1
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6374-6391. [PMID: 33394441 DOI: 10.1007/s11356-020-12051-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/10/2020] [Indexed: 04/16/2023]
Abstract
Airway hyperresponsiveness (AHR) is characterized by excessive bronchoconstriction in response to nonspecific stimuli, thereby leading to airway stenosis and increased airway resistance. AHR is recognized as a key characteristic of asthma and is associated with significant morbidity. At present, many studies on the molecular mechanisms of AHR have mainly focused on the imbalance in Th1/Th2 cell function and the abnormal contraction of airway smooth muscle cells. However, the specific mechanisms of AHR remain unclear and need to be systematically elaborated. In addition, the effect of air pollution on the respiratory system has become a worldwide concern. To date, numerous studies have indicated that certain concentrations of fine particulate matter (PM2.5) can increase airway responsiveness and induce acute exacerbation of asthma. Of note, the concentration of PM2.5 does correlate with the degree of AHR. Numerous studies exploring the toxicity of PM2.5 have mainly focused on the inflammatory response, oxidative stress, genotoxicity, apoptosis, autophagy, and so on. However, there have been few reviews systematically elaborating the molecular mechanisms by which PM2.5 induces AHR. The present review separately sheds light on the underlying molecular mechanisms of AHR and PM2.5-induced AHR.
Collapse
Affiliation(s)
- Xi Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
3
|
Relaxant action of plumula nelumbinis extract on mouse airway smooth muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:523640. [PMID: 25763092 PMCID: PMC4339714 DOI: 10.1155/2015/523640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/24/2014] [Indexed: 01/26/2023]
Abstract
The traditional herb Plumula Nelumbinis is widely used in the world because it has many biological activities, such as anti-inflammation, antioxidant, antihypertension, and butyrylcholinesterase inhibition. However, the action of Plumula Nelumbinis on airway smooth muscle (ASM) relaxation has not been investigated. A chloroform extract of Plumula Nelumbinis (CEPN) was prepared, which completely inhibited precontraction induced by high K+ in a concentration-dependent manner in mouse tracheal rings, but it had no effect on resting tension. CEPN also blocked voltage-dependent L-type Ca2+ channel- (VDCC-) mediated currents. In addition, ACh-induced precontraction was also completely blocked by CEPN and partially inhibited by nifedipine or pyrazole 3. Besides, CEPN partially reduced ACh-activated nonselective cation channel (NSCC) currents. Taken together, our data demonstrate that CEPN blocked VDCC and NSCC to inhibit Ca2+ influx, resulting in relaxation of precontracted ASM. This finding indicates that CEPN would be a candidate of new potent bronchodilators.
Collapse
|
4
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
5
|
Donovan C, Simoons M, Esposito J, Ni Cheong J, Fitzpatrick M, Bourke JE. Rosiglitazone is a superior bronchodilator compared to chloroquine and β-adrenoceptor agonists in mouse lung slices. Respir Res 2014; 15:29. [PMID: 24621080 PMCID: PMC3995634 DOI: 10.1186/1465-9921-15-29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022] Open
Abstract
Background Current therapy for relieving bronchoconstriction may be ineffective in severe asthma, particularly in the small airways. The aim of this study was to further characterise responses to the recently identified novel bronchodilators rosiglitazone (RGZ) and chloroquine (CQ) under conditions where β-adrenoceptor agonist efficacy was limited or impaired in mouse small airways within lung slices. Methods Relaxation to RGZ and CQ was assessed following submaximal methacholine (MCh) pre-contraction, in slices treated overnight with either RGZ, CQ or albuterol (ALB) (to induce β-adrenoceptor desensitization), and in slices treated with caffeine/ryanodine in which contraction is associated with increases in Ca2+ sensitivity in the absence of contractile agonist-induced Ca2+ oscillations. Furthermore, the effects of RGZ, CQ, ALB and isoproterenol (ISO) on the initiation and development of methacholine-induced contraction were also compared. Results RGZ and CQ, but not ALB or ISO, elicited complete relaxation with increasing MCh pre-contraction and maintained their potency and efficacy following β-adrenoceptor desensitization. RGZ, CQ and ALB maintained efficacy following overnight incubation with RGZ or CQ. Relaxation responses to all dilators were generally maintained but delayed after caffeine/ryanodine. Pre-treatment with RGZ, but not CQ, ALB or ISO, reduced MCh potency. Conclusions This study demonstrates the superior effectiveness of RGZ in comparison to CQ and β-adrenoceptor agonists as a dilator of mouse small airways. Further investigation of the mechanisms underlying the relatively greater efficacy of RGZ under these conditions are warranted and should be extended to include studies in human asthmatic airways.
