1
|
Reding K, Chen M, Lu Y, Cheatle Jarvela AM, Pick L. Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Development 2019; 146:dev181453. [PMID: 31444220 PMCID: PMC6765130 DOI: 10.1242/dev.181453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
The discovery of pair-rule genes (PRGs) in Drosophila revealed the existence of an underlying two-segment-wide prepattern directing embryogenesis. The milkweed bug Oncopeltus fasciatus, a hemimetabolous insect, is a more representative arthropod: most of its segments form sequentially after gastrulation. Here, we report the expression and function of orthologs of the complete set of nine Drosophila PRGs in Oncopeltus Seven Of-PRG-orthologs are expressed in stripes in the primordia of every segment, rather than every other segment; Of-runt is PR-like and several orthologs are also expressed in the segment addition zone. RNAi-mediated knockdown of Of-odd-skipped, paired and sloppy-paired impacted all segments, with no indication of PR-like register. We confirm that Of-E75A is expressed in PR-like stripes, although it is not expressed in this way in Drosophila, demonstrating the existence of an underlying PR-like prepattern in Oncopeltus These findings reveal that a switch occurred in regulatory circuits, leading to segment formation: while several holometabolous insects are 'Drosophila-like', using PRG orthologs for PR patterning, most Of-PRGs are expressed segmentally in Oncopeltus, a more basally branching insect. Thus, an evolutionarily stable phenotype - segment formation - is directed by alternate regulatory pathways in diverse species.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Mengyao Chen
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Yong Lu
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Alys M Cheatle Jarvela
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Prokop J, Pecharová M, Garrouste R, Beattie R, Chintauan-Marquier IC, Nel A. Redefining the extinct orders Miomoptera and Hypoperlida as stem acercarian insects. BMC Evol Biol 2017; 17:205. [PMID: 28841819 PMCID: PMC5574135 DOI: 10.1186/s12862-017-1039-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The systematic positions of the extinct insect orders Hypoperlida, Miomoptera and Permopsocida were enigmatic and unstable for nearly a century. The recent studies based on new material, especially from the Cenomanian Burmese amber, shed light on evolutionary history of Acercaria resolving Permopsocida as the stem group of Condylognatha. However, the knowledge of the remaining two orders differs significantly. RESULTS In this study, we describe new specimens and evaluate morphology of various structures with emphasis on the mouthparts and wing venation. Our results are primary based on revisions of the type specimens with a proper delimitation of taxa Hypoperlida and Miomoptera followed by their significance for the evolutionary history of Acercaria. Three new genera as Belmomantis gen. nov., Elmomantis gen. nov., and Mazonopsocus gen. nov. are designated as members of Palaeomanteidae. The Pennsylvanian Mazonopsocus provides a minimum age for calibration, in accordance to the presence of crown acercarians during the late Carboniferous. CONCLUSIONS This contribution demonstrates that Hypoperlida and Miomoptera are stem groups of Acercaria. The putative clade (Hypoperlida + Miomoptera) is appearing as potential sister group of (Psocodea + (Permopsocida + (Thripida + Hemiptera))).
Collapse
Affiliation(s)
- Jakub Prokop
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43, Praha 2, Czech Republic
| | - Martina Pecharová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43, Praha 2, Czech Republic
| | - Romain Garrouste
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France
| | - Robert Beattie
- The Australian Museum, 1 William St, Sydney, New South Wales, 2010, Australia
| | - Ioana C Chintauan-Marquier
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France.
