, Sun H, Mei L, Yan Y, Ji H, Chang L, Wang L. Ribosomal proteins in hepatocellular carcinoma: mysterious but promising. Cell Biosci 2024; 14:133. [PMID: 39487553 PMCID: PMC11529329 DOI: 10.1186/s13578-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, playing a role not only in ribosome biosynthesis, but also in various extra-ribosomal functions, some of which are implicated in the development of different types of tumors. As universally acknowledged, hepatocellular carcinoma (HCC) has been garnering global attention due to its complex pathogenesis and challenging treatments. In this review, we analyze the biological characteristics of RPs and emphasize their essential roles in HCC. In addition to regulating related signaling pathways such as the p53 pathway, RPs also act in proliferation and metastasis by influencing cell cycle, apoptosis, angiogenesis, and epithelial-to-mesenchymal transition in HCC. RPs are expected to unfold new possibilities for precise diagnosis and individualized treatment of HCC.
Collapse
Affiliation(s)
- Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
2
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
3
|
Neophytou CM, Katsonouri A, Christodoulou MI, Papageorgis P. In Vivo Investigation of the Effect of Dietary Acrylamide and Evaluation of Its Clinical Relevance in Colon Cancer. TOXICS 2023; 11:856. [PMID: 37888706 PMCID: PMC10610724 DOI: 10.3390/toxics11100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Dietary exposure to acrylamide (AA) has been linked with carcinogenicity in the gastrointestinal (GI) tract. However, epidemiologic data on AA intake in relation to cancer risk are limited and contradictory, while the potential cancer-inducing molecular pathways following AA exposure remain elusive. In this study, we collected mechanistic information regarding the induction of carcinogenesis by dietary AA in the colon, using an established animal model. Male Balb/c mice received AA orally (0.1 mg/kg/day) daily for 4 weeks. RNA was extracted from colon tissue samples, followed by RNA sequencing. Comparative transcriptomic analysis between AA and mock-treated groups revealed a set of differentially expressed genes (DEGs) that were further processed using different databases through the STRING-DB portal, to reveal deregulated protein-protein interaction networks. We found that genes implicated in RNA metabolism, processing and formation of the ribosomal subunits and protein translation and metabolism are upregulated in AA-exposed colon tissue; these genes were also overexpressed in human colon adenocarcinoma samples and were negatively correlated with patient overall survival (OS), based on publicly available datasets. Further investigation of the potential role of these genes during the early stages of colon carcinogenesis may shed light into the underlying mechanisms induced by dietary AA exposure.
Collapse
Affiliation(s)
- Christiana M Neophytou
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
| | | | - Maria-Ioanna Christodoulou
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
- Tumor Immunology and Biomarkers Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
| |
Collapse
|
4
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
5
|
Tong X, Zhao X, Dang X, Kou Y, Kou J. Biomarkers Associated with Immune Checkpoint, N6-Methyladenosine, and Ferroptosis in Patients with Restenosis. J Inflamm Res 2023; 16:407-420. [PMID: 36755968 PMCID: PMC9901443 DOI: 10.2147/jir.s392036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Purpose This study aimed to identify potential diagnostic markers of restenosis after stent implantation and to determine their association with immune checkpoint, ferroptosis, and N6-methyladenosine (m6A). Patients and methods Microarray data were downloaded from the National Center for Biotechnology Information (NCBI: GSE46560 and GSE48060 datasets) to identify differentially expressed genes (DEGs) between in-stent restenosis and no-restenosis samples. We then conducted systematic functional enrichment analyses of the DEGs based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and further predicted the interactions of different proteins using the Search Tool for the Retrieval of Interacting Genes (STRING). We used the MCC and MCODE algorithms in the cytoHubba plug-in to screen three key genes in the network, and employed receiver operating characteristic (ROC) curves to determine their diagnostic significance using a multiscale curvature classification algorithm. Next, we investigated the relationships between these target genes, immune checkpoint, ferroptosis, and m6A. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the above results. Results We identified 62 upregulated genes and 243 downregulated genes. Based on GO, KEGG, and screening results, EEF1D, RPL36, and RPSA are promising genes for predicting restenosis. In addition, the methylation of YTHDF2, the ferroptosis-related gene GLS2, and the immune checkpoint-related gene CTLA4 were observed to be associated with restenosis. The qRT-PCR test confirmed that RPSA and RPL36 are useful diagnostic markers of the restenosis that can provide new insights for future studies on its occurrence and molecular mechanisms. Conclusion We found that RPSA and RPL36, as useful diagnostic markers of restenosis, can provide new insights for future studies on its occurrence and molecular mechanisms.
