1
|
Xu Y, Lin H, Gao Z, Guo R, Kan YC, Han LY, Bu WH, Wang Z, Asilebieke A, Han LX, Li C, He F, Chu JJ. Injectable isoniazid-loaded bone cement based on hydrazone bonds achieving long-term release and decent mechanical properties. J Mater Chem B 2024; 12:4389-4397. [PMID: 38623831 DOI: 10.1039/d3tb02661b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.
Collapse
Affiliation(s)
- Yang Xu
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Hao Lin
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, Anhui 230013, China.
| | - Zhe Gao
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Rui Guo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Lu-Yang Han
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Wen-Han Bu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Zhi Wang
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, Anhui 230013, China.
| | - Ayakuzi Asilebieke
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Long-Xu Han
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Chuang Li
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230000, China
| | - Fang He
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, Anhui 230013, China.
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230000, China
| |
Collapse
|
2
|
Bhandari M, Soria-Carrera H, Wohlmann J, Dal NJK, de la Fuente JM, Martín-Rapún R, Griffiths G, Fenaroli F. Subcellular localization and therapeutic efficacy of polymeric micellar nanoparticles encapsulating bedaquiline for tuberculosis treatment in zebrafish. Biomater Sci 2023; 11:2103-2114. [PMID: 36723226 DOI: 10.1039/d2bm01835g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The combination drug regimens that have long been used to treat tuberculosis (TB), caused by Mycobacterium tuberculosis, are fraught with problems such as frequent administration, long duration of treatment, and harsh adverse effects, leading to the emergence of multidrug resistance. Moreover, there is no effective preventive vaccine against TB infection. In this context, nanoparticles (NPs) have emerged as a potential alternative method for drug delivery. Encapsulating antibiotics in biodegradable NPs has been shown to provide effective therapy and reduced toxicity against M. tuberculosis in different mammalian models, when compared to conventional free drug administration. Here, we evaluate the localization, therapeutic efficacy and toxic effects of polymeric micellar NPs encapsulating a promising but highly hydrophobic and toxic antitubercular drug bedaquiline (BQ) in zebrafish embryos infected with Mycobacterium marinum. Our study shows that the NP formulation of BQ improves survival and reduces bacterial burden in the infected embryos after treatment when compared to its free form. The intravenously injected BQ NPs have short circulation times due to their rapid and efficient uptake into the endothelial cells, as observed by correlative light and electron microscopy (CLEM).
Collapse
Affiliation(s)
- Madhavi Bhandari
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Héctor Soria-Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | | | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Martín-Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
3
|
Pediatric Tuberculosis Management: A Global Challenge or Breakthrough? CHILDREN 2022; 9:children9081120. [PMID: 36010011 PMCID: PMC9406656 DOI: 10.3390/children9081120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/17/2022]
Abstract
Managing pediatric tuberculosis (TB) remains a public health problem requiring urgent and long-lasting solutions as TB is one of the top ten causes of ill health and death in children as well as adolescents universally. Minors are particularly susceptible to this severe illness that can be fatal post-infection or even serve as reservoirs for future disease outbreaks. However, pediatric TB is the least prioritized in most health programs and optimal infection/disease control has been quite neglected for this specialized patient category, as most scientific and clinical research efforts focus on developing novel management strategies for adults. Moreover, the ongoing coronavirus pandemic has meaningfully hindered the gains and progress achieved with TB prophylaxis, therapy, diagnosis, and global eradication goals for all affected persons of varying age bands. Thus, the opening of novel research activities and opportunities that can provide more insight and create new knowledge specifically geared towards managing TB disease in this specialized group will significantly improve their well-being and longevity.
Collapse
|
4
|
Buya AB, Witika BA, Bapolisi AM, Mwila C, Mukubwa GK, Memvanga PB, Makoni PA, Nkanga CI. Application of Lipid-Based Nanocarriers for Antitubercular Drug Delivery: A Review. Pharmaceutics 2021; 13:2041. [PMID: 34959323 PMCID: PMC8708335 DOI: 10.3390/pharmaceutics13122041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
The antimicrobial drugs currently used for the management of tuberculosis (TB) exhibit poor bioavailability that necessitates prolonged treatment regimens and high dosing frequency to achieve optimal therapeutic outcomes. In addition, these agents cause severe adverse effects, as well as having detrimental interactions with other drugs used in the treatment of comorbid conditions such as HIV/AIDS. The challenges associated with the current TB regimens contribute to low levels of patient adherence and, consequently, the development of multidrug-resistant TB strains. This has led to the urgent need to develop newer drug delivery systems to improve the treatment of TB. Targeted drug delivery systems provide higher drug concentrations at the infection site, thus leading to reduced incidences of adverse effects. Lipid-based nanocarriers have proven to be effective in improving the solubility and bioavailability of antimicrobials whilst decreasing the incidence of adverse effects through targeted delivery. The potential application of lipid-based carriers such as liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, nano and microemulsions, and self-emulsifying drug delivery systems for the treatment of TB is reviewed herein. The composition of the investigated lipid-based carriers, their characteristics, and their influence on bioavailability, toxicity, and sustained drug delivery are also discussed. Overall, lipid-based systems have shown great promise in anti-TB drug delivery applications. The summary of the reviewed data encourages future efforts to boost the translational development of lipid-based nanocarriers to improve TB therapy.
Collapse
Affiliation(s)
- Aristote B. Buya
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| | - Bwalya A. Witika
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa;
| | - Alain M. Bapolisi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu 570, Democratic Republic of the Congo;
| | - Chiluba Mwila
- School of Health Sciences, Department of Pharmacy, University of Zambia, Lusaka 10101, Zambia;
| | - Grady K. Mukubwa
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| | - Patrick B. Memvanga
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu 570, Democratic Republic of the Congo;
| | - Pedzisai A. Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Christian I. Nkanga
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| |
Collapse
|
5
|
Discovery and evaluation of new compounds targeting ribosomal protein S1 in antibiotic-resistant Mycobacterium Tuberculosis. Eur J Med Chem 2020; 196:112317. [DOI: 10.1016/j.ejmech.2020.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022]
|
6
|
Palucci I, Maulucci G, De Maio F, Sali M, Romagnoli A, Petrone L, Fimia GM, Sanguinetti M, Goletti D, De Spirito M, Piacentini M, Delogu G. Inhibition of Transglutaminase 2 as a Potential Host-Directed Therapy Against Mycobacterium tuberculosis. Front Immunol 2020; 10:3042. [PMID: 32038614 PMCID: PMC6992558 DOI: 10.3389/fimmu.2019.03042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Host-directed therapies (HDTs) are emerging as a potential valid support in the treatment of drug-resistant tuberculosis (TB). Following our recent report indicating that genetic and pharmacological inhibition of transglutaminase 2 (TG2) restricts Mycobacterium tuberculosis (Mtb) replication in macrophages, we aimed to investigate the potentials of the TG2 inhibitors cystamine and cysteamine as HDTs against TB. We showed that both cysteamine and cystamine restricted Mtb replication in infected macrophages when provided at equimolar concentrations and did not exert any antibacterial activity when administered directly on Mtb cultures. Interestingly, infection of differentiated THP-1 mRFP-GFP-LC3B cells followed by the determination of the autophagic intermediates pH distribution (AIPD) showed that cystamine inhibited the autophagic flux while restricting Mtb replication. Moreover, both cystamine and cysteamine had a similar antimicrobial activity in primary macrophages infected with a panel of Mtb clinical strains belonging to different phylogeographic lineages. Evaluation of cysteamine and cystamine activity in the human ex vivo model of granuloma-like structures (GLS) further confirmed the ability of these drugs to restrict Mtb replication and to reduce the size of GLS. The antimicrobial activity of the TG2 inhibitors synergized with a second-line anti-TB drug as amikacin in human monocyte-derived macrophages and in the GLS model. Overall, the results of this study support the potential usefulness of the TG2-inhibitors cysteamine and cystamine as HDTs against TB.
