1
|
Ma B, Li Q, Li M, Wang J, Fan N, Yang S, Shi W, Wang R, Yin D. Effect of butylphthalide on prevention and treatment of high altitude cerebral edema in rats. Heliyon 2024; 10:e27833. [PMID: 38560678 PMCID: PMC10979156 DOI: 10.1016/j.heliyon.2024.e27833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
3-n-butylphthalide (NBP) contains one of the main active ingredients of celery seed. It has a series of pharmacological mechanisms, including reconstitution of microcirculation, protection of mitochondrial function, inhibition of oxidative stress, and inhibition of neuronal apoptosis. Based on the complex multi-targeting of NBP pharmacological mechanisms, the clinical applications of NBP are increasing, and more and more clinical studies and animal experiments have focused on NBP. In this study, we used male Sprague Dawley rats as an animal model to elucidate the intervention effect of butylphthalide on high altitude cerebral edema (HACE), and also compared the effect of butylphthalide and rhodiola rosea on HACE. Firstly, we measured the changes of body weight and brain water content and observed the pathological changes of brain tissues. In addition, the contents of inflammatory factors, oxidative stress and brain neurotransmitters were assessed by enzyme-linked immunoassay kits, and finally, the expression of apoptotic proteins in brain tissues was determined by western blotting. The results showed that NBP reduced brain water content, attenuated brain tissue damage, altered inflammatory factors, oxidative stress indicators, and brain neurotransmitter levels, and in addition NBP inhibited the expression of Caspase-related apoptotic proteins. Therefore, NBP has the potential to treat and prevent HACE.
Collapse
Affiliation(s)
- Bohua Ma
- Department of Pharmacy, Qingyang People's Hospital, Qingyang City, Gansu Province, China
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| | - Qian Li
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| | - Meng Li
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| | - Jiangtao Wang
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| | - Ning Fan
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| | - Shanpeng Yang
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| | - Wenhui Shi
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| | - Rui Wang
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| | - Dongfeng Yin
- Department of Pharmacy, General Hospital of Xin- jiang Military Region, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Patrician A, Anholm JD, Ainslie PN. A narrative review of periodic breathing during sleep at high altitude: From acclimatizing lowlanders to adapted highlanders. J Physiol 2024. [PMID: 38534039 DOI: 10.1113/jp285427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
Periodic breathing during sleep at high altitude is almost universal among sojourners. Here, in the context of acclimatization and adaptation, we provide a contemporary review on periodic breathing at high altitude, and explore whether this is an adaptive or maladaptive process. The mechanism(s), prevalence and role of periodic breathing in acclimatized lowlanders at high altitude are contrasted with the available data from adapted indigenous populations (e.g. Andean and Tibetan highlanders). It is concluded that (1) periodic breathing persists with acclimatization in lowlanders and the severity is proportional to sleeping altitude; (2) periodic breathing does not seem to coalesce with poor sleep quality such that, with acclimatization, there appears to be a lengthening of cycle length and minimal impact on the average sleeping oxygen saturation; and (3) high altitude adapted highlanders appear to demonstrate a blunting of periodic breathing, compared to lowlanders, comprising a feature that withstands the negative influences of chronic mountain sickness. These observations indicate that periodic breathing persists with high altitude acclimatization with no obvious negative consequences; however, periodic breathing is attenuated with high altitude adaptation and therefore potentially reflects an adaptive trait to this environment.
Collapse
Affiliation(s)
- Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| |
Collapse
|
3
|
Bird JD, Sands SA, Alex RM, Shing CLH, Shafer BM, Jendzjowsky NG, Wilson RJA, Day TA, Foster GE. Sex-related Differences in Loop Gain during High-Altitude Sleep-disordered Breathing. Ann Am Thorac Soc 2023; 20:1192-1200. [PMID: 37000675 PMCID: PMC10405604 DOI: 10.1513/annalsats.202211-918oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/31/2023] [Indexed: 04/01/2023] Open
Abstract
Rationale: Central sleep apnea (CSA) is pervasive during sleep at high altitude, disproportionately impacting men and associated with increased peripheral chemosensitivity. Objectives: We aimed to assess whether biological sex affects loop gain (LGn) and CSA severity during sleep over 9-10 days of acclimatization to 3,800 m. We hypothesized that CSA severity would worsen with acclimatization in men but not in women because of greater increases in LGn in men. Methods: Sleep studies were collected from 20 (12 male) healthy participants at low altitude (1,130 m, baseline) and after ascent to (nights 2/3, acute) and residence at high altitude (nights 9/10, prolonged). CSA severity was quantified as the respiratory event index (REI) as a surrogate of the apnea-hypopnea index. LGn, a measure of ventilatory control instability, was quantified using a ventilatory control model fit to nasal flow. Linear mixed models evaluated effects of time at altitude and sex on respiratory event index and LGn. Data are presented as contrast means with 95% confidence intervals. Results: REI was comparable between men and women at acute altitude (4.1 [-9.3, 17.5] events/h; P = 0.54) but significantly greater in men at prolonged altitude (23.7 [10.3, 37.1] events/h; P = 0.0008). Men had greater LGn than did women for acute (0.08 [0.001, 0.15]; P = 0.047) and prolonged (0.17 [0.10, 0.25]; P < 0.0001) altitude. The change in REI per change in LGn was significantly greater in men than in women (107 ± 46 events/h/LGn; P = 0.02). Conclusions: The LGn response to high altitude differed between sexes and contributed to worsening of CSA over time in men but not in women. This sex difference in acclimatization appears to protect females from high altitude-related CSA. These data provide fundamental sex-specific physiological insight into high-altitude acclimatization in healthy individuals and may help to inform sex differences in sleep-disordered breathing pathogenesis in patients with cardiorespiratory disease.