Collapse
Affiliation(s)
- Xiao Tong
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Xinyi Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Xuan Dang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Yan Kou
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Junjie Kou
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China,Correspondence: Junjie Kou; Yan Kou, Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, 148 Health Care Road, Harbin, Heilongjiang Province, People’s Republic of China, Tel +86 361 363 1365; +86 363 363 4516, Email ;
| |
Collapse
|
6
|
Liu J, Xiao S, Chen J. Development of an Inflammation-Related lncRNA-miRNA-mRNA Network Based on Competing Endogenous RNA in Breast Cancer at Single-Cell Resolution. Front Cell Dev Biol 2022; 10:839876. [PMID: 35145966 PMCID: PMC8821924 DOI: 10.3389/fcell.2022.839876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The role and mechanism of inflammation in breast cancer is unclear. This study aims to probe the relationship between inflammation and long non-coding RNAs (lncRNAs) and to stablish an inflammation-related competing endogenous RNA (ceRNA) network in breast cancer. Inflammation-related lncRNAs and target genes were screened based on the data from four single-cell RNA sequencing (scRNA-seq) studies and miRNAs were bioinformatically predicted according to ceRNA hypothesis. A series of in silico analyses were performed to construct an inflammation-related ceRNA network in breast cancer. Consequently, a total of seven inflammation-related lncRNAs were selected, after which LRRC75A-AS1 was identified as the most potential lncRNA in view of its expression and prognostic predictive value in breast cancer. Finally, an inflammation-related ceRNA network in breast cancer at the single cell level was established based on lncRNA LRRC75A-AS1, miR-3127-5p, miR-2114-3p, RPL36 and RPL27A mRNAs. Collectively, the lncRNA LRRC75A-AS1 and the LRRC75A-AS1-based on ceRNA network may exert crucial roles in modulating inflammation response during the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Jingxing Liu
- Department of Intensive Care Unit, Changxing People's Hospital of Zhejiang, Huzhou, China
| | - Shuyuan Xiao
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Chen
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
7
|
Deregulation of ribosomal proteins in human cancers. Biosci Rep 2021; 41:230380. [PMID: 34873618 PMCID: PMC8685657 DOI: 10.1042/bsr20211577] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ribosome, the site for protein synthesis, is composed of ribosomal RNAs (rRNAs) and ribosomal proteins (RPs). The latter have been shown to have many ribosomal and extraribosomal functions. RPs are implicated in a variety of pathological processes, especially tumorigenesis and cell transformation. In this review, we will focus on the recent advances that shed light on the effects of RPs deregulation in different types of cancer and their roles in regulating the tumor cell fate.
Collapse
|
8
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
9
|
Integrated Analysis of the Roles of RNA Binding Proteins and Their Prognostic Value in Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5568411. [PMID: 34306592 PMCID: PMC8263288 DOI: 10.1155/2021/5568411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Methods We downloaded the RNA sequencing data of ccRCC from the Cancer Genome Atlas (TCGA) database and identified differently expressed RBPs in different tissues. In this study, we used bioinformatics to analyze the expression and prognostic value of RBPs; then, we performed functional analysis and constructed a protein interaction network for them. We also screened out some RBPs related to the prognosis of ccRCC. Finally, based on the identified RBPs, we constructed a prognostic model that can predict patients' risk of illness and survival time. Also, the data in the HPA database were used for verification. Results In our experiment, we obtained 539 ccRCC samples and 72 normal controls. In the subsequent analysis, 87 upregulated RBPs and 38 downregulated RBPs were obtained. In addition, 9 genes related to the prognosis of patients were selected, namely, RPL36A, THOC6, RNASE2, NOVA2, TLR3, PPARGC1A, DARS, LARS2, and U2AF1L4. We further constructed a prognostic model based on these genes and plotted the ROC curve. This ROC curve performed well in judgement and evaluation. A nomogram that can judge the patient's life span is also made. Conclusion In conclusion, we have identified differentially expressed RBPs in ccRCC and carried out a series of in-depth research studies, the results of which may provide ideas for the diagnosis of ccRCC and the research of new targeted drugs.