Collapse
Affiliation(s)
- Ivana Palucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Physics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavio De Maio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Sali
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Romagnoli
- Electron Microscopy and Cell Biology Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy
| | - Gian Maria Fimia
- Electron Microscopy and Cell Biology Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Physics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mauro Piacentini
- Electron Microscopy and Cell Biology Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Delogu
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
7
|
Nandi S, Ahmed S, Saxena AK. Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:151-170. [PMID: 29347843 DOI: 10.1080/1062936x.2017.1419375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/16/2017] [Indexed: 05/19/2023]
Abstract
The virulence of tuberculosis infections resistant to conventional combination drug regimens cries for the design of potent fluoroquinolone compounds to be used as second line antimycobacterial chemotherapeutics. One of the most effective in silico methods is combinatorial design and high throughput screening by a ligand-based pharmacophore prior to experiment. The combinatorial design of a series of 3850 fluoroquinolone and isothiazoloquinolone compounds was then screened virtually by applying a topological descriptor based quantitative structure activity relationship (QSAR) for predicting highly active congeneric quinolone leads against Mycobacterium fortuitum and Mycobacterium smegmatis. The predicted highly active congeneric hits were then subjected to a comparative study between existing lead sparfloxacin with fluoroquinolone FQ hits as well as ACH-702 with predicted active isothiazoloquinolones, utilizing pharmacophore modelling to focus on the mechanism of drug binding against mycobacterial DNA gyrase. Finally, 68 compounds including 34 FQ and 34 isothiazoloquinolones were screened through high throughput screening comprising QSAR, the Lipinski rule of five and ligand-based pharmacophore modelling.
Collapse
Affiliation(s)
- S Nandi
- a Division of Pharmaceutical Chemistry , Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University , Kashipur , India
| | - S Ahmed
- a Division of Pharmaceutical Chemistry , Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University , Kashipur , India
| | - A K Saxena
- b Division of Medicinal and Process Chemistry , CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
8
|
Lee YV, Choi SB, Wahab HA, Choong YS. Active Site Flexibility of Mycobacterium tuberculosis Isocitrate Lyase in Dimer Form. J Chem Inf Model 2017; 57:2351-2357. [PMID: 28820943 DOI: 10.1021/acs.jcim.7b00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) still remains a global threat due to the emergence of a drug-resistant strain. Instead of focusing on the drug target of active stage TB, we are highlighting the isocitrate lyase (ICL) at the dormant stage TB. ICL is one of the persistent factors for Mycobacterium tuberculosis (MTB) to survive during the dormant phase. In addition, the absence of ICL in human has made ICL a potential drug target for TB therapy. However, the dynamic details of ICL which could give insights to the ICL-ligand interaction have yet to be solved. Therefore, a series of ICL dimer dynamics studies through molecular dynamics simulation were performed in this work. The ICL active site entrance gate closure is contributed to by hydrogen bonding and electrostatic interactions with the C-terminal. Analysis suggested that the open-closed behavior of the ICL active site entrance depends on the type of ligand present in the active site. We also observed four residues (Ser91, Asp108, Asp153, and Cys191) which could possibly be the nucleophiles for nucleophilic attack on the cleavage of isocitrate at the C2-C3 bond. We hope that the elucidation of ICL dynamics can benefit future works such as lead identification or antibody design against ICL for TB therapeutics.
Collapse
Affiliation(s)
- Yie-Vern Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Sy Bing Choi
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| |
Collapse
|
9
|
Nkanga CI, Krause RW, Noundou XS, Walker RB. Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes. Int J Pharm 2017; 526:466-473. [PMID: 28461265 DOI: 10.1016/j.ijpharm.2017.04.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) is a poverty related infectious disease that is rapidly giving rise to public health concerns. Lengthy drug administration and frequent adverse side-effects associated with TB treatment make anti-tubercular drugs (ATDs) good candidates for drug delivery studies. This work aimed to formulate and prepare liposomes as a cost-effective option for ATD delivery. Liposomes were prepared by film hydration using crude soybean lecithin (CL) and not pure phospholipids as in the normal practice. Cholesterol was also used (up to 25% mass ratio), and isoniazid (INH) was encapsulated as model drug using a freeze-thaw loading technique. Purified soybean lecithin (PL) was also used for comparative purposes, under the same conditions. INH-loaded liposomes were characterized for particle size, Zeta Potential (ZP), encapsulation efficiency (EE) and drug release. Physicochemical properties were investigated using thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared. INH-loaded CL-based liposomes showed high EE (79±2.45%). The average particle size (813.00±9.21nm) and ZP (-42.80±4.31mV) of this formulation are promising for the treatment of TB by pulmonary delivery. These findings suggest the possibility of encapsulating ATDs in liposomes made of crude soybean lecithin that is cheap and readily available.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Grahamstown 6140, Eastern Cape, South Africa
| | - Rui Werner Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Grahamstown 6140, Eastern Cape, South Africa.
| | - Xavier Siwe Noundou
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Grahamstown 6140, Eastern Cape, South Africa
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown 6140, Eastern Cape, South Africa
| |
Collapse
|
10
|
QSAR and pharmacophore modeling of anti-tubercular 6-Fluoroquinolone compounds utilizing calculated structural descriptors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1882-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Lee BY, Clemens DL, Silva A, Dillon BJ, Masleša-Galić S, Nava S, Ding X, Ho CM, Horwitz MA. Drug regimens identified and optimized by output-driven platform markedly reduce tuberculosis treatment time. Nat Commun 2017; 8:14183. [PMID: 28117835 PMCID: PMC5287291 DOI: 10.1038/ncomms14183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
The current drug regimens for treating tuberculosis are lengthy and onerous, and hence complicated by poor adherence leading to drug resistance and disease relapse. Previously, using an output-driven optimization platform and an in vitro macrophage model of Mycobacterium tuberculosis infection, we identified several experimental drug regimens among billions of possible drug-dose combinations that outperform the current standard regimen. Here we use this platform to optimize the in vivo drug doses of two of these regimens in a mouse model of pulmonary tuberculosis. The experimental regimens kill M. tuberculosis much more rapidly than the standard regimen and reduce treatment time to relapse-free cure by 75%. Thus, these regimens have the potential to provide a markedly shorter course of treatment for tuberculosis in humans. As these regimens omit isoniazid, rifampicin, fluoroquinolones and injectable aminoglycosides, they would be suitable for treating many cases of multidrug and extensively drug-resistant tuberculosis. Current antibiotic therapies for tuberculosis are lengthy and onerous. Here, the authors use an output-driven approach to optimize drug doses for two experimental drug regimens in a mouse model of tuberculosis, leading to improved regimens that reduce treatment time by 75%.