Collapse
Affiliation(s)
- Jordan D. Bird
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
- Faculty of Science and Technology, Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Scott A. Sands
- Division of Sleep Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raichel M. Alex
- Division of Sleep Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Conan L. H. Shing
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Brooke M. Shafer
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Nicholas G. Jendzjowsky
- Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation, Harbor University of California Los Angeles Medical Center, West Carson, California; and
| | - Richard J. A. Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A. Day
- Faculty of Science and Technology, Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen E. Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity. Exp Physiol 2021; 106:1425-1448. [PMID: 33932955 DOI: 10.1113/ep089446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Cerebrovascular reactivity to CO2 , which is a principal factor in determining ventilatory responses to CO2 through the role reactivity plays in determining cerebral extra- and intracellular pH. What advances does it highlight? Recent animal evidence suggests central chemoreceptor vasculature may demonstrate regionally heterogeneous cerebrovascular reactivity to CO2 , potentially as a protective mechanism against excessive CO2 washout from the central chemoreceptors, thereby allowing ventilation to reflect the systemic acid-base balance needs (respiratory changes in P aC O 2 ) rather than solely the cerebral needs. Ventilation per se does not influence cerebrovascular reactivity independent of changes in P aC O 2 . ABSTRACT Alveolar ventilation and cerebral blood flow are both predominantly regulated by arterial blood gases, especially arterial P C O 2 , and so are intricately entwined. In this review, the fundamental mechanisms underlying cerebrovascular reactivity and central chemoreceptor control of breathing are covered. We discuss the interaction of cerebral blood flow and its reactivity with the control of ventilation and ventilatory responsiveness to changes in P C O 2 , as well as the lack of influence of ventilation itself on cerebrovascular reactivity. We briefly summarize the effects of arterial hypoxaemia on the relationship between ventilatory and cerebrovascular response to both P C O 2 and P O 2 . We then highlight key methodological considerations regarding the interaction of reactivity and ventilatory sensitivity, including the following: regional heterogeneity of cerebrovascular reactivity; a pharmacological approach for the reduction of cerebral blood flow; reactivity assessment techniques; the influence of mean arterial blood pressure; and sex-related differences. Finally, we discuss ventilatory and cerebrovascular control in the context of high altitude and congestive heart failure. Future research directions and pertinent questions of interest are highlighted throughout.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|
6
|
Frost S, E Orr J, Oeung B, Puvvula N, Pham K, Brena R, DeYoung P, Jain S, Sun S, Malhotra A, Heinrich EC. Improvements in sleep-disordered breathing during acclimatization to 3800 m and the impact on cognitive function. Physiol Rep 2021; 9:e14827. [PMID: 33991443 PMCID: PMC8123551 DOI: 10.14814/phy2.14827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022] Open
Abstract
Sojourners to high altitude often experience poor sleep quality due to sleep‐disordered breathing. Additionally, multiple aspects of cognitive function are impaired at high altitude. However, the impact of acclimatization on sleep‐disordered breathing and whether poor sleep is a major contributor to cognitive impairments at high altitude remains uncertain. We conducted nocturnal actigraphy and polygraphy, as well as daytime cognitive function tests, in 15 participants (33% women) at sea level and over 3 days of partial acclimatization to high altitude (3800 m). Our goal was to determine if sleep‐disordered breathing improved over time and if sleep‐disordered breathing was associated with cognitive function. The apnea–hypopnea index and oxygen desaturation index increased on night 1 (adj. p = 0.026 and adj. p = 0.026, respectively), but both improved over the subsequent 2 nights. These measures were matched by poorer self‐reported sleep quality on the Stanford Sleepiness Scale and PROMIS questionnaires following 1 night at high altitude (adj. p = 0.027 and adj. p = 0.022, respectively). The reaction time on the psychomotor vigilance task was slower at high altitude and did not improve (SL: 199 ± 27, ALT1: 224 ± 33, ALT2: 216 ± 41, ALT3: 212 ± 27 ms). The reaction times on the balloon analog risk task decreased at high altitude (SL: 474 ± 235, ALT1: 375 ± 159, ALT2: 291 ± 102, ALT3: 267 ± 90 ms), perhaps indicating increased risk‐taking behavior. Finally, multiple cognitive function measures were associated with sleep‐disordered breathing and measures of subjective sleep quality, rather than low daytime arterial oxygen saturation. These data indicate that sleep‐disordered breathing at moderately high altitude improves with partial acclimatization and that some aspects of cognitive performance in unacclimatized sojourners may be impacted by poor sleep rather than hypoxemia alone.