Collapse
|
10
|
Fang Y, Zong Q, He Z, Liu C, Wang YF. Knockdown of RpL36 in testes impairs spermatogenesis in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:417-430. [PMID: 33734578 DOI: 10.1002/jez.b.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 01/03/2023]
Abstract
Many ribosomal proteins (RPs) not only play essential roles in ribosome biogenesis, but also have "extraribosomal" functions in various cellular processes. RpL36 encodes ribosomal protein L36, a component of the 60S subunit of ribosomes in Drosophila melanogaster. We report here that RpL36 is required for spermatogenesis in D. melanogaster. After showing the evolutionary conservation of RpL36 sequences in animals, we revealed that the RpL36 expression level in fly testes was significantly higher than in ovaries. Knockdown RpL36 in fly testes resulted in a significantly decreased egg hatch rate when these males mated with wild-type females. Furthermore, 76.67% of the RpL36 knockdown fly testes were much smaller in comparison to controls. Immunofluorescence staining exhibited that in the RpL36 knockdown testis hub cell cluster was enlarged, while the number of germ cells, including germ stem cells, was reduced. Knockdown of RpL36 in fly testis caused much fewer or no mature sperms in seminal vesicles. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) signal was stronger in RpL36 knockdown fly testes than in the control testes, but the TUNEL-positive cells could not be stained by Vasa antibody, indicating that apoptotic cells are not germ cells. The percentage of pH3-positive cells among the Vasa-positive cells was significantly reduced. The expression of genes involved in cell death, cell cycle progression, and JAK/STAT signaling pathway was significantly changed by RpL36 knockdown in fly testes. These results suggest that RpL36 plays an important role in spermatogenesis, likely through JAK/STAT pathway, thus resulting in defects in cell-cycle progression and cell death in D. melanogaster testes.
Collapse
Affiliation(s)
- Yang Fang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Qiong Zong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chen Liu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
11
|
Zhang Q, Sun L, Zhang Q, Zhang W, Tian W, Liu M, Wang Y. Construction of a disease-specific lncRNA-miRNA-mRNA regulatory network reveals potential regulatory axes and prognostic biomarkers for hepatocellular carcinoma. Cancer Med 2020; 9:9219-9235. [PMID: 33232580 PMCID: PMC7774738 DOI: 10.1002/cam4.3526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with a high incidence and poor prognosis. Exploration of the underlying mechanisms and effective prognostic indicators is conducive to clinical management and optimization of treatment. The RNA‐seq and clinical phenotype data of HCC were retrieved from The Cancer Genome Atlas (TCGA), and differential expression analysis was performed. Then, a differential lncRNA‐miRNA‐mRNA regulatory network was constructed, and the key genes were further identified and validated. By integrating this network with the online tool‐based ceRNA network, an HCC‐specific ceRNA network was obtained, and lncRNA‐miRNA‐mRNA regulatory axes were extracted. RNAs associated with prognosis were further obtained, and multivariate Cox regression models were established to identify the prognostic signature and nomogram. As a result, 198 DElncRNAs, 120 DEmiRNAs, and 2827 DEmRNAs were identified, and 30 key genes identified from the differential network were enriched in four cancer‐related pathways. Four HCC‐specific lncRNA‐miRNA‐mRNA regulatory axes were extracted, and SNHG11, CRNDE, MYLK‐AS1, E2F3, and CHEK1 were found to be related with HCC prognosis. Multivariate Cox regression analysis identified a prognostic signature, comprised of CRNDE, MYLK‐AS1, and CHEK1, for overall survival (OS) of HCC. A nomogram comprising the prognostic signature and pathological stage was established and showed some net clinical benefits. The AUC of the prognostic signature and nomogram for 1‐year, 3‐year, and 5‐year survival was 0.777 (0.657‐0.865), 0.722 (0.640‐0.848), and 0.630 (0.528‐0.823), and 0.751 (0.664‐0.870), 0.773 (0.707‐0.849), and 0.734 (0.638‐0.845), respectively. These results provided clues for the study of potential biomarkers and therapeutic targets for HCC. In addition, the obtained 30 key genes and 4 regulatory axes might also help elucidate the underlying mechanism of HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Sun
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiuju Zhang