Collapse
Affiliation(s)
- Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Daniel L Clemens
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Aleidy Silva
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Barbara Jane Dillon
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Saša Masleša-Galić
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Susana Nava
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Xianting Ding
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chih-Ming Ho
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA.,Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
12
|
Abstract
INTRODUCTION Tuberculosis has been and remains arguably the most important infectious disease of all time. However, when compared to other diseases of similar human impact, relatively little progress has been made. Although there are many new drugs being developed for the first time in decades, it is unclear what role each of these new drugs will play. AREAS COVERED The history of current therapy is reviewed as are the challenges associated with medications currently in use. Drugs that have recently been added to the armamentarium of therapy are reviewed as well as new candidate drugs. EXPERT OPINION Developing new drugs to treat tuberculosis is of critical importance but even more important is developing strategies that ensure that there is no further amplification of drug resistance around the world especially in high burden low resource settings. Directly observed therapy is the cornerstone of protecting existing and future regimens and new technologies will potentially extend the reach of monitored therapy. Challenges remain including maintaining an adequate drug supply but the greatest challenge may be the issue of persistent organisms that require prolonged therapy. By discovering the triggers of persistence and identifying new drug targets can it be possible to radically shorten therapy.
Collapse
Affiliation(s)
- Michael Lauzardo
- a Division of Infectious Diseases and Global Medicine , University of Florida , Gainesville , FL , USA
| | | |
Collapse
|
13
|
Investigation of Elimination Rate, Persistent Subpopulation Removal, and Relapse Rates of Mycobacterium tuberculosis by Using Combinations of First-Line Drugs in a Modified Cornell Mouse Model. Antimicrob Agents Chemother 2016; 60:4778-85. [PMID: 27216065 PMCID: PMC4958161 DOI: 10.1128/aac.02548-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/20/2016] [Indexed: 11/20/2022] Open
Abstract
Currently, the most effective tuberculosis control method involves case finding and 6 months of chemotherapy. There is a need to improve our understanding about drug interactions, combination activities, and the ability to remove persistent bacteria using the current regimens, particularly in relation to relapse. We aimed to investigate the therapeutic effects of three main components, rifampin (RMP), isoniazid (INH), and pyrazinamide (PZA), in current drug regimens using a modified version of the Cornell mouse model. We evaluated the posttreatment levels of persistent Mycobacterium tuberculosis in the organs of mice using culture filtrate derived from M. tuberculosis strain H37Rv. When RMP was combined with INH, PZA, or INH-PZA, significant additive activities were observed compared to each of the single-drug treatments. However, the combination of INH and PZA showed a less significant additive effect than either of the drugs used on their own. Apparent culture negativity of mouse organs was achieved at 14 weeks of treatment with RMP-INH, RMP-PZA, and RMP-INH-PZA, but not with INH-PZA, when conventional tests, namely, culture on solid agar and in liquid broth, indicated that the organs were negative for bacteria. The relapse rates for RMP-containing regimens were not significantly different from a 100% relapse rate at the numbers of mice examined in this study. In parallel, we examined the organs for the presence of culture filtrate-dependent persistent bacilli after 14 weeks of treatment. Culture filtrate treatment of the organs revealed persistent M. tuberculosis. Modeling of mycobacterial elimination rates and evaluation of culture filtrate-dependent organisms showed promise as surrogate methods for efficient factorial evaluation of drug combinations in tuberculosis in mouse models and should be further evaluated against relapse. The presence of culture filtrate-dependent persistent M. tuberculosis is the likely cause of disease relapse in this modified Cornell mouse model.
Collapse
|
14
|
Abstract
Rifamycins inhibit RNA polymerase of most bacterial genera. Rifampicin remains part of combination therapy for treating tuberculosis (TB), and for treating Gram-positive prosthetic joint and valve infections, in which biofilms are prominent. Rifabutin has use for AIDS patients in treating mycobacterial infections TB and Mycobacterium avium complex (MAC), having fewer drug-drug interactions that interfere with AIDS medications. Rifabutin is occasionally used in combination to eradicate Helicobacter pylori (peptic ulcer disease). Rifapentine has yet to fulfill its potential in reducing time of treatment for TB. Rifaximin is a monotherapeutic agent to treat gastrointestinal (GI) disorders, such as hepatic encephalopathy, irritable bowel syndrome, and travelers' diarrhea. Rifaximin is confined to the GI tract because it is not systemically absorbed on oral dosing, achieving high local concentrations, and showing anti-inflammatory properties in addition to its antibacterial activity. Resistance issues are unavoidable with all the rifamycins when the bioburden is high, because of mutations that modify RNA polymerase.
Collapse
|
15
|
Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model. Proc Natl Acad Sci U S A 2016; 113:E2172-9. [PMID: 27035987 DOI: 10.1073/pnas.1600812113] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) remains a major global public health problem, and improved treatments are needed to shorten duration of therapy, decrease disease burden, improve compliance, and combat emergence of drug resistance. Ideally, the most effective regimen would be identified by a systematic and comprehensive combinatorial search of large numbers of TB drugs. However, optimization of regimens by standard methods is challenging, especially as the number of drugs increases, because of the extremely large number of drug-dose combinations requiring testing. Herein, we used an optimization platform, feedback system control (FSC) methodology, to identify improved drug-dose combinations for TB treatment using a fluorescence-based human macrophage cell culture model of TB, in which macrophages are infected with isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible green fluorescent protein (GFP)-expressing Mycobacterium tuberculosis (Mtb). On the basis of only a single screening test and three iterations, we identified highly efficacious three- and four-drug combinations. To verify the efficacy of these combinations, we further evaluated them using a methodologically independent assay for intramacrophage killing of Mtb; the optimized combinations showed greater efficacy than the current standard TB drug regimen. Surprisingly, all top three- and four-drug optimized regimens included the third-line drug clofazimine, and none included the first-line drugs isoniazid and rifampin, which had insignificant or antagonistic impacts on efficacy. Because top regimens also did not include a fluoroquinolone or aminoglycoside, they are potentially of use for treating many cases of multidrug- and extensively drug-resistant TB. Our study shows the power of an FSC platform to identify promising previously unidentified drug-dose combinations for treatment of TB.
