1
|
Whitfield HJ, Berthelet J, Mangiola S, Bell C, Anderson RL, Pal B, Yeo B, Papenfuss AT, Merino D, Davis MJ. Single-cell RNA sequencing captures patient-level heterogeneity and associated molecular phenotypes in breast cancer pleural effusions. Clin Transl Med 2023; 13:e1356. [PMID: 37691350 PMCID: PMC10493486 DOI: 10.1002/ctm2.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Malignant pleural effusions (MPEs) are a common complication of advanced cancers, particularly those adjacent to the pleura, such as lung and breast cancer. The pathophysiology of MPE formation remains poorly understood, and although MPEs are routinely used for the diagnosis of breast cancer patients, their composition and biology are poorly understood. It is difficult to distinguish invading malignant cells from resident mesothelial cells and to identify the directionality of interactions between these populations in the pleura. There is a need to characterize the phenotypic diversity of breast cancer cell populations in the pleural microenvironment, and investigate how this varies across patients. METHODS Here, we used single-cell RNA-sequencing to study the heterogeneity of 10 MPEs from seven metastatic breast cancer patients, including three Miltenyi-enriched samples using a negative selection approach. This dataset of almost 65 000 cells was analysed using integrative approaches to compare heterogeneous cell populations and phenotypes. RESULTS We identified substantial inter-patient heterogeneity in the composition of cell types (including malignant, mesothelial and immune cell populations), in expression of subtype-specific gene signatures and in copy number aberration patterns, that captured variability across breast cancer cell populations. Within individual MPEs, we distinguished mesothelial cell populations from malignant cells using key markers, the presence of breast cancer subtype expression patterns and copy number aberration patterns. We also identified pleural mesothelial cells expressing a cancer-associated fibroblast-like transcriptomic program that may support cancer growth. CONCLUSIONS Our dataset presents the first unbiased assessment of breast cancer-associated MPEs at a single cell resolution, providing the community with a valuable resource for the study of MPEs. Our work highlights the molecular and cellular diversity captured in MPEs and motivates the potential use of these clinically relevant biopsies in the development of targeted therapeutics for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Holly J. Whitfield
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Jean Berthelet
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Stefano Mangiola
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Caroline Bell
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Robin L. Anderson
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Peter MacCallum Cancer CentreParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
| | - Bhupinder Pal
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Belinda Yeo
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Austin HealthHeidelbergVictoriaAustralia
| | - Anthony T. Papenfuss
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneCarltonVictoriaAustralia
| | - Delphine Merino
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Immunology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Melissa J. Davis
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- The University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- The South Australian Immunogenomics Cancer InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Kurow O, Nuwayhid R, Stock P, Steinert M, Langer S, Krämer S, Metelmann IB. Organotypic 3D Co-Culture of Human Pleura as a Novel In Vitro Model of Staphylococcus aureus Infection and Biofilm Development. Bioengineering (Basel) 2023; 10:bioengineering10050537. [PMID: 37237611 DOI: 10.3390/bioengineering10050537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial pleural infections are associated with high mortality. Treatment is complicated due to biofilm formation. A common causative pathogen is Staphylococcus aureus (S. aureus). Since it is distinctly human-specific, rodent models do not provide adequate conditions for research. The purpose of this study was to examine the effects of S. aureus infection on human pleural mesothelial cells using a recently established 3D organotypic co-culture model of pleura derived from human specimens. After infection of our model with S. aureus, samples were harvested at defined time points. Histological analysis and immunostaining for tight junction proteins (c-Jun, VE-cadherin, and ZO-1) were performed, demonstrating changes comparable to in vivo empyema. The measurement of secreted cytokine levels (TNF-α, MCP-1, and IL-1β) proved host-pathogen interactions in our model. Similarly, mesothelial cells produced VEGF on in vivo levels. These findings were contrasted by vital, unimpaired cells in a sterile control model. We were able to establish a 3D organotypic in vitro co-culture model of human pleura infected with S. aureus resulting in the formation of biofilm, including host-pathogen interactions. This novel model could be a useful microenvironment tool for in vitro studies on biofilm in pleural empyema.