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Zhang
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Tian
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meina Liu
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yupeng Wang
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Wang YH, Huang S, Zhu L, Yang Q, Yang XM, Gu JR, Zhang ZG, Nie HZ, Li J. Alternative transcription start site selection in ACSS2 controls its nuclear localization and promotes ribosome biosynthesis in hepatocellular carcinoma. Biochem Biophys Res Commun 2019; 514:632-638. [PMID: 31076106 DOI: 10.1016/j.bbrc.2019.04.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022]
Abstract
Acetyl-CoA synthetase 2 (ACSS2) generates acetyl-CoA from acetate is important for histone acetylation and gene expression. ACSS2 fulfills distinct functions depending on its cellular location in tumor cells. The role and cellular localization of ACSS2 in hepatocellular carcinoma (HCC) remains to be studied. Herein, we identified that the alternative transcription start site selection of ACSS2 was significantly different between HCC and corresponding adjacent tissues. Alternative transcription start site selection produced two different ACSS2 transcripts, ACSS2-S1 and ACSS2-S2. The two isoforms of ACSS2 had different subcellular localization and different functions. Overexpression of ACSS2-S2 promoted cell proliferation and invasion, but ACSS2-S1 did not. The ACSS2-S1 was mainly present in cytoplasm, and ACSS2-S2 was distributed in both nucleus and cytoplasm. Finally, we demonstrated that alternative transcription start site selection of ACSS2 correlates ribosome biogenesis in HCC. Our findings reveal an oncogenic role of ACSS2-S2 in HCC progression via increase of ribosome biogenesis, and suggest ACSS2-S2 might be a potential therapeutic target against the HCC.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Shanghai Medical College of Fudan University, Shanghai, 200032, PR China
| | - Shan Huang
- College of Animal Science, Jilin University, Changchun, Jilin, 130062, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jian-Ren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
13
|
Shen A, Chen Y, Liu L, Huang Y, Chen H, Qi F, Lin J, Shen Z, Wu X, Wu M, Li Q, Qiu L, Yu N, Sferra TJ, Peng J. EBF1-Mediated Upregulation of Ribosome Assembly Factor PNO1 Contributes to Cancer Progression by Negatively Regulating the p53 Signaling Pathway. Cancer Res 2019; 79:2257-2270. [PMID: 30862720 DOI: 10.1158/0008-5472.can-18-3238] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
The RNA-binding protein PNO1 is critical for ribosome biogenesis, but its potential role in cancer remains unknown. In this study, online data mining, cDNA, and tissue microarrays indicated that PNO1 expression was higher in colorectal cancer tissue than in noncancerous tissue, and its overexpression was associated with worse patient survival. Gain-of-function and loss-of-function studies demonstrated that PNO1 knockdown suppressed growth of colorectal cancer cells in vitro and in vivo, while PNO1 overexpression promoted colorectal cancer cell proliferation in vitro. In colorectal cancer cells expressing wild-type p53, PNO1 knockdown enhanced expression of p53 and its downstream gene p21, and reduced cell viability; these effects were prevented by p53 knockout and attenuated by the p53 inhibitor PFT-α. Moreover, PNO1 knockdown in HCT116 cells decreased levels of 18S rRNA, of 40S and 60S ribosomal subunits, and of the 80S ribosome. It also reduced global protein synthesis, increasing nuclear stress and inhibiting MDM2-mediated ubiquitination and p53 degradation. Overexpressing EBF1 suppressed PNO1 promoter activity and decreased PNO1 mRNA and protein, inhibiting cell proliferation and inducing cell apoptosis through the p53/p21 pathway. In colorectal cancer tissues, the expression of EBF1 correlated inversely with PNO1. Data mining of online breast and lung cancer databases showed increased PNO1 expression and association with poor patient survival; PNO1 knockdown reduced cell viability of cultured breast and lung cancer cells. Taken together, these findings indicate that PNO1 is overexpressed in colorectal cancer and correlates with poor patient survival, and that PNO1 exerts oncogenic effects, at least, in part, by altering ribosome biogenesis. SIGNIFICANCE: This study identifies the ribosome assembly factor PNO1 as a potential oncogene involved in tumor growth and progression of colorectal cancer.