Collapse
|
16
|
Adeleke OA, Monama NO, Tsai PC, Sithole HM, Michniak-Kohn BB. Combined Atomistic Molecular Calculations and Experimental Investigations for the Architecture, Screening, Optimization, and Characterization of Pyrazinamide Containing Oral Film Formulations for Tuberculosis Management. Mol Pharm 2015; 13:456-71. [DOI: 10.1021/acs.molpharmaceut.5b00698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oluwatoyin A. Adeleke
- Centre
for High Performance Computing, Council for Scientific and Industrial Research, Pretoria, South Africa, 0001
- Centre
for Dermal Research—New Jersey Centre for Biomaterials, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Nkwe O. Monama
- Centre
for High Performance Computing, Council for Scientific and Industrial Research, Pretoria, South Africa, 0001
| | - Pei-Chin Tsai
- Centre
for Dermal Research—New Jersey Centre for Biomaterials, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Happy M. Sithole
- Centre
for High Performance Computing, Council for Scientific and Industrial Research, Pretoria, South Africa, 0001
| | - Bozena B. Michniak-Kohn
- Centre
for Dermal Research—New Jersey Centre for Biomaterials, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
17
|
Esposito S, Bianchini S, Blasi F. Bedaquiline and delamanid in tuberculosis. Expert Opin Pharmacother 2015; 16:2319-30. [DOI: 10.1517/14656566.2015.1080240] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Lewis JM, Sloan DJ. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther Clin Risk Manag 2015; 11:779-91. [PMID: 25999726 PMCID: PMC4437614 DOI: 10.2147/tcrm.s71076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis (TB) remains a significant cause of death worldwide, and emergence of drug-resistant TB requires lengthy treatments with toxic drugs that are less effective than their first-line equivalents. New treatments are urgently needed. Delamanid, previously OPC-67863, is a novel drug of the dihydro-nitroimidazole class with potent anti-TB activity and great promise to be effective in the treatment of drug-resistant TB. This review examines the preclinical and clinical development of delamanid, reviews current guidance on its use and evaluates the opportunities and challenges for its future role in TB management.
Collapse
Affiliation(s)
- Joseph M Lewis
- Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - Derek J Sloan
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
19
|
Mustafa S, Pai RS, Singh G, Kusum Devi V. Nanocarrier-based interventions for the management of MDR/XDR-TB. J Drug Target 2015; 23:287-304. [PMID: 25766078 DOI: 10.3109/1061186x.2015.1009076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB over the past decade presents an unprecedented public health challenge to which countries of concern are responding far too slowly. Global Tuberculosis Report 2014 marks the 20th anniversary of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance, indicating the highest global level of drug-resistance ever recorded detection of 97 000 patients with MDR-TB resulting in 170 000 deaths in 2013. Treatment of MDR-TB is expensive, complex, prolonged (18-24 months) and associated with a higher incidence of adverse events. In this context, nanocarrier delivery systems (NDSs) efficiently encapsulating considerable amounts of second-line anti tubercular drugs ((s)ATDs), eliciting controlled, sustained and more profound effect to trounce the need to administer (s)ATDs at high and frequent doses, would assist in improving patient compliance and avoid hepatotoxicity and/or nephrotoxicity/ocular toxicity/ototoxicity associated with the prevalent (s)ATDs. Besides, NDSs are also known to inhibit the P-glycoprotein efflux, reduce metabolism by gut cytochrome P-450 enzymes and circumnavigate the hepatic first-pass effect, facilitating absorption of drugs via intestinal lymphatic pathways. This review first provides a holistic account on MDR-TB and discusses the molecular basis of Mycobacterium tuberculosis resistance to anti-tubercular drugs. It also provides an updated bird's eye view on current treatment strategies and laboratory diagnostic test for MDR-TB. Furthermore, a relatively pithy view on patent studies on second-line chemotherapy using NDSs will be discussed.
Collapse
Affiliation(s)
- Sanaul Mustafa
- Department of Pharmaceutics, Al-Ameen College of Pharmacy , Bangalore, Karnataka , India
| | | | | | | |
Collapse
|
20
|
Dutta NK, Karakousis PC. Thioridazine for treatment of tuberculosis: promises and pitfalls. Tuberculosis (Edinb) 2014; 94:708-11. [PMID: 25293998 DOI: 10.1016/j.tube.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/23/2022]
Abstract
The articles by De Knegt et al. and Singh et al. in a recent issue of this Journal address one of the current debates regarding the potential role of thioridazine in the treatment of tuberculosis. This commentary presents a summary of the available evidence, and, emphasizing the need for further research, asks the question: "How far can we go in repurposing thioridazine?"
Collapse
Affiliation(s)
- Noton K Dutta
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Petros C Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
21
|
Abstract
PZA is a unique anti-tuberculosis drug that plays a key role in shortening the TB therapy. PZA kills non-replicating persisters that other TB drugs fail to kill, and thus making it an essential drug for inclusion in any drug combinations for treating drug susceptible and drug-resistant TB such as MDR-TB. PZA acts differently from common antibiotics by inhibiting multiple targets such as energy production, trans-translation and perhaps pantothenate /coenzyme A required for persister survival. Resistance to PZA is mostly caused by mutations in the pncA gene encoding pyrazinamidase involved in conversion of the prodrug PZA to the active form POA. Mutations in the drug target RpsA are also found in some PZA-resistant strains. The recent finding that panD mutations are found in some PZA-resistant strains without pncA or rpsA mutations may suggest a third PZA resistance gene and a potential new target of PZA. Current phenotype based PZA susceptibility testing is not reliable due to false resistance, and sequencing of the pncA gene represents a more rapid, cost-effective and more reliable molecular test for PZA susceptibility testing and should be used for guiding improved treatment of MDR/XDR-TB. Finally, the story of PZA has important implications for not only TB therapy but also chemotherapy in general. PZA serves as a model prototype persister drug and hopefully a 'tipping point' that inspires new efforts at developing a new type of antibiotics or drugs that target non-replicating persisters for improved treatment of not only TB but also other persistent bacterial infections.