Collapse
Affiliation(s)
- Shyleen Frost
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jeremy E Orr
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, School of Medicine, University of California, San Diego, CA, USA
| | - Britney Oeung
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Nikhil Puvvula
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Kathy Pham
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Rebbecca Brena
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, School of Medicine, University of California, San Diego, CA, USA
| | - Pamela DeYoung
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, School of Medicine, University of California, San Diego, CA, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Shelly Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, School of Medicine, University of California, San Diego, CA, USA
| | - Erica C Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| |
Collapse
|
7
|
Harman K, Weichard AJ, Davey MJ, Horne RS, Nixon GM, Edwards BA. Assessing ventilatory control stability in children with and without an elevated central apnoea index. Respirology 2019; 25:214-220. [DOI: 10.1111/resp.13606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/06/2019] [Accepted: 05/01/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Katherine Harman
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Aidan J. Weichard
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
| | - Margot J. Davey
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Rosemary S.C. Horne
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
| | - Gillian M. Nixon
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Bradley A. Edwards
- Sleep and Circadian Medicine Laboratory, Department of Physiology and School of Psychological Sciences, Faculty of Medicine, Nursing and Health SciencesMonash University Melbourne VIC Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash University Melbourne VIC Australia
| |
Collapse
|
8
|
Orr JE, Heinrich EC, Djokic M, Gilbertson D, Deyoung PN, Anza-Ramirez C, Villafuerte FC, Powell FL, Malhotra A, Simonson T. Adaptive Servoventilation as Treatment for Central Sleep Apnea Due to High-Altitude Periodic Breathing in Nonacclimatized Healthy Individuals. High Alt Med Biol 2018; 19:178-184. [PMID: 29641294 PMCID: PMC6014053 DOI: 10.1089/ham.2017.0147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/20/2018] [Indexed: 12/17/2022] Open
Abstract
Orr, Jeremy E., Erica C. Heinrich, Matea Djokic, Dillon Gilbertson, Pamela N. Deyoung, Cecilia Anza-Ramirez, Francisco C. Villafuerte, Frank L. Powell, Atul Malhotra, and Tatum Simonson. Adaptive servoventilation as treatment for central sleep apnea due to high-altitude periodic breathing in nonacclimatized healthy individuals. High Alt Med Biol. 19:178-184, 2018. AIMS Central sleep apnea (CSA) is common at high altitude, leading to desaturation and sleep disruption. We hypothesized that noninvasive ventilation using adaptive servoventilation (ASV) would be effective at stabilizing CSA at altitude. Supplemental oxygen was evaluated for comparison. METHODS Healthy subjects were brought from sea level to 3800 m and underwent polysomnography on three consecutive nights. Subjects underwent each condition-No treatment, ASV, and supplemental oxygen-in random order. The primary outcome was the effect of ASV on oxygen desaturation index (ODI). Secondary outcomes included oxygen saturation, arousals, symptoms, and comparison to supplemental oxygen. RESULTS Eighteen subjects underwent at least two treatment conditions. There was a significant difference in ODI across the three treatments. There was no statistical difference in ODI between no treatment and ASV (17.1 ± 4.2 vs. 10.7 ± 2.9 events/hour; p > 0.17) and no difference in saturation or arousal index. Compared with no treatment, oxygen improved the ODI (16.5 ± 4.5 events/hour vs. 0.5 ± 0.2 events/hour; p < 0.003), in addition to saturation and arousal index. CONCLUSIONS We found that ASV was not clearly efficacious at controlling CSA in persons traveling to 3800 m, whereas supplemental oxygen resolved CSA. Adjustment in the ASV algorithm may improve efficacy. ASV may have utility in acclimatized persons or at more modest altitudes.