Collapse
Affiliation(s)
- Olga Kurow
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Rima Nuwayhid
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Peggy Stock
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Matthias Steinert
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Stefan Langer
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Sebastian Krämer
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Isabella B Metelmann
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Differential Pneumococcal Growth Features in Severe Invasive Disease Manifestations. Microbiol Spectr 2022; 10:e0005022. [PMID: 35678554 PMCID: PMC9241771 DOI: 10.1128/spectrum.00050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The nasopharyngeal commensal Streptococcus pneumoniae can become invasive and cause metastatic infection. This requires the pneumococcus to have the ability to adapt, grow, and reside in diverse host environments. Therefore, we studied whether the likelihood of severe disease manifestations was related to pneumococcal growth kinetics. For 383 S. pneumoniae blood isolates and 25 experimental mutants, we observed highly reproducible growth curves in nutrient-rich medium. The derived growth features were lag time, maximum growth rate, maximum density, and stationary-phase time before lysis. First, the pathogenicity of each growth feature was probed by comparing isolates from patients with and without marked preexisting comorbidity. Then, growth features were related to the propensity of causing severe manifestations of invasive pneumococcal disease (IPD). A high maximum bacterial density was the most pronounced pathogenic growth feature, which was also an independent predictor of 30-day mortality (P = 0.03). Serotypes with an epidemiologically higher propensity for causing meningitis displayed a relatively high maximum density (P < 0.005) and a short stationary phase (P < 0.005). Correspondingly, isolates from patients diagnosed with meningitis showed an especially high maximum density and short stationary phase compared to isolates from the same serotype that had caused uncomplicated bacteremic pneumonia. In contrast, empyema-associated strains were characterized by a relatively long lag phase (P < 0.0005), and slower growth (P < 0.005). The course and dissemination of IPD may partly be attributable to the pneumococcal growth features involved. If confirmed, we should tailor the prevention and treatment strategies for the different infection sites that can complicate IPD. IMPORTANCEStreptococcus pneumoniae is a leading infectious cause of deaths worldwide. To understand the course and outcome of pneumococcal infection, most research has focused on the host and its response to contain bacterial growth. However, bacterial epidemiology suggest that certain pneumococcal serotypes are particularly prone to causing complicated infections. Therefore, we took the bacterial point of view, simply examining in vitro growth features for hundreds of pneumococcal blood isolates. Their growth curves were very reproducible. Certain poles of pneumococcal growth features were indeed associated with specific clinical manifestations like meningitis or pleural empyema. This indicates that bacterial growth style potentially affects the progression of infection. Further research on bacterial growth and adaptation to different host environments may therefore provide key insight into pathogenesis of complicated invasive disease. Such knowledge could lead to more tailored vaccine targets or therapeutic approaches to reduce the million deaths that are caused by pneumococcal disease every year.
Collapse
|
4
|
Kim CH, Lee J. Mycoplasma pneumoniae Pleural Effusion in Adults. J Clin Med 2022; 11:jcm11051281. [PMID: 35268372 PMCID: PMC8911427 DOI: 10.3390/jcm11051281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Parapneumonic effusions often complicate Mycoplasma pneumoniae (MP) pneumonia, contrary to the notion that they are a rare feature of MP infection. Increased research and evidence on MP parapneumonic effusions (MPPE) can help elucidate its clinical significance as one of the variable manifestations of MP infection. This article aims to summarize the existing literature about the clinical characteristics of MPPE in adults and discuss its diagnostic implications from the perspective of pleural fluid analysis. Approximately 20–25% of adult patients with MP pneumonia develop MPPE, and its frequency in children and adults seems to be similar. Although the pathogenesis of MPPE remains to be elucidated, MP-induced cell-mediated immune mechanisms might be partially associated with the development of MPPE. MPPE usually shows mononuclear leukocyte predominance with elevated adenosine deaminase (ADA) activity, similar to tuberculous pleural effusion (TPE). The degree of increase in pleural fluid ADA levels and serum inflammatory biomarkers may help differentiate between MPPE and TPE. During the acute phase, a single positive IgM and positive polymerase chain reaction results allow for a precise and reliable MP infection diagnosis. The mainstay of treatment is the selection of adequate anti-mycoplasma antibiotics with or without corticosteroid, based on the local epidemiologic data on macrolide resistance.