Collapse
|
22
|
Kaur IP, Singh H. Nanostructured drug delivery for better management of tuberculosis. J Control Release 2014; 184:36-50. [DOI: 10.1016/j.jconrel.2014.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/27/2023]
|
23
|
Ekins S, Pottorf R, Reynolds R, Williams AJ, Clark AM, Freundlich JS. Looking back to the future: predicting in vivo efficacy of small molecules versus Mycobacterium tuberculosis. J Chem Inf Model 2014; 54:1070-82. [PMID: 24665947 PMCID: PMC4004261 DOI: 10.1021/ci500077v] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Indexed: 02/07/2023]
Abstract
Selecting and translating in vitro leads for a disease into molecules with in vivo activity in an animal model of the disease is a challenge that takes considerable time and money. As an example, recent years have seen whole-cell phenotypic screens of millions of compounds yielding over 1500 inhibitors of Mycobacterium tuberculosis (Mtb). These must be prioritized for testing in the mouse in vivo assay for Mtb infection, a validated model utilized to select compounds for further testing. We demonstrate learning from in vivo active and inactive compounds using machine learning classification models (Bayesian, support vector machines, and recursive partitioning) consisting of 773 compounds. The Bayesian model predicted 8 out of 11 additional in vivo actives not included in the model as an external test set. Curation of 70 years of Mtb data can therefore provide statistically robust computational models to focus resources on in vivo active small molecule antituberculars. This highlights a cost-effective predictor for in vivo testing elsewhere in other diseases.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative
Drug Discovery, 1633
Bayshore Highway, Suite 342, Burlingame, California 94010, United States
- Collaborations
in Chemistry, 5616 Hilltop
Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - Richard Pottorf
- Department
of Pharmacology & Physiology, Rutgers
University − New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Robert
C. Reynolds
- Department
of Chemistry, University of Alabama at Birmingham, 1530 Third Avenue South, Birmingham, Alabama 35294-1240, United States
| | - Antony J. Williams
- Royal
Society of Chemistry, 904 Tamaras Circle, Wake Forest, North Carolina 27587, United States
| | - Alex M. Clark
- Molecular
Materials Informatics, 1900 St. Jacques #302, Montreal, Quebec, Canada H3J 2S1
| | - Joel S. Freundlich
- Department
of Pharmacology & Physiology, Rutgers
University − New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
- Department
of Medicine, Center for Emerging and Reemerging
Pathogens, Rutgers University − New
Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| |
Collapse
|
24
|
Cheng Y, Moraski GC, Cramer J, Miller MJ, Schorey JS. Bactericidal activity of an imidazo[1, 2-a]pyridine using a mouse M. tuberculosis infection model. PLoS One 2014; 9:e87483. [PMID: 24498115 PMCID: PMC3909116 DOI: 10.1371/journal.pone.0087483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis remains a global threat due in part to the long treatment regimen and the increased prevalence of drug resistant M. tuberculosis strains. Therefore, new drug regimens are urgently required to combat this deadly disease. We previously synthesized and evaluated a series of new anti-tuberculosis compounds which belong to the family of imidazo[1,2-a]pyridines. This family of compounds showed low nM MIC (minimal inhibitory concentration) values against M. tuberculosis in vitro. In this study, a derivative of imidazo[1,2-a]pyridines, (N-(4-(4-chlorophenoxy)benzyl)-2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamide) (ND-09759), was selected as a promising lead compound to determine its protective efficacy using a mouse infection model. Pharmacokinetic analysis of ND-09759 determined that at a dosage of 30 mg/kg mouse body weight (PO) gave a maximum serum drug concentration (Cmax) of 2.9 µg/ml and a half-life of 20.1 h. M. tuberculosis burden in the lungs and spleens was significantly decreased in mice treated once daily 6 days per week for 4-weeks with ND-09759 compared to untreated mice and this antibiotic activity was equivalent to isoniazid (INH) and rifampicin (RMP), two first-line anti-TB drugs. We observed slightly higher efficacy when using a combination of ND-09759 with either INH or RMP. Finally, the histopathological analysis revealed that infected mice treated with ND-09759 had significantly reduced inflammation relative to untreated mice. In conclusion, our findings indicate ND-09759 might be a potent candidate for the treatment of active TB in combination with current standard anti-TB drugs.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biological Sciences, Center for Rare and Neglected Diseases and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Garrett C. Moraski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeffrey Cramer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeffrey S. Schorey
- Department of Biological Sciences, Center for Rare and Neglected Diseases and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ekins S, Reynolds RC, Kim H, Koo MS, Ekonomidis M, Talaue M, Paget SD, Woolhiser LK, Lenaerts AJ, Bunin BA, Connell N, Freundlich JS. Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. ACTA ACUST UNITED AC 2013; 20:370-8. [PMID: 23521795 DOI: 10.1016/j.chembiol.2013.01.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 12/26/2022]
Abstract
Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical HTS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sloan DJ, Davies GR, Khoo SH. Recent advances in tuberculosis: New drugs and treatment regimens. CURRENT RESPIRATORY MEDICINE REVIEWS 2013; 9:200-210. [PMID: 24683386 PMCID: PMC3968807 DOI: 10.2174/1573398x113099990017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current treatment regimen against drug susceptible tuberculosis (DS-TB) was defined by the 1980s. Since then the emergence of the global HIV pandemic and the escalation of drug resistant (DR-) forms of TB have presented new challenges for therapeutic research. Priority goals include shortening DS-TB treatment, improving DR-TB treatment and making combined TB-HIV therapy easier. To help achieve these goals, a range of new drugs and treatment strategies are currently being evaluated. Phase IIb and III clinical trials are ongoing to assess combinations involving the high-dose rifamycins, the 8-methoxyquinolones, a diarylquinoline (bedaquiline) and the nitroimidazoles. Other compounds (e.g. novel oxazolidinones and ethylenediamines) are at earlier stages of clinical development. Overall, there are grounds for optimism that recent advances will contribute towards achievement of new treatment regimens in the foreseeable future. However, long-term investment, political commitment and scientific endeavour are crucial to ensure that progress is sustained and the benefits of recent advances reach those in the greatest need.
Collapse
Affiliation(s)
- Derek J. Sloan
- Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Geraint R. Davies
- Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Saye H. Khoo
- Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| |
Collapse
|
27
|
Ekins S, Clark AM, Sarker M. TB Mobile: a mobile app for anti-tuberculosis molecules with known targets. J Cheminform 2013; 5:13. [PMID: 23497706 PMCID: PMC3616884 DOI: 10.1186/1758-2946-5-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/26/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND An increasing number of researchers are focused on strategies for developing inhibitors of Mycobacterium tuberculosis (Mtb) as tuberculosis (TB) drugs. RESULTS In order to learn from prior work we have collated information on molecules screened versus Mtb and their targets which has been made available in the Collaborative Drug Discovery (CDD) database. This dataset contains published data on target, essentiality, links to PubMed, TBDB, TBCyc (which provides a pathway-based visualization of the entire cellular biochemical network) and human homolog information. The development of mobile cheminformatics apps could lower the barrier to drug discovery and promote collaboration. Therefore we have used this set of over 700 molecules screened versus Mtb and their targets to create a free mobile app (TB Mobile) that displays molecule structures and links to the bioinformatics data. By input of a molecular structures and performing a similarity search within the app we can infer potential targets or search by targets to retrieve compounds known to be active. CONCLUSIONS TB Mobile may assist researchers as part of their workflow in identifying potential targets for hits generated from phenotypic screening and in prioritizing them for further follow-up. The app is designed to lower the barriers to accessing this information, so that all researchers with an interest in combatting this deadly disease can use it freely to the benefit of their own efforts.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA.
| | | | | |
Collapse
|
28
|
Wang Z, Shi J, Geng G, Qiu H. Ultra-short-course chemotherapy for spinal tuberculosis: five years of observation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:274-81. [PMID: 23053764 PMCID: PMC3555621 DOI: 10.1007/s00586-012-2536-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE This study aimed to explore the feasibility of ultra-short-course chemotherapy in the treatment of spinal tuberculosis. METHODS One hundred and eighty-five patients with confirmed spinal tuberculosis and surgical indication were included. The chemotherapy regimen was 2SHRZ/XHRZ. According to the duration of the chemotherapy, the patients were divided into two groups, the ultra-short-course chemotherapy group with an average duration of 4.5 months, and the standard chemotherapy group with an average duration of 9 months. The same surgery was performed for patients in the two groups. RESULTS The duration of the follow-up ranged from 61 to 87 months, with an average of 69.1 months. Erythrocyte sedimentation rate and C-reactive protein, kyphosis and nerve function, recovery of work, and activities of daily living were not significantly different between the two groups before or after treatment; however, the aforementioned indices were significantly different before and after treatment within groups. There was no significant difference in postoperative bone graft healing between the two groups. The drug side effects were significantly different between the two groups. CONCLUSIONS With thorough focus debridement, bone grafting, and internal fixation, the efficacy of ultra-short chemotherapy was similar to that of standard chemotherapy for the treatment of spinal tuberculosis. The ultra-short-course chemotherapy can shorten the course of treatment and reduce drug side effects.