Collapse
Affiliation(s)
- Jeremy E. Orr
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California
| | - Erica C. Heinrich
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, California
| | - Matea Djokic
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, California
| | - Dillon Gilbertson
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California
| | - Pamela N. Deyoung
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California
| | - Cecilia Anza-Ramirez
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco C. Villafuerte
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Frank L. Powell
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, California
| | - Atul Malhotra
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California
| | - Tatum Simonson
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, California
| |
Collapse
|
9
|
Burgess KR, Lucas SJE, Burgess KME, Sprecher KE, Donnelly J, Basnet AS, Tymko MM, Day T, Smith K, Lewis N, Ainslie PN. Increasing cerebral blood flow reduces the severity of central sleep apnea at high altitude. J Appl Physiol (1985) 2018; 124:1341-1348. [PMID: 29389246 DOI: 10.1152/japplphysiol.00799.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Earlier studies have indicated an important role for cerebral blood flow in the pathophysiology of central sleep apnea (CSA) at high altitude, but were not decisive. To test the hypothesis that pharmacologically altering cerebral blood flow (CBF) without altering arterial blood gas (ABGs) values would alter the severity of CSA at high altitude, we studied 11 healthy volunteers (8M, 3F; 31 ± 7 yr) in a randomized placebo-controlled single-blind study at 5,050 m in Nepal. CBF was increased by intravenous (iv) acetazolamide (Az; 10 mg/kg) plus intravenous dobutamine (Dob) infusion (2-5 μg·kg-1·min-1) and reduced by oral indomethacin (Indo; 100 mg). ABG samples were collected and ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR) were measured by rebreathing and steady-state techniques before and after drug/placebo. Duplex ultrasound of blood flow in the internal carotid and vertebral arteries was used to measure global CBF. The initial 3-4 h of sleep were recorded by full polysomnography. Intravenous Az + Dob increased global CBF by 37 ± 15% compared with placebo ( P < 0.001), whereas it was reduced by 21 ± 8% by oral Indo ( P < 0.001). ABGs and HVR were unchanged in both interventions. HCVR was reduced by 28% ± 43% ( P = 0.1) during intravenous Az ± Dob administration and was elevated by 23% ± 30% ( P = 0.05) by Indo. During intravenous Az + Dob, the CSA index fell from 140 ± 45 (control night) to 48 ± 37 events/h of sleep ( P < 0.001). Oral Indo had no significant effect on CSA. We conclude that increasing cerebral blood flow reduced the severity of CSA at high altitude; the likely mechanism is via a reduction in the background stimulation of central chemoreceptors. NEW & NOTEWORTHY This work is significant because it shows convincingly for the first time in healthy volunteers that increasing cerebral blood flow will reduce the severity of central sleep apnea in a high-altitude model, without the potentially confounding effects of altering partial pressure of arterial carbon dioxide or the ventilatory response to hypoxia. The proposed mechanism of action is that of increasing the removal of locally produced CO2 from the central chemoreceptors, causing the reduction in hypercapnic ventilatory response, hence reducing loop gain.
Collapse
Affiliation(s)
- Keith R Burgess
- Peninsula Sleep Clinic , Sydney, New South Wales , Australia.,Department of Medicine, University of Sydney , Sydney, New South Wales , Australia
| | - Samuel J E Lucas
- University of Otago , Dunedin , New Zealand.,University of Birmingham , Birmingham , United Kingdom
| | - Katie M E Burgess
- Peninsula Sleep Clinic , Sydney, New South Wales , Australia.,Department of Medicine, University of Sydney , Sydney, New South Wales , Australia
| | - Kate E Sprecher
- Peninsula Sleep Clinic , Sydney, New South Wales , Australia
| | | | | | | | - Trevor Day
- Mount Royal University , Calgary , Canada
| | - Kurt Smith
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna , Canada
| | - Nia Lewis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna , Canada
| |
Collapse
|
10
|
Ortiz-Naretto AE, Pereiro MP, Ernst G, Borsini EE. Sleep respiratory disturbances during the ascent to Mount Aconcagua. ACTA ACUST UNITED AC 2018; 11:20-24. [PMID: 29796196 PMCID: PMC5916571 DOI: 10.5935/1984-0063.20180005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Mountaineers exposed to hypobaric hypoxia (HH) show high-altitude periodic
breathing (PB). Objective To analyze high-altitude PB during the ascent of Mount Aconcagua
(Argentina). Materials and Methods Descriptive study in healthy volunteers using respiratory polygraphy (RP) at