Collapse
Affiliation(s)
| | - Jaehee Lee
- Correspondence: ; Tel.: +82-53-200-5536; Fax: +82-53-426-2046
| |
Collapse
|
5
|
HDAC Inhibitor Abrogates LTA-Induced PAI-1 Expression in Pleural Mesothelial Cells and Attenuates Experimental Pleural Fibrosis. Pharmaceuticals (Basel) 2021; 14:ph14060585. [PMID: 34207271 PMCID: PMC8234320 DOI: 10.3390/ph14060585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Lipoteichoic acid (LTA) stimulates pleural mesothelial cell (PMC) to overproduce plasminogen activator inhibitor-1 (PAI-1), and thus may promote pleural fibrosis in Gram-positive bacteria (GPB) parapneumonic effusion (PPE). Histone deacetylase inhibitor (HDACi) was found to possess anti-fibrotic properties. However, the effects of HDACi on pleural fibrosis remain unclear. The effusion PAI-1 was measured among 64 patients with GPB PPE. Pleural fibrosis was measured as radiographical residual pleural thickening (RPT) and opacity at a 12-month follow-up. The LTA-stimulated human PMCs and intrapleural doxycycline-injected rats were pretreated with or without the pan-HDACi, m-carboxycinnamic acid bis-hydroxamide (CBHA), then PAI-1 and collagen expression and activated signalings in PMCs, and morphologic pleural changes in rats were measured. Effusion PAI-1 levels were significantly higher in GPB PPE patients with RPT > 10 mm (n = 26) than those without (n = 38), and had positive correlation with pleural fibrosis shadowing. CBHA significantly reduced LTA-induced PAI-1 and collagen expression via inhibition of JNK, and decreased PAI-1 promoter activity and mRNA levels in PMCs. Furthermore, in doxycycline-treated rats, CBHA substantially repressed PAI-1 and collagen synthesis in pleural mesothelium and minimized pleural fibrosis. Conclusively, CBHA abrogates LTA-induced PAI-1 and collagen expression in PMCs and attenuates experimental pleural fibrosis. PAI-1 inhibition by HDACi may confer potential therapy for pleural fibrosis.
Collapse
|
6
|
Hwanga EH, Kim TH, Park JY, Hong JJ, Kim DH, Ha SJ, Yang SJ, Shin SJ, Park JH. TLR2 contributes to trigger immune response of pleural mesothelial cells against Mycobacterium bovis BCG and M. tuberculosis infection. Cytokine 2018; 95:80-87. [PMID: 28249177 DOI: 10.1016/j.cyto.2017.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis is a causative agent leading to pleural effusion, characterized by the accumulation of fluid and immune cells in the pleural cavity. Although this phenomenon has been described before, detailed processes or mechanisms associated with the pleural effusion are still not well understood. Pleural mesothelial cells (PMCs) are specialized epithelial cells that cover the body wall and internal organs in pleural cavity playing a central role in pleural inflammation. Toll-like receptors are expressed in various cell types including mesothelial cells and initiate the recognition and defense against mycobacterial infection. In the present study, we investigated direct immune responses of PMCs against two mycobacterial strains, M. bovis vaccine strain Bacille Calmette-Guérin (BCG) and M. tuberculosis virulent strain H37Rv, and the role of TLR2 in such responses. Infection with BCG and H37Rv increased the production of IL-6, CXCL1, and CCL2 in WT PMCs, which was partially impaired in TLR2-deficient cells. In addition, the activation of NF-κB and MAPKs induced by BCG and H37Rv was suppressed in TLR2-deficient PMCs, as compared with the WT cells. TLR2 deficiency led to the decrease of nitric oxide (NO) production through the delayed gene expression of iNOS in PMCs. TLR2 was also shown to be essential for optimal expression of cellular adhesion molecules such as ICAM-1 and VCAM-1 in PMCs in response to BCG and H37Rv. These findings strongly suggest that TLR2 participates in mycobacteria-induced innate immune responses in PMCs and may play a role in pathogenesis of tuberculosis pleural effusion.