Collapse
Affiliation(s)
- Zili Wang
- />Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Yinchuan 750004, Ningxia China
| | - Jiandang Shi
- />Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Yinchuan 750004, Ningxia China
| | - Guangqi Geng
- />Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Yinchuan 750004, Ningxia China
| | - Hongyan Qiu
- />The School of Public Health of Ningxia Medical University, No. 804, Shengli Street, Yinchuan 750004, Ningxia China
| |
Collapse
|
29
|
Zhang Y, Liu J, Wang Y, Xian Q, Shao L, Yang Z, Wang X. Immunotherapy using IL-2 and GM-CSF is a potential treatment for multidrug-resistant Mycobacterium tuberculosis. SCIENCE CHINA-LIFE SCIENCES 2012; 55:800-6. [PMID: 23015129 DOI: 10.1007/s11427-012-4368-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 12/01/2022]
|
30
|
Franzblau SG, DeGroote MA, Cho SH, Andries K, Nuermberger E, Orme IM, Mdluli K, Angulo-Barturen I, Dick T, Dartois V, Lenaerts AJ. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2012; 92:453-88. [PMID: 22940006 DOI: 10.1016/j.tube.2012.07.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/02/2012] [Accepted: 07/09/2012] [Indexed: 02/01/2023]
Abstract
In drug development, there are typically a series of preclinical studies that must be completed with new compounds or regimens before use in humans. A sequence of in vitro assays followed by in vivo testing in validated animal models to assess the activity against Mycobacterium tuberculosis, pharmacology and toxicity is generally used for advancing compounds against tuberculosis in a preclinical stage. A plethora of different assay systems and conditions are used to study the effect of drug candidates on the growth of M. tuberculosis, making it difficult to compare data from one laboratory to another. The Bill and Melinda Gates Foundation recognized the scientific gap to delineate the spectrum of variables in experimental protocols, identify which of these are biologically significant, and converge towards a rationally derived standard set of optimized assays for evaluating compounds. The goals of this document are to recommend protocols and hence accelerate the process of TB drug discovery and testing. Data gathered from preclinical in vitro and in vivo assays during personal visits to laboratories and an electronic survey of methodologies sent to investigators is reported. Comments, opinions, experiences as well as final recommendations from those currently engaged in such preclinical studies for TB drug testing are being presented. Certain in vitro assays and mouse efficacy models were re-evaluated in the laboratory as head-to-head experiments and a summary is provided on the results obtained. It is our hope that this information will be a valuable resource for investigators in the field to move forward in an efficient way and that key variables of assays are included to ensure accuracy of results which can then be used for designing human clinical trials. This document then concludes with remaining questions and critical gaps that are in need of further validation and experimentation.
Collapse
Affiliation(s)
- Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60621-7231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, Ronacher K, King EC, Lukey PT, Duncan K, Van Helden PD, Walzl G, Dockrell HM. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 2012; 207:18-29. [PMID: 22872737 DOI: 10.1093/infdis/jis499] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Accurate assessment of treatment efficacy would facilitate clinical trials of new antituberculosis drugs. We hypothesized that early alterations in peripheral immunity could be measured by gene expression profiling in tuberculosis patients undergoing successful conventional combination treatment. METHODS Ex vivo blood samples from 27 pulmonary tuberculosis patients were assayed at diagnosis and during treatment. RNA was processed and hybridized to Affymetrix GeneChips, to determine expression of over 47,000 transcripts. RESULTS There were significant ≥ 2-fold changes in expression of >4000 genes during treatment. Rapid, large-scale changes were detected, with down-regulated expression of 1261 genes within the first week, including inflammatory markers such as complement components C1q and C2. This was followed by slower changes in expression of different networks of genes, including a later increase in expression of B-cell markers, transcription factors, and signaling molecules. CONCLUSIONS The fast initial down-regulation of expression of inflammatory mediators coincided with rapid killing of actively dividing bacilli, whereas slower delayed changes occurred as drugs acted on dormant bacilli and coincided with lung pathology resolution. Measurement of biosignatures during clinical trials of new drugs could be useful predictors of rapid bactericidal or sterilizing drug activity, and would expedite the licensing of new treatment regimens.
Collapse
Affiliation(s)
- Jacqueline M Cliff
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Field SK, Fisher D, Jarand JM, Cowie RL. New treatment options for multidrug-resistant tuberculosis. Ther Adv Respir Dis 2012; 6:255-68. [PMID: 22763676 DOI: 10.1177/1753465812452193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite the development of effective treatments, tuberculosis (TB) remains a major health problem. TB continues to infect new victims and kills nearly 2 million people annually. The problem is much greater in resource-limited countries but is present worldwide. Inadequate public health resources, cost, the obligatory long treatment period, and adverse drug effects contribute to treatment failures and relapses. Drug-resistant Mycobacterium tuberculosis (MTB) strains arise spontaneously and are propagated by inadequate treatment. According to World Health Organization global data, 17% of MTB strains in new, previously untreated cases are resistant to at least one drug. Approximately, 3.3% of new MTB cases are resistant to both isoniazid and rifampin, also called multidrug resistant (MDR), and rates of MDR-TB are greater than 60% in previously treated patients in some countries. Approximately 5% of cases of MDR-TB are also resistant to fluoroquinolones and to injectable drugs, and are called extensively drug resistant (XDR). Recently, XDR strains have been isolated that are also resistant to all standard second-line anti-TB medications. Successful drug treatment of TB with complex resistance profiles is virtually impossible with currently available drugs. There is a desperate need for new compounds that cure strains resistant to currently available drugs and for drugs that are better tolerated and will shorten treatment regimens. In the short term, new strategies for the management of drug-resistant TB with currently available drugs are being explored. These include the use of high-dose isoniazid, substitution of rifabutin in a small proportion of rifampin-resistant cases, linezolid, fluoroquinolones, and phenothiazines. A number of novel drugs are undergoing clinical testing and will hopefully be available in the near future. These include the newer oxazolidinones, diarylquinolines, nitroimidazopyrans, ethenylenediamines, pyrroles, and benzothiazinones.