different altitudes. Results We studied 8 andinist, mean age: 36 years old (25-51), body mass index (BMI)
of 23.6 (20.9-28.7) and 22.77 (20.9-27.7) upon return,
p<0.01. RP without PB showed a lower Oxygen Desaturation
Index (ODI) and a lower Apnea-Hypopnea-Index (AHI); 5.43 (0 - 20) versus
45.95 (2-122) p<0.001 and 3.9 (0-15.5) versus 44.35
(4-115) p<0.001. AHI increased with altitude at the
expense of central apneas and hypopneas: p<0.05. Conclusion High-altitude PB is frequent above 2,581m.a.s.l. And it is characterized by
short cycles. None of the mountaineers showed PB at baseline; however,
high-altitude PB occurred in all subjects above 4,900 m.a.s.l
Collapse
Affiliation(s)
- Alvaro Emilio Ortiz-Naretto
- Hospital Francisco Muñiz, Medicine Respiratory Unit - Buenos Aires City - Buenos Aires - Argentina.,Asociación Andina de Medicina para la Altura, Curso Medicina para la Altura - Mendoza City - Mendoza - Argentina.,Hospital Británico de Buenos Aires, Medicine Respiratory Unit - Buenos Aires City - Buenos Aires - Argentina
| | - Miriam Patricia Pereiro
- Hospital Materno Infantil Ramón Sarda, Central Laboratory - Buenos Aires City - Buenos Aires - Argentina.,Asociación Andina de Medicina para la Altura, Curso Medicina para la Altura - Mendoza City - Mendoza - Argentina
| | - Glenda Ernst
- Hospital Británico de Buenos Aires, Medicine Respiratory Unit - Buenos Aires City - Buenos Aires - Argentina
| | - Eduardo Enrique Borsini
- Hospital Británico de Buenos Aires, Medicine Respiratory Unit - Buenos Aires City - Buenos Aires - Argentina
| |
Collapse
|
11
|
Morrison SA, Mirnik D, Korsic S, Eiken O, Mekjavic IB, Dolenc-Groselj L. Bed Rest and Hypoxic Exposure Affect Sleep Architecture and Breathing Stability. Front Physiol 2017; 8:410. [PMID: 28676764 PMCID: PMC5476730 DOI: 10.3389/fphys.2017.00410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
Objective: Despite over 50 years of research on the physiological effects of sustained bed rest, data characterizing its effects on sleep macrostructure and breathing stability in humans are scarce. This study was conducted to determine the effects of continuous exposure to hypoxia and sustained best rest, both individually and combined, on nocturnal sleep and breathing stability. Methods: Eleven participants completed three randomized, counter-balanced, 21-days trials of: (1) normoxic bed rest (NBR, PIO2 = 133.1 ± 0.3), (2) hypoxic ambulatory confinement (HAMB, PIO2 = 90.0 ± 0.4) and (3) hypoxic bed rest (HBR, PIO2 = 90.0 ± 0.4; ~4,000 m equivalent altitude). Full objective polysomnography was performed at baseline, on Night 1 and Night 21 in each condition. Results: In NBR Night 1, more time was spent in light sleep (10 ± 2%) compared to baseline (8 ± 2%; p = 0.028); Slow-wave sleep (SWS) was reduced from baseline in the hypoxic-only trial by 18% (HAMB Night 21, p = 0.028) and further reduced by 33% (HBR Night 1, p = 0.010), and 36% (HBR Night 21, p = 0.008) when combined with bed rest. The apnea-hypopnea index doubled from Night 1 to Night 21 in HBR (32–62 events·h−1) and HAMB (31–59 events·h−1; p = 0.002). Those who experienced greatest breathing instability from Night 1 to Night 21 (NBR) were correlated to unchanged or higher (+1%) night SpO2 concentrations (R2 = 0.471, p = 0.020). Conclusion: Bed rest negatively affects sleep macrostructure, increases the apnea-hypopnea index, and worsens breathing stability, each independently exacerbated by continuous exposure to hypoxia.
Collapse
Affiliation(s)
- Shawnda A Morrison
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan InstituteLjubljana, Slovenia.,Faculty of Health Sciences, University of PrimorskaIzola, Slovenia.,Division of Neurology, Institute of Clinical Neurophysiology, University Medical CentreLjubljana, Slovenia
| | - Dani Mirnik
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical CentreLjubljana, Slovenia
| | - Spela Korsic
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical CentreLjubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of TechnologyStockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan InstituteLjubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada
| | - Leja Dolenc-Groselj
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical CentreLjubljana, Slovenia
| |
Collapse
|
12
|
Rey de Castro J, Liendo A, Ortiz O, Rosales-Mayor E, Liendo C. Ventilatory Cycle Measurements and Loop Gain in Central Apnea in Mining Drivers Exposed to Intermittent Altitude. J Clin Sleep Med 2017; 13:27-32. [PMID: 27707449 DOI: 10.5664/jcsm.6380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/30/2016] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). METHODS Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. RESULTS Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308-0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175-6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. CONCLUSIONS Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents.