Collapse
Affiliation(s)
- Eun-Ha Hwanga
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju 61186, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Tae-Hyoun Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Dong-Hyun Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University, Seoul 06591, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
|
8
|
de Almeida DC, Evangelista LSM, Câmara NOS. Role of aryl hydrocarbon receptor in mesenchymal stromal cell activation: A minireview. World J Stem Cells 2017; 9:152-158. [PMID: 29026461 PMCID: PMC5620424 DOI: 10.4252/wjsc.v9.i9.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) possess great therapeutic advantages due to their ability to produce a diverse array of trophic/growth factors related to cytoprotection and immunoregulation. MSC activation via specific receptors is a crucial event for these cells to exert their immunosuppressive response. The aryl-hydrocarbon receptor (AhR) is a sensitive molecule for external signals and it is expressed in MSCs and, upon positive activation, may potentially regulate the MSC-associated immunomodulatory function. Consequently, signalling pathways linked to AhR activation can elucidate some of the molecular cascades involved in MSC-mediated immunosuppression. In this minireview, we have noted some important findings concerning MSC regulation via AhR, highlighting that its activation is associated with improvement in migration and immunoregulation, as well as an increase in pro-regenerative potential. Thus, AhR-mediated MSC activation can contribute to new perspectives on MSC-based therapies, particularly those directed at immune-associated disorders.
Collapse
Affiliation(s)
- Danilo Candido de Almeida
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, SP 04039-003, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, SP 04039-003, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
9
|
Lee KL, Chen WL, Chen RJ, Lai KS, Chung CL. Lipoteichoic acid upregulates plasminogen activator inhibitor-1 expression in parapneumonic effusions. Respirology 2017; 23:89-95. [PMID: 28836366 DOI: 10.1111/resp.13148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Parapneumonic effusion (PPE) is commonly caused by Gram-positive bacteria (GPB) and often presents with pleural loculation, which is characterized by overproduction of plasminogen activator inhibitor (PAI)-1. Lipoteichoic acid (LTA), a surface adhesion molecule of GPB, binds to the pleural mesothelium and triggers inflammation. However, the effects of LTA on PAI-1 expression in PPE and underlying mechanisms remain unclear. METHODS Thirty consecutive patients with PPE were enrolled, including uncomplicated culture negative (CN, n = 11), Gram-negative bacteria (GNB, n = 7) and GPB (n = 12) groups stratified by pleural fluid characteristics and bacteriology, and the effusion PAI-1 levels were measured. In addition, human pleural mesothelial cells (PMC) were treated with LTA and the expression of PAI-1 and activation of signalling pathways were assayed. RESULTS The median levels of PAI-1 were significantly higher in GPB (160.5 ng/mL) and GNB (117.0 ng/mL) groups than in the uncomplicated CN (58.0 ng/mL) group. In human PMC, LTA markedly upregulated PAI-1 mRNA and protein expression and enhanced elaboration of Toll-like receptor 2 (TLR2). Furthermore, LTA increased c-Jun N-terminal kinase (JNK) phosphorylation, induced activating transcription factor 2 (ATF2)/c-Jun nuclear translocation and activated PAI-1 promoter activity. Pretreatment with TLR2 siRNA significantly inhibited LTA-induced JNK phosphorylation and PAI-1 protein expression. CONCLUSION Culture-positive PPE, especially that caused by GPB, has a significantly higher level of PAI-1 than uncomplicated CN PPE. LTA upregulates PAI-1 expression through activation of TLR2/JNK/activator protein 1 (AP-1) pathway in human PMC. Better understanding of the modulation of PAI-1 synthesis by LTA in PPE may provide potential therapies for infected pleural effusions.