Collapse
Affiliation(s)
- Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China.,Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China.,Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yue Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Hongwei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Fei Qi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Qiongyu Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Liman Qiu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Na Yu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China. .,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
14
|
Zhou Y, Tong L, Wang M, Chang X, Wang S, Li K, Xiao J. miR-505-3p is a repressor of the puberty onset in female mice. J Endocrinol 2018; 240:JOE-18-0533.R2. [PMID: 30557853 DOI: 10.1530/joe-18-0533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Puberty onset is a complex trait regulated by multiple genetic and environmental factors. In this study, we narrowed a puberty related QTL region down to a 1.7 Mb region on chromosome X in female mice and inferred miR-505-3p as the functional gene. We conducted ectopic expression of miR-505-3p in the hypothalamus of prepubertal female mice through lentivirus-mediated orthotopic injection. The impact of miR-505-3p on female puberty was evaluated by the measurement of pubertal/reproduction events and histological analysis. The results showed that female mice with overexpression of miR-505-3p in the hypothalamus manifested later puberty onset timing both in vaginal opening and ovary maturation, followed by weaker fertility lying in the longer interval time between mating and delivery, higher abortion rate and smaller litter size. We also constructed miR-505-3p knockout mice by CRISPR/Cas9 technology. MiR-505-3p knockout female mice showed earlier vaginal opening timing, higher serum gonadotrophin and higher expression of puberty-related gene in the hypothalamus than their wild type littermates. Srsf1 was proved to be the target gene of miR-505-3p that played the major role in this process. The results of RNA Immunoprecipitation-sequencing showed that SRSF1 (or SF2), the protein product of Srsf1 gene, mainly bound to ribosome protein (RP) mRNAs in GT1-7 cells. The collective evidence implied that miR-505-3p/SRSF1/RP could play a role in the sexual maturation regulation of mammals.
Collapse
Affiliation(s)
- Yuxun Zhou
- Y Zhou, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Li Tong
- L Tong, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Maochun Wang
- M Wang, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xueying Chang
- X Chang, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Sijia Wang
- S Wang, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Kai Li
- K Li, Department of Bioengineer, Donghua University, Songjiang, 201620, China
| | - Junhua Xiao
- J Xiao, The College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
15
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
Zhang C, Qie Y, Yang T, Wang L, Du E, Liu Y, Xu Y, Qiao B, Zhang Z. Kinase PIM1 promotes prostate cancer cell growth via c-Myc-RPS7-driven ribosomal stress. Carcinogenesis 2018; 40:52-60. [PMID: 30247545 DOI: 10.1093/carcin/bgy126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/26/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yunkai Qie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Tong Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Li Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yan Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Baomin Qiao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
17
|
Hu Y, Kang C, Zhao J, Nie Y, Zheng L, Li H, Li X, Wang Q, Qiu Y. LncRNA PLAC2 down-regulates RPL36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT1. J Cell Mol Med 2018; 22:497-510. [PMID: 28922548 PMCID: PMC5742712 DOI: 10.1111/jcmm.13338] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
Current glioma therapies allow in situ delivery of cytotoxic drugs to the tumour; however, gliomas show early recurrence due to their highly proliferative character. Long non-coding (lnc)RNAs play critical roles in tumorigenesis by controlling cell proliferation and cycling. However, the mechanism of action of lncRNAs in glioma development remains unclear. Here, we report that the lncRNA PLAC2 induces cell cycle arrest by targeting ribosomal protein (RP)L36 in glioma. RPL36 promoted cell proliferation and G1/S cell cycle progression. Mass spectrometry analysis revealed that signal transducer and activator of transcription (STAT)1 interacted with both lncRNA PLAC2 and the RPL36 promoter. We also found that the nucleus PLAC2 bind with STAT1 and interact with RPL36 promoters but the cytoplasmic lncRNA PLAC2 inhibited STAT1 nuclear transfer, thereby decreasing RP36 expression, inhibiting cell proliferation and inducing cell cycle arrest. These results provide evidence for a novel cell cycle regulatory network in glioma comprising the lncRNA PLAC2 along with STAT1 and RPL36 that can serve as a therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Yan‐Wei Hu
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chun‐Min Kang
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jing‐Jing Zhao
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ying Nie
- Department of AnesthesiologyGuangdong 999 Brain HospitalGuangzhouGuangdongChina
| | - Lei Zheng
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hai‐Xia Li
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xin Li
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qian Wang
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yu‐Rong Qiu
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
18
|
Vlachos A. Acquired ribosomopathies in leukemia and solid tumors. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:716-719. [PMID: 29222326 PMCID: PMC6142526 DOI: 10.1182/asheducation-2017.1.716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A mutation in the gene encoding the small subunit-associated ribosomal protein RPS19, leading to RPS19 haploinsufficiency, is one of the ribosomal protein gene defects responsible for the rare inherited bone marrow failure syndrome Diamond Blackfan anemia (DBA). Additional inherited and acquired defects in ribosomal proteins (RPs) continue to be identified and are the basis for a new class of diseases called the ribosomopathies. Acquired RPS14 haploinsufficiency has been found to be causative of the bone marrow failure found in 5q- myelodysplastic syndromes. Both under- and overexpression of RPs have also been implicated in several malignancies. This review will describe the somatic ribosomopathies that have been found to be associated with a variety of solid tumors as well as leukemia and will review cancers in which over- or underexpression of these proteins seem to be associated with outcome.