Collapse
Affiliation(s)
- Jorge Rey de Castro
- Clínica Anglo Americana, Lima-Perú, School Medicine Professor, Universidad Peruana Cayetano Heredia, Lima-Perú
| | - Alicia Liendo
- University of Medicine and Health Sciences-St. Kitts, WI
| | - Oswaldo Ortiz
- Individual Member of the International Council of Occupational Health
| | - Edmundo Rosales-Mayor
- CIBERES, IDIBAPS, Respiratory Disease Department, Instituto Clínic del Tórax, Hospital Clínic de Barcelona, Barcelona, Spain
| | - César Liendo
- Multidisciplinary Sleep Clinic, Louisiana State University, Shreveport, LA; Clinical and Sleep Laboratory Director VAMC, Shreveport, LA
| |
Collapse
|
13
|
Orr JE, Malhotra A, Sands SA. Pathogenesis of central and complex sleep apnoea. Respirology 2016; 22:43-52. [PMID: 27797160 DOI: 10.1111/resp.12927] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/01/2022]
Abstract
Central sleep apnoea (CSA) - the temporary absence or diminution of ventilatory effort during sleep - is seen in a variety of forms including periodic breathing in infancy and healthy adults at altitude and Cheyne-Stokes respiration in heart failure. In most circumstances, the cyclic absence of effort is paradoxically a consequence of hypersensitive ventilatory chemoreflex responses to oppose changes in airflow, that is elevated loop gain, leading to overshoot/undershoot ventilatory oscillations. Considerable evidence illustrates overlap between CSA and obstructive sleep apnoea (OSA), including elevated loop gain in patients with OSA and the presence of pharyngeal narrowing during central apnoeas. Indeed, treatment of OSA, whether via continuous positive airway pressure (CPAP), tracheostomy or oral appliances, can reveal CSA, an occurrence referred to as complex sleep apnoea. Factors influencing loop gain include increased chemosensitivity (increased controller gain), reduced damping of blood gas levels (increased plant gain) and increased lung to chemoreceptor circulatory delay. Sleep-wake transitions and pharyngeal dilator muscle responses effectively raise the controller gain and therefore also contribute to total loop gain and overall instability. In some circumstances, for example apnoea of infancy and central congenital hypoventilation syndrome, central apnoeas are the consequence of ventilatory depression and defective ventilatory responses, that is low loop gain. The efficacy of available treatments for CSA can be explained in terms of their effects on loop gain, for example CPAP improves lung volume (plant gain), stimulants reduce the alveolar-inspired PCO2 difference and supplemental oxygen lowers chemosensitivity. Understanding the magnitude of loop gain and the mechanisms contributing to instability may facilitate personalized interventions for CSA.
Collapse
Affiliation(s)
- Jeremy E Orr
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, California, USA
| | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, California, USA
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Allergy Immunology and Respiratory Medicine and Central Clinical School, The Alfred and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Pathophysiology of central sleep apneas. Sleep Breath 2016; 20:467-82. [DOI: 10.1007/s11325-015-1290-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
|
15
|
Morrison SA, Pangerc A, Eiken O, Mekjavic IB, Dolenc-Groselj L. Effect of exercise on night periodic breathing and loop gain during hypoxic confinement. Respirology 2015; 21:746-53. [DOI: 10.1111/resp.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Shawnda A. Morrison
- Department of Automation, Biocybernetics and Robotics; Jozef Stefan Institute; Ljubljana Slovenia
- Institute of Clinical Neurophysiology; Division of Neurology; University Medical Centre; Ljubljana Slovenia
| | - Andrej Pangerc
- Institute of Clinical Neurophysiology; Division of Neurology; University Medical Centre; Ljubljana Slovenia
| | - Ola Eiken
- Department of Environmental Physiology; School of Technology and Health; Royal Institute of Technology; Stockholm Sweden
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics; Jozef Stefan Institute; Ljubljana Slovenia
| | - Leja Dolenc-Groselj