Collapse
Affiliation(s)
- Kai-Ling Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Lin Chen
- Department of Nursing, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kevin S Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine and School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Batra H, Antony VB. Pleural mesothelial cells in pleural and lung diseases. J Thorac Dis 2015; 7:964-80. [PMID: 26150910 DOI: 10.3978/j.issn.2072-1439.2015.02.19] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
During development, the mesoderm maintains a complex relationship with the developing endoderm giving rise to the mature lung. Pleural mesothelial cells (PMCs) derived from the mesoderm play a key role during the development of the lung. The pleural mesothelium differentiates to give rise to the endothelium and smooth muscle cells via epithelial-to-mesenchymal transition (EMT). An aberrant recapitulation of such developmental pathways can play an important role in the pathogenesis of disease processes such as idiopathic pulmonary fibrosis (IPF). The PMC is the central component of the immune responses of the pleura. When exposed to noxious stimuli, it demonstrates innate immune responses such as Toll-like receptor (TLR) recognition of pathogen associated molecular patterns as well as causes the release of several cytokines to activate adaptive immune responses. Development of pleural effusions occurs due to an imbalance in the dynamic interaction between junctional proteins, n-cadherin and β-catenin, and phosphorylation of adherens junctions between PMCs, which is caused in part by vascular endothelial growth factor (VEGF) released by PMCs. PMCs play an important role in defense mechanisms against bacterial and mycobacterial pleural infections, and in pathogenesis of malignant pleural effusion, asbestos related pleural disease and malignant pleural mesothelioma. PMCs also play a key role in the resolution of inflammation, which can occur with or without fibrosis. Fibrosis occurs as a result of disordered fibrin turnover and due to the effects of cytokines such as transforming growth factor-β, platelet-derived growth factor (PDGF), and basic fibroblast growth factor; which are released by PMCs. Recent studies have demonstrated a role for PMCs in the pathogenesis of IPF suggesting their potential as a cellular biomarker of disease activity and as a possible therapeutic target. Pleural-based therapies targeting PMCs for treatment of IPF and other lung diseases need further exploration.
Collapse
Affiliation(s)
- Hitesh Batra
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
11
|
Weber GF. Immune targeting of the pleural space by intercostal approach. BMC Pulm Med 2015; 15:14. [PMID: 25880308 PMCID: PMC4336760 DOI: 10.1186/s12890-015-0010-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infectious diseases of the airways are a major health care problem world wide. New treatment strategies focus on employing the body's immune system to enhance its protective capacities during airway disease. One source for immune-competent cells is the pleural space, however, its immune-physiological function remains poorly understood. The aim of this study was to develop an experimental technique in rodents that allows for an in vivo analysis of pleural space immune cells participating in the host defense during airway disease. METHODS I developed an easy and reliable technique that I named the "InterCostal Approach of the Pleural Space" (ICAPS) model that allows for in vivo analysis of pleural space immune cells in rodents. By injection of immune cell altering fluids into or flushing of the pleural space the immune response to airway infections can be manipulated. RESULTS The results reveal that (i) the pleural space cellular environment can be altered partially or completely as well as temporarily or permanently, (ii) depletion of pleural space cells leads to increased airway inflammation during pulmonary infection, (iii) the pleural space contributes immune competent B cells during airway inflammation and (iv) inhibition of B cell function results in reduced bacterial clearance during pneumonia. CONCLUSION As the importance for in-depth knowledge of participating immune cells during health and disease evolves, the presented technique opens new possibilities to experimentally elucidate immune cell function, trafficking and contribution of pleural space cells during airway diseases.
Collapse
Affiliation(s)
- Georg F Weber
- Department of Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany. .,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Letheulle J, Kerjouan M, Bénézit F, De Latour B, Tattevin P, Piau C, Léna H, Desrues B, Le Tulzo Y, Jouneau S. [Parapneumonic pleural effusions: Epidemiology, diagnosis, classification and management]. Rev Mal Respir 2015; 32:344-57. [PMID: 25595878 DOI: 10.1016/j.rmr.2014.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Parapneumonic pleural effusions represent the main cause of pleural infections. Their incidence is constantly increasing. Although by definition they are considered to be a "parapneumonic" phenomenon, the microbial epidemiology of these effusions differs from pneumonia with a higher prevalence of anaerobic bacteria. The first thoracentesis is the most important diagnostic stage because it allows for a distinction between complicated and non-complicated parapneumonic effusions. Only complicated parapneumonic effusions need to be drained. Therapeutic evacuation modalities include repeated therapeutic thoracentesis, chest tube drainage or thoracic surgery. The choice of the first-line evacuation treatment is still controversial and there are few prospective controlled studies. The effectiveness of fibrinolytic agents is not established except when they are combined with DNase. Antibiotics are mandatory; they should be initiated as quickly as possible and should be active against anaerobic bacteria except for in the context of pneumococcal infections. There are few data on the use of chest physiotherapy, which remains widely used. Mortality is still high and is influenced by underlying comorbidities.