Collapse
Affiliation(s)
| | | | | | | | | | - Jane Elizabeth Bourke
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Shioya T, Sato K, Sano M, Watanabe H. [Transient receptor potential (TRP) channel and cough]. Nihon Yakurigaku Zasshi 2008; 131:417-22. [PMID: 18552442 DOI: 10.1254/fpj.131.417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Algara-Suárez P, Romero-Méndez C, Chrones T, Sánchez-Armass S, Meza U, Sims SM, Espinosa-Tanguma R. Functional coupling between the Na+/Ca2+ exchanger and nonselective cation channels during histamine stimulation in guinea pig tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol 2007; 293:L191-8. [PMID: 17449794 DOI: 10.1152/ajplung.00485.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Airway smooth muscle (ASM) contracts partly due to an increase in cytosolic Ca(2+). In this work, we found that the contraction caused by histamine depends on external Na(+), possibly involving nonselective cationic channels (NSCC) and the Na(+)/Ca(2+) exchanger (NCX). We performed various protocols using isometric force measurement of guinea pig tracheal rings stimulated by histamine. We observed that force reached 53 +/- 1% of control during external Na(+) substitution by N-methyl-D-glucamine(+), whereas substitution by Li(+) led to no significant change (91 +/- 1%). Preincubation with KB-R7943 decreased the maximal force developed (52.3 +/- 5.6%), whereas preincubation with nifedipine did not (89.7 +/- 1.8%). Also, application of the nonspecific NCX blocker KB-R7943 and nifedipine on histamine-precontracted tracheal rings reduced force to 1 +/- 3%, significantly different from nifedipine alone (49 +/- 6%). Moreover, nonspecific NSCC inhibitors SKF-96365 and 2-aminoethyldiphenyl borate reduced force to 1 +/- 1% and 19 +/- 7%, respectively. Intracellular Ca(2+) measurements in isolated ASM cells showed that KB-R7943 and SKF-96365 reduced the peak and sustained response to histamine (0.20 +/- 0.1 and 0.19 +/- 0.09 for KB-R, 0.43 +/- 0.16 and 0.47 +/- 0.18 for SKF, expressed as mean of differences). Moreover, Na(+)-free solution only inhibited the sustained response (0.54 +/- 0.25). These data support an important role for NSCC and NCX during histamine stimulation. We speculate that histamine induces Na(+) influx through NSCC that promotes the Ca(2+) entry mode of NCX and Ca(V)1.2 channel activation, thereby causing contraction.
Collapse
Affiliation(s)
- Paola Algara-Suárez
- Departmento de Fisiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | | | | | | | | | | |
Collapse
|
8
|
Skogvall S, Dalence-Guzmán MF, Berglund M, Svensson K, Mesic A, Jönsson P, Persson CGA, Sterner O. Discovery of a potent and long-acting bronchorelaxing capsazepinoid, RESPIR 4-95. Pulm Pharmacol Ther 2007; 21:125-33. [PMID: 17374498 DOI: 10.1016/j.pupt.2007.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Current drugs including beta-agonists have limited smooth muscle relaxant effects on human small airways. Yet this is a major site of obstruction in asthma and chronic obstructive pulmonary disease (COPD). OBJECTIVE This study explores human small airway relaxant effects of RESPIR 4-95, a novel chemical analogue (capsazepinoid) to capsazepine. Capsazepine was recently shown to relax small airways in a way which was independent of its TRPV1 antagonism and independent of current bronchodilator drug mechanisms. METHOD In vitro preparations of human small airways, 0.5-1.5mm in diameter and responding with reproducible contractions to leukotriene D4 (LTD4) for 12h, were used. RESULTS RESPIR 4-95 reversibly prevented LTD4-induced contractions as well as relaxed the established tonic contraction by LTD4. RESPIR 4-95 exhibited marked improvements over the reference capsazepinoid, capsazepine, by being 10 times more potent, exhibiting twice as long duration of action after wash-out (9h), and inhibiting equally well LTD4-, histamine-, prostaglandin D2 (PGD2)-, and acetylcholine (ACh)-induced contractions. RESPIR 4-95 was distinguished from l-type calcium channel antagonist nifedipine by its greater efficacy and potency and by exhibiting increased relaxant effect by repeated exposures. Furthermore, RESPIR 4-95 was more efficacious and longer acting than the long-acting beta-agonist formoterol. CONCLUSION Efficacy, potency, duration of action, and inexhaustibility of its relaxation of human small airways make RESPIR 4-95 an interesting lead compound for further developments aiming at drug treatment of small airway obstruction in asthma and COPD. Further work is warranted to unveil the molecular biology behind its relaxant actions.