Collapse
Affiliation(s)
- Stephen K Field
- Health Science Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
33
|
Efremenko YV, Arjanova OV, Prihoda ND, Yurchenko LV, Sokolenko NI, Mospan IV, Pylypchuk VS, Rowe J, Jirathitikal V, Bourinbaiar AS, Kutsyna GA. Clinical validation of sublingual formulations of Immunoxel (Dzherelo) as an adjuvant immunotherapy in treatment of TB patients. Immunotherapy 2012; 4:273-82. [PMID: 22401633 DOI: 10.2217/imt.11.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunoxel (Dzherelo) is a water-alcohol extract of medicinal plants used in Ukraine as an adjunct immunotherapy to TB and HIV therapy. Four types of solid sublingual formulations of Immunoxel were made: sugar dragées, sugar-coated pills, gelatin pastilles and dried-honey lozenges. They were administered once-daily along with TB drugs. After 1 month, 84.1% of TB patients became sputum-negative with rates in individual groups of 89.5, 70, 76.9 and 100%, respectively. The conversion rate was independent of bodyweight, age, gender, differences in chemotherapy regimens or whether subjects had newly diagnosed TB, re-treated TB, multidrug-resistant TB or TB with HIV coinfection. Patients experienced earlier clinical improvement, faster defervescence, weight gain, a higher hemoglobin content and reduced inflammation as evidenced by lower leukocyte counts and erythrocyte sedimentation rate. By contrast, in the placebo group, only 19% of patients had converted. These findings imply that mucosal delivery of solid Immunoxel is equivalent to the original liquid formula given per os twice-daily for 2-4 months.
Collapse
|
34
|
Karim K. Tuberculosis care: Olympics 1948 vs 2012. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2012; 21:736-741. [PMID: 22874724 DOI: 10.12968/bjon.2012.21.12.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tuberculosis (TB) is a multi-faceted illness associated with a long and fascinating history. Although much has changed in the diagnosis, treatment and prevention of TB over the past six decades, many of the challenges remain remarkably similar. In developing solutions to these challenges, key stakeholders and politicians would do well to learn from some of the more effective strategies from the pre-chemotherapy era. Despite working with insufficient resources, nurses have historically contributed significantly to the work of the multidisciplinary teams in delivering care to patients and families, as well as in implementing national TB control and prevention programmes. The current resurgence of TB in the UK makes it imperative to achieve consistently and appropriately-funded TB services across the country. Whether NHS commissioners and politicians will engage with nurses and others in the reconfigured NHS to achieve this, however, remains to be seen.
Collapse
Affiliation(s)
- Kelvin Karim
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
35
|
Pinheiro M, Lúcio M, Lima JLFC, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond) 2012; 6:1413-28. [PMID: 22026379 DOI: 10.2217/nnm.11.122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
TB is an infectious disease that is far from being eradicated and controlled. The treatment for TB is associated with noncompliance to therapy because it consists of a long-term treatment with a multidrug combination and is associated with the appearance of several side effects. Liposomal formulations are being developed with first- and second-line antibiotics, and might be an extremely useful alternative to current therapies. This article will thus focus on the role of liposomes as nanodelivery systems for the treatment of TB. Among several advantages, these nanocarriers allow an increase in the bioavailability of antibiotics, which may lead to a reduction in the time of treatment. Results obtained with such nanosystems, although preliminary, are promising and are perspective of the use of inhalation for TB treatment.
Collapse
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal
| | | | | | | |
Collapse
|
36
|
Abstract
INTRODUCTION In terms of human suffering, tuberculosis has a huge impact on global society, making it arguably the most important infectious disease in history. Despite the devastating impact on society, the tools to fight tuberculosis are very limited. Current standard therapy has been used for over 40 years and threats, such as the HIV epidemic and drug-resistant strains, undermine efforts to control the disease. New drugs are needed to address the challenges faced globally. AREAS COVERED Current therapy is briefly reviewed in this paper and then new doses and combinations of existing drugs are presented. New candidate drugs are also discussed, along with the potential benefits and pitfalls of each of the compounds and approaches to therapy. EXPERT OPINION Despite the need to develop new drugs, the ability of programs to deliver existing therapies must not be neglected. Directly observed therapy and a standard basic level of care for all patients with tuberculosis, regardless of where they reside, is imperative, and will ensure that new drugs and regimens will have the greatest possible impact. New combination regimens, including PA 824 and TMC207, in combination with existing drugs, are very exciting - not only because of their ability to shorten treatment regimens in pan-susceptible cases, but also because they can be used among drug-resistant strains. Although an effective vaccine will probably be necessary to eliminate tuberculosis, new drugs and combination regimens have the potential to save millions of lives before tuberculosis is finally eliminated.
Collapse
Affiliation(s)
- Michael Lauzardo
- University of Florida, College of Medicine, 1600 SW Archer Road, PO Box 100486, Gainesville, FL 32610-0486, USA
| | | |
Collapse
|
37
|
Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model. PLoS One 2012; 7:e30749. [PMID: 22319585 PMCID: PMC3272040 DOI: 10.1371/journal.pone.0030749] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/27/2011] [Indexed: 11/19/2022] Open
Abstract
Global control of tuberculosis (TB), an infectious disease that claims nearly 2 million lives annually, is hindered by the long duration of chemotherapy required for curative treatment. Lack of adherence to this intense treatment regimen leads to poor patient outcomes, development of new or additional drug resistance, and continued spread of M.tb. within communities. Hence, shortening the duration of TB therapy could increase drug adherence and cure in TB patients. Here, we report that addition of the United Stated Food and Drug Administration-approved phosphodiesterase inhibitors (PDE-Is) cilostazol and sildenafil to the standard TB treatment regimen reduces tissue pathology, leads to faster bacterial clearance and shortens the time to lung sterilization by one month, compared to standard treatment alone, in a murine model of TB. Our data suggest that these PDE-Is could be repurposed for use as adjunctive drugs to shorten TB treatment in humans.
Collapse
|
38
|
Lowenstine LJ, Osborn KG. Respiratory System Diseases of Nonhuman Primates. NONHUMAN PRIMATES IN BIOMEDICAL RESEARCH 2012. [PMCID: PMC7158299 DOI: 10.1016/b978-0-12-381366-4.00009-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Laqua K, Rudolph I, Imming P. [Better search strategies, hopeful candidates. The search for new antimycobacterial drugs]. PHARMAZIE IN UNSERER ZEIT 2012; 41:48-57. [PMID: 22470918 DOI: 10.1002/pauz.201100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Katia Laqua
- Institut für Pharmazie, Martin-Luther-Universität, Wolfgang-Langenbeck-Straße 4, Halle (Saale)
| | | | | |
Collapse
|
40
|
Abstract
Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV), inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drugsusceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO) has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and markers for adequacy of treatment and an integrative approach to fulfill WHO goals. However, regulatory control over the drug market, as well as public-private partnership to use health program facilities to track patients and ensure completion of adequate therapy will be necessary to exploit fully the potential of the newer regimens to eliminate tuberculosis.