Collapse
Affiliation(s)
- J Letheulle
- Service de maladies infectieuses et réanimation médicale, hôpital Pontchaillou, université de Rennes 1, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France.
| | - M Kerjouan
- Service de pneumologie, hôpital Pontchaillou, université de Rennes 1, 35033 Rennes cedex 9, France
| | - F Bénézit
- Service de pneumologie, hôpital Pontchaillou, université de Rennes 1, 35033 Rennes cedex 9, France
| | - B De Latour
- Service de chirurgie thoracique, hôpital Pontchaillou, université de Rennes 1, 35033 Rennes cedex 9, France
| | - P Tattevin
- Service de maladies infectieuses et réanimation médicale, hôpital Pontchaillou, université de Rennes 1, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| | - C Piau
- Laboratoire de bactériologie, hôpital Pontchaillou, université de Rennes 1, 35033 Rennes cedex 9, France
| | - H Léna
- Service de pneumologie, hôpital Pontchaillou, université de Rennes 1, 35033 Rennes cedex 9, France
| | - B Desrues
- Service de pneumologie, hôpital Pontchaillou, université de Rennes 1, 35033 Rennes cedex 9, France
| | - Y Le Tulzo
- Service de maladies infectieuses et réanimation médicale, hôpital Pontchaillou, université de Rennes 1, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| | - S Jouneau
- Service de pneumologie, hôpital Pontchaillou, université de Rennes 1, 35033 Rennes cedex 9, France; IRSET UMR 1085, université de Rennes 1, 35043 Rennes cedex 9, France
| |
Collapse
|
13
|
Liu L, Du L, Chen Y, Qin S, Liang Q, Zou X, Liang X, Jiang J, Chen Q, Wang K, Xie C. Down-regulation of Aquaporin1 (AQP1) by peptidoglycan via p38 MAPK pathways in primary rat pleural mesothelial cells. Exp Lung Res 2013; 40:145-53. [PMID: 24364558 DOI: 10.3109/01902148.2013.859333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVE This study was designed to investigate the p38 mitogen-activated protein kinase (MAPK) signaling pathway involved in Aquaporin1 (AQP1) expression caused by staphylococcal peptidoglycan (PGN) in cultured rat pleural mesothelial cells (rPMCs) in vitro. METHODS RT-PCR and immunoblot analysis were used to determine the relative mRNA and protein levels of AQP1 by PGN in rPMCs. P38 kinase inhibitor SB203580, JNK inhibitor SP600125, and ERK1/2 inhibitor PD98059 were used to determine the effects of PGN-induced AQP1 expression by immunoblot. Activation of p38 by PGN was reflected by detecting the phosphorylation constituent of p38, using immunoblot. The shift of localization after activation of p38 by PGN was investigated by immunofluorescence assay. RESULTS AQP1 transcription and protein expression were decreased by PGN in dose-dependent and time-dependent manners in rPMCs. Down-regulation of AQP1 by PGN was blocked only by SB203580, neither by SP600125 nor by PD98059. Furthermore, rPMCs exposed to PGN showed activation of p38 MAPK. Phospho-p38 protein production was increased by PGN stimulation in rPMCs. The localization of phospho-p38 was both in the cytosol and nuclei after PGN treatment, while its normal distribution is mainly in the cytosol in rPMCs. CONCLUSION AQP1 expression was decreased by PGN in both dose-dependent and time-dependent manners in rPMCs. This down-regulation by PGN-induced AQP1 in rPMCs may be mediated by the activation of p38 MARK pathway.