Collapse
Affiliation(s)
- Adrianna Vlachos
- Feinstein Institute for Medical Research, Cohen Children's Medical Center, Division of Hematology/Oncology and Stem Cell Transplantation, Zucker School of Medicine, Hofstra/Northwell, Manhasset, NY
| |
Collapse
|
19
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Golob-Schwarzl N, Krassnig S, Toeglhofer AM, Park YN, Gogg-Kamerer M, Vierlinger K, Schröder F, Rhee H, Schicho R, Fickert P, Haybaeck J. New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur J Cancer 2017; 83:56-70. [PMID: 28715695 DOI: 10.1016/j.ejca.2017.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. The initiation of protein translation is an important rate-limiting step in eukaryotes and is crucial in many viral infections. Eukaryotic translation initiation factors (eIFs) are involved in the initiation step of protein translation and are linked to the phosphatidylinositol-3-kinases PI3K/AKT/mTOR pathway. Therefore we aimed to investigate a potential role of eIFs in HCC. We herein report on the immunohistochemical expression of the various eIF subunits in 235 cases of virus-related human HCC. Additionally, we used immunoblot analysis to investigate the expression of virus-related HCC and non-virus-related HCC in comparison to controls. Mammalian target of rapamycin (or mechanistic target of rapamycin as it is known now (mTOR) and activated mTOR were significantly increased in chronic hepatitis C (HCV)-associated HCC, in HCC without a viral background, in alcoholic liver disease and Wilson disease. pPTEN, phosphatase and tensin homologue (PTEN) and pAKT showed a significant increase in HBV- and HCV-associated HCC, chronic hepatitis B, HCC without a viral background, alcoholic steatohepatitis (ASH) and Wilson disease. Phosphorylated (p)-eIF2α, eIF2α, eiF3B, eIF3D, eIF3J, p-eIF4B, eIF4G and eIF6 were upregulated in HCV-associated HCC. eIF2α, p-eIF4B, eIF5 and various eIF3 subunits were significantly increased in chronic hepatitis B (HBV)-associated HCC. HCC without viral background displayed a significant increase for the eIF subunits p-2α, 3C, 3I, 4E and 4G. We noticed engraved differences in the expression pattern between chronic hepatitis B and C, HBV- and HCV-associated HCC and non-virus-related HCC.
Collapse
Affiliation(s)
- Nicole Golob-Schwarzl
- Department of Pathology, Medical University of Graz, Austria; Center for Biomarker Research in Medicine, Graz, Austria
| | | | | | - Young Nyun Park
- Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | | | | | | | - Hyungjn Rhee
- Department of Pathology, Yonsei University, University College of Medicine, Seoul, South Korea
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | - Johannes Haybaeck
- Department of Pathology, Medical University of Graz, Austria; Center for Biomarker Research in Medicine, Graz, Austria; Department of Pathology, Otto-von-Guericke-University Magdeburg, Germany.
| |
Collapse
|
21
|
Shaikho S, Dobson CC, Naing T, Samanfar B, Moteshareie H, Hajikarimloo M, Golshani A, Holcik M. Elevated levels of ribosomal proteins eL36 and eL42 control expression of Hsp90 in rhabdomyosarcoma. ACTA ACUST UNITED AC 2016; 4:e1244395. [PMID: 28090422 DOI: 10.1080/21690731.2016.1244395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/13/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023]
Abstract
Mammalian 90 kDa heat shock protein (Hsp90) is a ubiquitous molecular chaperone whose expression is selectively upregulated during stress, although the precise control mechanism of this increase is yet to be fully elucidated. We used polysome profiling to show that Hsp90α mRNA is selectively translated, while global translation is inhibited during heat stress. Furthermore, we have identified 2 ribosomal proteins, eL36 and eL42 that modulate Hsp90α expression under both normal and heat shock conditions. Importantly, we noted that expression of eL36 and eL42 is elevated in a panel of human rhabdomyosarcomas where it drives high expression of Hsp90 and modulates sensitivity of these cells to an Hsp90 inhibitor 17-AAG.