- Institute of Clinical Neurophysiology; Division of Neurology; University Medical Centre; Ljubljana Slovenia
| |
Collapse
|
16
|
Accinelli RA, Llanos O, López LM, Matayoshi S, Oros YP, Kheirandish-Gozal L, Gozal D. Caregiver perception of sleep-disordered breathing-associated symptoms in children of rural Andean communities above 4000 masl with chronic exposure to biomass fuel. Sleep Med 2015; 16:723-8. [DOI: 10.1016/j.sleep.2015.02.536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 01/09/2023]
|
17
|
Moraga FA, Jiménez D, Richalet JP, Vargas M, Osorio J. Periodic breathing and oxygen supplementation in Chilean miners at high altitude (4200m). Respir Physiol Neurobiol 2014; 203:109-15. [DOI: 10.1016/j.resp.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 11/28/2022]
|
18
|
Burgess KR, Lucas SJE, Shepherd K, Dawson A, Swart M, Thomas KN, Lucas RAI, Donnelly J, Peebles KC, Basnyat R, Ainslie PN. Influence of cerebral blood flow on central sleep apnea at high altitude. Sleep 2014; 37:1679-87. [PMID: 25197804 DOI: 10.5665/sleep.4080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/14/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES To further our understanding of central sleep apnea (CSA) at high altitude during acclimatization, we tested the hypothesis that pharmacologically altering cerebral blood flow (CBF) would alter the severity of CSA at high altitude. DESIGN The study was a randomized, placebo-controlled single-blind study. SETTING A field study at 5,050 m in Nepal. PATIENTS OR PARTICIPANTS We studied 12 normal volunteers. INTERVENTIONS Between days 5 to 10 at high altitude, CBF velocity (CBFv) was increased by intravenous (IV) acetazolamide (10 mg/kg) and reduced by oral indomethacin (100 mg). MEASUREMENTS AND RESULTS Arterial blood gases, hypoxic and hypercapnic ventilatory responses, and CBFv and its reactivity to carbon dioxide were measured awake. Overnight polysomnography was performed. The central apnea-hypopnea index was elevated following administration of indomethacin (89.2 ± 43.7 to 112.5 ± 32.9 events/h; mean ± standard deviation; P < 0.05) and was reduced following IV acetazolamide (89.2 ± 43.7 to 47.1 ± 48.1 events/h; P < 0.001). Intravenous acetazolamide elevated CBFv at high altitude by 28% (95% confidence interval [CI]: 22-34%) but did not affect ventilatory responses. The elevation in CBFv was partly mediated via a selective rise in partial pressure of arterial carbon dioxide (PaCO2) (28 ± 4 to 31 ± 3 mm Hg) and an associated fall in pH (P < 0.01). Oral indomethacin reduced CBFv by 23% (95% CI: 16-30%), blunted CBFv reactivity, and increased the hypercapnic ventilatory response by 66% (95% CI: 30-102%) but had no effect on PaCO2 or pH. CONCLUSION Our findings indicate an important role for cerebral blood flow regulation in the pathophysiology of central sleep apnea at high altitude.
Collapse
Affiliation(s)
- Keith R Burgess
- Peninsula Sleep Laboratory, Sydney, New South Wales, Australia and Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | | | - Kelly Shepherd
- Peninsula Sleep Laboratory, Sydney, New South Wales, Australia
| | - Andrew Dawson
- Peninsula Sleep Laboratory, Sydney, New South Wales, Australia
| | - Marianne Swart
- Peninsula Sleep Laboratory, Sydney, New South Wales, Australia
| | | | | | | | | | - Rishi Basnyat
- Nepal International Clinic, Kathmandu, Nepal and Banner Good Samaritan Medical Center, Phoenix, Arizona
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Canada
| |
Collapse
|
19
|
Li J, Qi Y, Liu H, Cui Y, Zhang L, Gong H, Li Y, Li L, Zhang Y. Acute high-altitude hypoxic brain injury: Identification of ten differential proteins. Neural Regen Res 2014; 8:2932-41. [PMID: 25206614 PMCID: PMC4146176 DOI: 10.3969/j.issn.1673-5374.2013.31.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/30/2013] [Indexed: 12/31/2022] Open
Abstract
Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mitochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mitochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These detected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isovaleryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are all involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production.