Collapse
Affiliation(s)
- Lihua Liu
- 1Department of Respiratory Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu L, Xie C. Effects of downregulation of aquaporin1 by peptidoglycan and lipopolysaccharide via MAPK pathways in MeT-5A cells. Lung 2011; 189:331-40. [PMID: 21647617 DOI: 10.1007/s00408-011-9288-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/11/2011] [Indexed: 12/21/2022]
Abstract
This study was designed to investigate the signaling pathway involved in aquaporin1 (AQP1) expression caused by peptidoglycan (PGN) from Staphylococcus aureus and lipopolysaccharide (LPS) in human pleural mesothelial cell lines (MeT-5A) in vitro. RT-PCR, immunoblot analysis, and immunofluorescence assay were used to determine the relative mRNA and protein levels of AQP1 caused by PGN and LPS in MeT-5A cells. Activation of MAPKs by PGN and LPS was reflected by detecting the phosphorylation constituents of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 using immunoblot. MAPKs inhibitors were used to determine the effects of PGN- and LPS-induced AQP1 expression by immunoblot. AQP1 transcription and protein expression were decreased by PGN and LPS in dose- and time-dependent manners in MeT-5A cells. Both PGN and LPS activated p38/ERK/JNK pathways in MeT-5A cells. Furthermore, downregulation of AQP1 expression by LPS was blocked by SB203580, SP600125, and PD98059, which are inhibitors of p38, JNK, and ERK1/2, respectively. In contrast, downregulation of AQP1 expression by PGN was blocked only by SB203580, not by SP600125 or PD98059, underlying the importance of p38 MAPK in the downregulation of AQP1 expression by PGN in MeT-5A cells. AQP1 expression was decreased by both PGN and LPS in dose- and time-dependent manners in MeT-5A cells. AQP1 expression was down-regulated by PGN via p38 MAPK pathway, while AQP1 expression was down-regulated by LPS via p38/JNK/ERK pathways.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Internal Medicine of Respiratory Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | | |
Collapse
|
15
|
Mechanisms of T-lymphocyte accumulation during experimental pleural infection induced by Mycobacterium bovis BCG. Infect Immun 2008; 76:5686-93. [PMID: 18809659 DOI: 10.1128/iai.00133-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculous pleurisy is a frequent extrapulmonary manifestation characterized by accumulation of fluid and inflammatory cells in the pleural space. Here, we investigated the mechanisms of T-lymphocyte accumulation in the pleural space by using a murine model of pleurisy induced by Mycobacterium bovis BCG. Intrathoracic (i.t.) injection of BCG (4.5 x 10(5) bacteria/cavity) induced accumulation of T lymphocytes in the pleural cavities of C57BL/6 mice. We observed the presence of CFU in pleural washes conducted 1, 2, 3, 7, and 15 days after pleurisy induction. Pretreatment with fucoidan inhibited T-lymphocyte accumulation at 1 day, but not at 15 days, after BCG-induced pleurisy. Accordingly, adoptive transfer of fluorescein isothiocyanate-labeled blood mononuclear cells to infected mice showed that T lymphocytes migrated into the pleural cavity 1 day (but not 15 days) after BCG injection. Cell-free pleural wash fluids recovered from mice 1 day after BCG i.t. stimulation (day 1 BCG-PW), but not day 7 or day 15 BCG-PW, induced in vitro T-cell transmigration, which was dependent on L-, P-, and E-selectins. In contrast, day 7 BCG-PW (but not day 1 BCG-PW) induced in vitro T-lymphocyte proliferation via interleukin-2 (IL-2) and gamma interferon (IFN-gamma). Accordingly, in vivo IL-2 or IFN-gamma neutralization abolished T-lymphocyte accumulation 7 days after pleurisy induction. Our results demonstrate that pleural infection induced by BCG leads to T-lymphocyte accumulation in two waves. The acute phase depends on selectin-mediated migration, while the second wave of T-lymphocyte accumulation seems to depend on a local proliferation induced by cytokines produced in situ.