Collapse
Affiliation(s)
- Sarah Shaikho
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute , Ottawa, Ontario, Canada
| | - Christine C Dobson
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute , Ottawa, Ontario, Canada
| | - Thet Naing
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute , Ottawa, Ontario, Canada
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University , Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University , Ottawa, Ontario, Canada
| | - Maryam Hajikarimloo
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University , Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University , Ottawa, Ontario, Canada
| | - Martin Holcik
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute , Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
23
|
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48:1313-24. [PMID: 26892688 PMCID: PMC4777597 DOI: 10.3892/ijo.2016.3387] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Whole-genome RNAi screen highlights components of the endoplasmic reticulum/Golgi as a source of resistance to immunotoxin-mediated cytotoxicity. Proc Natl Acad Sci U S A 2015; 112:E1135-42. [PMID: 25713356 DOI: 10.1073/pnas.1501958112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunotoxins (antibody-toxin fusion proteins) target surface antigens on cancer cells and kill these cells via toxin-mediated inhibition of protein synthesis. To identify genes controlling this process, an RNAi whole-genome screen (∼ 22,000 genes at three siRNAs per gene) was conducted via monitoring the cytotoxicity of the mesothelin-directed immunotoxin SS1P. SS1P, a Pseudomonas exotoxin-based immunotoxin, was chosen because it is now in clinical trials and has produced objective tumor regressions in patients. High and low concentrations of SS1P were chosen to allow for the identification of both mitigators and sensitizers. As expected, silencing known essential genes in the immunotoxin pathway, such as mesothelin, furin, KDEL receptor 2, or members of the diphthamide pathway, protected cells. Of greater interest was the observation that many RNAi targets increased immunotoxin sensitivity, indicating that these gene products normally contribute to inefficiencies in the killing pathway. Of the top sensitizers, many genes encode proteins that locate to either the endoplasmic reticulum (ER) or Golgi and are annotated as part of the secretory system. Genes related to the ER-associated degradation system were not among high-ranking mitigator or sensitizer candidates. However, the p97 inhibitor eeyarestatin 1 enhanced immunotoxin killing. Our results highlight potential targets for chemical intervention that could increase immunotoxin killing of cancer cells and enhance our understanding of toxin trafficking.
Collapse
|
25
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
26
|
Shenoy N, Kessel R, Bhagat TD, Bhattacharyya S, Yu Y, McMahon C, Verma A. Alterations in the ribosomal machinery in cancer and hematologic disorders. J Hematol Oncol 2012; 5:32. [PMID: 22709827 PMCID: PMC3438023 DOI: 10.1186/1756-8722-5-32] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/18/2012] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are essential components of the protein translation machinery and are composed of more than 80 unique large and small ribosomal proteins. Recent studies show that in addition to their roles in protein translation, ribosomal proteins are also involved in extra-ribosomal functions of DNA repair, apoptosis and cellular homeostasis. Consequently, alterations in the synthesis or functioning of ribosomal proteins can lead to various hematologic disorders. These include congenital anemias such as Diamond Blackfan anemia and Shwachman Diamond syndrome; both of which are associated with mutations in various ribosomal genes. Acquired uniallelic deletion of RPS14 gene has also been shown to lead to the 5q syndrome, a distinct subset of MDS associated with macrocytic anemia. Recent evidence shows that specific ribosomal proteins are overexpressed in liver, colon, prostate and other tumors. Ribosomal protein overexpression can promote tumorigenesis by interactions with the p53 tumor suppressor pathway and also by direct effects on various oncogenes. These data point to a broad role of ribosome protein alterations in hematologic and oncologic diseases.
Collapse
Affiliation(s)
- Niraj Shenoy
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10467, USA
| | | | | | | | | | | | | |
Collapse
|