Collapse
Affiliation(s)
- Jianyu Li
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yuting Qi
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Hui Liu
- Department of Hepatobiliary, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Ying Cui
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China ; Tianjin Key Laboratory of Occupational and Environmental Hazards Biomarkers, Tianjin 300162, China
| | - Li Zhang
- Tianjin Key Laboratory of Occupational and Environmental Hazards Biomarkers, Tianjin 300162, China
| | - Haiying Gong
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yaxiao Li
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Lingzhi Li
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China ; Tianjin Key Laboratory of Occupational and Environmental Hazards Biomarkers, Tianjin 300162, China
| | - Yongliang Zhang
- Tianjin Key Laboratory of Occupational and Environmental Hazards Biomarkers, Tianjin 300162, China
| |
Collapse
|
20
|
Edwards BA, Sands SA, Owens RL, White DP, Genta PR, Butler JP, Malhotra A, Wellman A. Effects of hyperoxia and hypoxia on the physiological traits responsible for obstructive sleep apnoea. J Physiol 2014; 592:4523-35. [PMID: 25085887 DOI: 10.1113/jphysiol.2014.277210] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Oxygen therapy is known to reduce loop gain (LG) in patients with obstructive sleep apnoea (OSA), yet its effects on the other traits responsible for OSA remain unknown. Therefore, we assessed how hyperoxia and hypoxia alter four physiological traits in OSA patients. Eleven OSA subjects underwent a night of polysomnography during which the physiological traits were measured using multiple 3-min 'drops' from therapeutic continuous positive airway pressure (CPAP) levels. LG was defined as the ratio of the ventilatory overshoot to the preceding reduction in ventilation. Pharyngeal collapsibility was quantified as the ventilation at CPAP of 0 cmH2O. Upper airway responsiveness was defined as the ratio of the increase in ventilation to the increase in ventilatory drive across the drop. Arousal threshold was estimated as the level of ventilatory drive associated with arousal. On separate nights, subjects were submitted to hyperoxia (n = 9; FiO2 ∼0.5) or hypoxia (n = 10; FiO2 ∼0.15) and the four traits were reassessed. Hyperoxia lowered LG from a median of 3.4 [interquartile range (IQR): 2.6-4.1] to 2.1 (IQR: 1.3-2.5) (P < 0.01), but did not alter the remaining traits. By contrast, hypoxia increased LG [median: 3.3 (IQR: 2.3-4.0) vs. 6.4 (IQR: 4.5-9.7); P < 0.005]. Hypoxia additionally increased the arousal threshold (mean ± s.d. 10.9 ± 2.1 l min(-1) vs. 13.3 ± 4.3 l min(-1); P < 0.05) and improved pharyngeal collapsibility (mean ± s.d. 3.4 ± 1.4 l min(-1) vs. 4.9 ± 1.3 l min(-1); P < 0.05), but did not alter upper airway responsiveness (P = 0.7). This study demonstrates that the beneficial effect of hyperoxia on the severity of OSA is primarily based on its ability to reduce LG. The effects of hypoxia described above may explain the disappearance of OSA and the emergence of central sleep apnoea in conditions such as high altitude.
Collapse
Affiliation(s)
- Bradley A Edwards
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert L Owens
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David P White
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro R Genta
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Butler
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Atul Malhotra
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA, USA
| | - Andrew Wellman
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Eves ND, Song Y, Piper A, Maher TM. Year in review 2012: acute lung injury, interstitial lung diseases, sleep and physiology. Respirology 2013; 18:555-64. [PMID: 23336426 DOI: 10.1111/resp.12053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | | | | | | |
Collapse
|
22
|
Ainslie PN, Lucas SJ, Burgess KR. Breathing and sleep at high altitude. Respir Physiol Neurobiol 2013; 188:233-56. [DOI: 10.1016/j.resp.2013.05.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/04/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
23
|
Burgess KR, Lucas SJE, Shepherd K, Dawson A, Swart M, Thomas KN, Lucas RAI, Donnelly J, Peebles KC, Basnyat R, Ainslie PN. Worsening of central sleep apnea at high altitude--a role for cerebrovascular function. J Appl Physiol (1985) 2013; 114:1021-8. [PMID: 23429871 DOI: 10.1152/japplphysiol.01462.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although periodic breathing during sleep at high altitude occurs almost universally, the likely mechanisms and independent effects of altitude and acclimatization have not been clearly reported. Data from 2005 demonstrated a significant relationship between decline in cerebral blood flow (CBF) at sleep onset and subsequent severity of central sleep apnea that night. We suspected that CBF would decline during partial acclimatization. We hypothesized therefore that reductions in CBF and its reactivity would worsen periodic breathing during sleep following partial acclimatization. Repeated measures of awake ventilatory and CBF responsiveness, arterial blood gases during wakefulness. and overnight polysomnography at sea level, upon arrival (days 2-4), and following partial acclimatization (days 12-15) to 5,050 m were made on 12 subjects. The apnea-hypopnea index (AHI) increased from to 77 ± 49 on days 2-4 to 116 ± 21 on days 12-15 (P = 0.01). The AHI upon initial arrival was associated with marked elevations in CBF (+28%, 68 ± 11 to 87 ± 17 cm/s; P < 0.05) and its reactivity to changes in PaCO2 [>90%, 2.0 ± 0.6 to 3.8 ± 1.5 cm·s(-1)·mmHg(-1) hypercapnia and 1.9 ± 0.4 to 4.1 ± 0.9 cm·s(-1)·mmHg(-1) for hypocapnia (P < 0.05)]. Over 10 days, the increases resolved and AHI worsened. During sleep at high altitude large oscillations in mean CBF velocity (CBFv) occurred, which were 35% higher initially (peak CBFv = 96 cm/s vs. peak CBFv = 71 cm/s) than at days 12-15. Our novel findings suggest that elevations in CBF and its reactivity to CO(2) upon initial ascent to high altitude may provide a protective effect on the development of periodic breathing during sleep (likely via moderating changes in central Pco2).
Collapse
Affiliation(s)
- Keith R Burgess
- Peninsula Sleep Laboratory, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|