Collapse
|
16
|
Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200809010-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
17
|
Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200809010-00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Acencio MMP, Vargas FS, Marchi E, Carnevale GG, Teixeira LR, Antonangelo L, Broaddus VC. Pleural mesothelial cells mediate inflammatory and profibrotic responses in talc-induced pleurodesis. Lung 2007; 185:343-8. [PMID: 17932716 DOI: 10.1007/s00408-007-9041-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Intrapleural talc is used to produce pleurodesis in malignant pleural effusions. Prior in vivo studies have documented an acute inflammatory response to talc in the pleural space but the cellular source of cytokines has not been identified. The aim of this study was to investigate the acute response of rabbit pleural mesothelial cells challenged with talc used for pleurodesis and compare it to prior studies of the response to talc in the rabbit pleural space. Cultured rabbit pleural mesothelial cells (PMC) were exposed to talc (25 mug/cm(2)) for 6, 24, or 48 h and assessed for viability, necrosis, and apoptosis by flow cytometry, Trypan Blue exclusion, and immunocytochemistry, and for the production of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and transforming growth factor-beta(1) (TGF-beta(1)) by ELISA. More than 50% of the PMC remained viable 48 h after talc stimulation. The PMC that were nonviable were identified as either apoptotic or necrotic, with roughly 20% in each category over the 48 h. At 6 h, the IL-8, VEGF, and TGF-beta(1) levels produced by talc-exposed PMC increased significantly and remained elevated for up to 48 h. These cytokine levels rose at similar times and at the same or higher levels than have been measured in the rabbit pleural space in prior studies. We report that viable, talc-exposed, pleural mesothelial cells may actively mediate the primary inflammatory pleural response in talc-induced pleurodesis.
Collapse
|
19
|
Liu CL, Hsieh WY, Wu CL, Kuo HT, Lu YT. Triggering receptor expressed on myeloid cells-1 in pleural effusions: a marker of inflammatory disease. Respir Med 2006; 101:903-9. [PMID: 17097866 DOI: 10.1016/j.rmed.2006.09.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/14/2006] [Accepted: 09/25/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Triggering receptor expressed on myeloid cells (TREM)-1 is a recently described molecule that plays an important role in myeloid cell-activated inflammatory responses. The aim of this study was to investigate the expression of TREM-1 in pleural effusions of various causes. METHODS For this cross-sectional, observational study conducted between February and August 2005 in Taiwan, 74 patients with pleural effusions of varying etiology were investigated. Soluble TREM-1 (sTREM-1) was measured in pleural fluid samples, and cells in the fluid were assessed for surface expression of TREM-1. RESULTS Concentrations of sTREM-1 were significantly higher in infectious and neoplastic pleural effusions (189.1+/-36.7 and 69.9+/-22.8ng/ml, mean+/-sem) than in transudates (10.1+/-5.3ng/ml; P<0.001). Among infectious effusions, the sTREM-1 levels were significantly higher in parapneumonic than in tuberculous effusions (301.8+/-49.8 vs. 38.9+/-17.3ng/ml; P<0.001). TREM-1 was expressed on a portion of the myeloid (CD11b positive) cells in each type of effusion, without significant differences among them (transudative, 34.7%; neoplastic, 36.0%; parapneumonic, 27.7%; tuberculous, 21.2%; P=0.861). Non-myeloid cells expressed very little TREM-1 (transudative, 6.3%; neoplastic, 0.5%; parapneumonic, 1.0%; tuberculous, 0.7%; P=0.192). CONCLUSIONS sTREM-1 expression in pleural fluids is highest in parapneumonic and neoplastic effusions but low in transudates. In infectious effusions, a high concentration of sTREM-1 may exclude tuberculous pleurisy.
Collapse
Affiliation(s)
- Ching-Lung Liu
- Division of Chest Medicine, Department of Internal Medicine, Mackay Memorial Taitung Branch Hospital, Taitung, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Abstract
The pleura and lung are intimately associated and share many pathologic conditions. Nevertheless, they represent two separate organs of different embryonic derivation and with different yet often symbiotic functions. In this article, the authors explore the pathologic manifestations of the many conditions that primarily or secondarily affect the pleura.
Collapse
Affiliation(s)
- John C English
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
21
|
Bonniaud P. Pleurésies infectieuses. Rev Mal Respir 2005. [DOI: 10.1016/s0761-8425(05)85663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|