Collapse
Affiliation(s)
- Meghna Adhvaryu
- Department of Biotechnology, SRK Institute of Computer Education and Applied Sciences, Surat, Gujarat, India
| | | |
Collapse
|
41
|
Epidemiology of tuberculosis and HIV: recent advances in understanding and responses. Ann Am Thorac Soc 2011; 8:288-93. [PMID: 21653530 DOI: 10.1513/pats.201010-064wr] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although tuberculosis (TB) continues to cause enormous suffering and overwhelm health care systems in areas with high HIV prevalence, there have been a number of recent significant advances in knowledge regarding the epidemiology, management, and control of HIV-related TB. TB remains the most common serious opportunistic infection in people with HIV infection and the leading cause of death. However, there is some reason for optimism. First, two trials addressing when to start antiretroviral therapy (ART) in HIV-infected adults with newly diagnosed TB have shown that earlier initiation of ART reduces mortality significantly. Second, there is trial evidence of efficacy in giving long-term isoniazid preventive treatment (IPT) to HIV-infected adults in high HIV-prevalence settings where TB reinfection is frequent (much like cotrimoxazole). Third, the search for an inexpensive, rapid, sensitive, and specific TB diagnostic that is able to replace smear and delayed mycobacterial culture has yielded promising results. Responding to massive TB epidemics in high HIV-prevalence settings, the World Health Organization has supplemented its directly observed treatment short-course strategy with one called the 3I's to actively screen and diagnose TB cases (intensified case finding), prevent new cases of TB with IPT, and prevent transmission of TB in congregate settings such as hospitals and clinics (infection control). Combating TB in high HIV-prevalence settings requires rapid and massive implementation of the 3I's with initiation of antiretrovirals and more effective efforts to prevent new HIV infections.
Collapse
|
42
|
Sharma S, Singh A. Phenothiazines as anti-tubercular agents: mechanistic insights and clinical implications. Expert Opin Investig Drugs 2011; 20:1665-76. [PMID: 22014039 DOI: 10.1517/13543784.2011.628657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Tuberculosis (TB) chemotherapy has been rendered ineffective by the emergence of multi-drug resistant (MDR), extensively drug resistant (XDR) and totally drug resistant strains reinforcing the need for the development of new drugs as a global health priority. Reconsidering phenothiazines for the improvement of TB chemotherapy seems to be a rational option especially in view of their role as inhibitors of type II NADH dehydrogenase, a key component of respiratory chain of Mycobacterium tuberculosis, thus raising the speculation that they can be effective against latent TB as well. AREAS COVERED This article offers a detailed description of the chemotherapeutic efficacy of phenothiazine compounds against susceptible, drug resistant and latent TB. Furthermore, their clinical implications and molecular mechanisms of action have been reviewed extensively. EXPERT OPINION Phenothiazines are currently being evaluated for the treatment of TB and have been shown to be effective against M. tuberculosis through a number of in vitro, ex vivo and in vivo studies. In addition, recent clinical studies have implicated their role in the treatment of MDR/XDR TB also. Therefore, phenothiazines, particularly thioridazine, hold great potential to be considered as safe and effective antimycobacterial agents in near future.
Collapse
Affiliation(s)
- Sadhna Sharma
- Post Graduate Institute of Medical Education & Research, Department of Biochemistry, Chandigarh-160012, India.
| | | |
Collapse
|
43
|
Shi W, Zhang X, Jiang X, Ruan H, Barry CE, Wang H, Zhang W, Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 2011; 333:1630-2. [PMID: 21835980 PMCID: PMC3502614 DOI: 10.1126/science.1208813] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pyrazinamide (PZA) is a first-line tuberculosis drug that plays a unique role in shortening the duration of tuberculosis chemotherapy. PZA is hydrolyzed intracellularly to pyrazinoic acid (POA) by pyrazinamidase (PZase, encoded by pncA), an enzyme frequently lost in PZA-resistant strains, but the target of POA in Mycobacterium tuberculosis has remained elusive. Here, we identify a previously unknown target of POA as the ribosomal protein S1 (RpsA), a vital protein involved in protein translation and the ribosome-sparing process of trans-translation. Three PZA-resistant clinical isolates without pncA mutation harbored RpsA mutations. RpsA overexpression conferred increased PZA resistance, and we confirmed that POA bound to RpsA (but not a clinically identified ΔAla mutant) and subsequently inhibited trans-translation rather than canonical translation. Trans-translation is essential for freeing scarce ribosomes in nonreplicating organisms, and its inhibition may explain the ability of PZA to eradicate persisting organisms.
Collapse
Affiliation(s)
- Wanliang Shi
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xuelian Zhang
- Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Jiang
- Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Haiming Ruan
- Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Clifton E. Barry
- Tuberculosis Research Section, NIAID, NIH, Bethesda, MD 20892, USA
| | - Honghai Wang
- Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Pandey R, Ahmad Z. Nanomedicine and experimental tuberculosis: facts, flaws, and future. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:259-72. [DOI: 10.1016/j.nano.2011.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 01/03/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
45
|
LEUNG CHICHIU, FELLER-KOPMAN DAVID, NIEDERMAN MICHAELS, SPIRO STEPHENG. Year in review 2010: Tuberculosis, pleural diseases, respiratory infections. Respirology 2011; 16:564-73. [DOI: 10.1111/j.1440-1843.2011.01940.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Wu Q, Zhou P, Qian S, Qin X, Fan Z, Fu Q, Zhan Z, Pei H. Cloning, expression, identification and bioinformatics analysis of Rv3265c gene from Mycobacterium tuberculosis in Escherichia coli. ASIAN PAC J TROP MED 2011; 4:266-70. [DOI: 10.1016/s1995-7645(11)60083-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/14/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022] Open
|
47
|
Arjanova OV, Butov DA, Prihoda ND, Zaitzeva SI, Yurchenko LV, Sokolenko NI, Stepanenko AL, Butova TS, Grinishina EA, Maksimenko OA, Jirathitikal V, Bourinbaiar AS, Frolov VM, Kutsyna GA. One-month immunotherapy trial in treatment-failed TB patients. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/oji.2011.12006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Jamrozik E, Musk AW. Respiratory health issues in the Asia-Pacific region: an overview. Respirology 2011; 16:3-12. [PMID: 20920119 PMCID: PMC7192219 DOI: 10.1111/j.1440-1843.2010.01844.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 12/16/2022]
Abstract
The Asia-Pacific region is home to a large heterogeneous population whose respiratory health is influenced by diverse social, economic and environmental factors. Despite this variability, the most prevalent causes of respiratory morbidity and mortality are tobacco smoking, infection, and air pollution. This review aims to summarize current respiratory health issues in the region including smoking-related diseases especially COPD, lung cancer and infectious problems such as pandemic influenza, the severe acute respiratory syndrome coronavirus, bacterial pneumonia and tuberculosis, as well as the contribution of air pollution to respiratory disease. Published data on trends in the epidemiology and management of respiratory diseases and are summarized; finally, the limitations of available data and projections for the future of respiratory health in the region are discussed.
Collapse
Affiliation(s)
- Euzebiusz Jamrozik
- Faculty of Medicine and Dentistry, University of Western Australia, Australia.
| | | |
Collapse
|