Collapse
|
9
|
Janssen LJ, Killian K. Airway smooth muscle as a target of asthma therapy: history and new directions. Respir Res 2006; 7:123. [PMID: 17010205 PMCID: PMC1592490 DOI: 10.1186/1465-9921-7-123] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/29/2006] [Indexed: 11/10/2022] Open
Abstract
Ultimately, asthma is a disease characterized by constriction of airway smooth muscle (ASM). The earliest approach to the treatment of asthma comprised the use of xanthines and anti-cholinergics with the later introduction of anti-histamines and anti-leukotrienes. Agents directed at ion channels on the smooth muscle membrane (Ca2+ channel blockers, K+ channel openers) have been tried and found to be ineffective. Functional antagonists, which modulate intracellular signalling pathways within the smooth muscle (beta-agonists and phosphodiesterase inhibitors), have been used for decades with success, but are not universally effective and patients continue to suffer with exacerbations of asthma using these drugs. During the past several decades, research energies have been directed into developing therapies to treat airway inflammation, but there have been no substantial advances in asthma therapies targeting the ASM. In this manuscript, excitation-contraction coupling in ASM is addressed, highlighting the current treatment of asthma while proposing several new directions that may prove helpful in the management of this disease.
Collapse
Affiliation(s)
- Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Kieran Killian
- Firestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
10
|
Peel SE, Liu B, Hall IP. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle. Respir Res 2006; 7:119. [PMID: 16987424 PMCID: PMC1584236 DOI: 10.1186/1465-9921-7-119] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 09/20/2006] [Indexed: 01/28/2023] Open
Abstract
Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC) or receptor operated channels (ROC). Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70%) of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60%) or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.
Collapse
Affiliation(s)
- Samantha E Peel
- Division of Therapeutics and Molecular Medicine, University Hospital, Queens Medical Centre, Nottingham, UK
| | - Bo Liu
- Division of Therapeutics and Molecular Medicine, University Hospital, Queens Medical Centre, Nottingham, UK
| | - Ian P Hall
- Division of Therapeutics and Molecular Medicine, University Hospital, Queens Medical Centre, Nottingham, UK
| |
Collapse
|
11
|
Trebak M. Canonical transient receptor potential channels in disease: targets for novel drug therapy? Drug Discov Today 2006; 11:924-30. [PMID: 16997143 DOI: 10.1016/j.drudis.2006.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 07/20/2006] [Accepted: 08/11/2006] [Indexed: 11/18/2022]
Abstract
The canonical transient receptor potential (TRPC) channels constitute one of the three major families within the large transient receptor potential (TRP) superfamily. TRPC channels are the closest mammalian homologues of Drosophila TRP, the light-activated channel in Drosophila photoreceptor cells. All TRPC channels (TRPC1-7) are activated via phospholipase-C-coupled receptors and were, therefore, proposed to encode elusive native receptor-activated cation channels in many cell types. A physiological role has been established for all of the known TRPC channels, including the control of vascular tone (TRPC1, TRPC4 and TRPC6) or lymphocyte activation, which is essential for immune competence (TRPC1 and TRPC3). The emergence of TRPC channels in controlling a variety of biological functions offers new and promising targets for drug development.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Health and Human Services, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
12
|
Chenik M, Douagi F, Ben Achour Y, Khalef NB, Ouakad M, Louzir H, Dellagi K. Characterization of two different mucolipin-like genes from Leishmania major. Parasitol Res 2005; 98:5-13. [PMID: 16240129 DOI: 10.1007/s00436-005-0012-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Here, we report the existence of two different mucolipin-like genes in Leishmania parasites. The Leishmania major mucolipin-like A and B genes (lmmlA and lmmlB) encode two proteins of 776 and 590 amino acids, respectively, and may be classified among the mucolipins family [transient receptors potential mucolipin (TRPML)] because (1) they include a large region that exhibits significant similarities with specific domains of ion transport proteins and transient receptors potential (TRP) channels, (2) they contain at least 173 residues that display significant homologies with conserved regions of different mucolipins from several species, and (3) as TRPMLs, they include six predicted transmembrane domains. Gene expression analysis reveals that lmmlB is upregulated in metacyclics and amastigotes relative to procyclics, while lmmlA is constitutively expressed in the three Leishmania developmental stages. These genes could constitute potential drug targets.
Collapse
Affiliation(s)
- Mehdi Chenik
- Laboratoire d'Immunopathologie, Vaccinologie et Génétique Moléculaire, Institut Pasteur de Tunis, 13, Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | | | | | | | | | | | | |
Collapse
|