| |
Collapse
|
3
|
Yeates DK, Meusemann K, Trautwein M, Wiegmann B, Zwick A. Power, resolution and bias: recent advances in insect phylogeny driven by the genomic revolution. CURRENT OPINION IN INSECT SCIENCE 2016; 13:16-23. [PMID: 27436549 DOI: 10.1016/j.cois.2015.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 06/06/2023]
Abstract
Our understanding on the phylogenetic relationships of insects has been revolutionised in the last decade by the proliferation of next generation sequencing technologies (NGS). NGS has allowed insect systematists to assemble very large molecular datasets that include both model and non-model organisms. Such datasets often include a large proportion of the total number of protein coding sequences available for phylogenetic comparison. We review some early entomological phylogenomic studies that employ a range of different data sampling protocols and analyses strategies, illustrating a fundamental renaissance in our understanding of insect evolution all driven by the genomic revolution. The analysis of phylogenomic datasets is challenging because of their size and complexity, and it is obvious that the increasing size alone does not ensure that phylogenetic signal overcomes systematic biases in the data. Biases can be due to various factors such as the method of data generation and assembly, or intrinsic biological feature of the data per se, such as similarities due to saturation or compositional heterogeneity. Such biases often cause violations in the underlying assumptions of phylogenetic models. We review some of the bioinformatics tools available and being developed to detect and minimise systematic biases in phylogenomic datasets. Phylogenomic-scale data coupled with sophisticated analyses will revolutionise our understanding of insect functional genomics. This will illuminate the relationship between the vast range of insect phenotypic diversity and underlying genetic diversity. In combination with rapidly developing methods to estimate divergence times, these analyses will also provide a compelling view of the rates and patterns of lineagenesis (birth of lineages) over the half billion years of insect evolution.
Collapse
Affiliation(s)
- David K Yeates
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT 2601, Australia.
| | - Karen Meusemann
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT 2601, Australia
| | - Michelle Trautwein
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Brian Wiegmann
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT 2601, Australia
| |
Collapse
|
4
|
Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One 2014; 9:e109085. [PMID: 25275450 PMCID: PMC4183542 DOI: 10.1371/journal.pone.0109085] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
Insects and their six-legged relatives (Hexapoda) comprise more than half of all described species and dominate terrestrial and freshwater ecosystems. Understanding the macroevolutionary processes generating this richness requires a historical perspective, but the fossil record of hexapods is patchy and incomplete. Dated molecular phylogenies provide an alternative perspective on divergence times and have been combined with birth-death models to infer patterns of diversification across a range of taxonomic groups. Here we generate a dated phylogeny of hexapod families, based on previously published sequence data and literature derived constraints, in order to identify the broad pattern of macroevolutionary changes responsible for the composition of the extant hexapod fauna. The most prominent increase in diversification identified is associated with the origin of complete metamorphosis, confirming this as a key innovation in promoting insect diversity. Subsequent reductions are recovered for several groups previously identified as having a higher fossil diversity during the Mesozoic. In addition, a number of recently derived taxa are found to have radiated following the development of flowering plant (angiosperm) floras during the mid-Cretaceous. These results reveal that the composition of the modern hexapod fauna is a product of a key developmental innovation, combined with multiple and varied evolutionary responses to environmental changes from the mid Cretaceous floral transition onward.
Collapse
Affiliation(s)
- James L. Rainford
- Department of Biology, University of York, York, United Kingdom
- * E-mail:
| | - Michael Hofreiter
- Department of Biology, University of York, York, United Kingdom
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - David B. Nicholson
- Department of Biology, University of York, York, United Kingdom
- Department of Natural Sciences, National Museums Scotland, Edinburgh, United Kingdom
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| | - Peter J. Mayhew
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
5
|
Simon S, Hadrys H. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol 2013; 69:393-403. [DOI: 10.1016/j.ympev.2013.03.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/13/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
6
|
The earliest known holometabolous insects. Nature 2013; 503:257-61. [DOI: 10.1038/nature12629] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/03/2013] [Indexed: 11/08/2022]
|
7
|
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. ANNUAL REVIEW OF ENTOMOLOGY 2013; 59:95-117. [PMID: 24160435 DOI: 10.1146/annurev-ento-011613-162007] [Citation(s) in RCA: 879] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mitochondrial (mt) genome is, to date, the most extensively studied genomic system in insects, outnumbering nuclear genomes tenfold and representing all orders versus very few. Phylogenomic analysis methods have been tested extensively, identifying compositional bias and rate variation, both within and between lineages, as the principal issues confronting accurate analyses. Major studies at both inter- and intraordinal levels have contributed to our understanding of phylogenetic relationships within many groups. Genome rearrangements are an additional data type for defining relationships, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. Hymenoptera and Psocodea have greatly elevated rates of rearrangement offering both opportunities and pitfalls for identifying rearrangement synapomorphies in each group. Finally, insects are model systems for studying aberrant mt genomes, including truncated tRNAs and multichromosomal genomes. Greater integration of nuclear and mt genomic studies is necessary to further our understanding of insect genomic evolution.
Collapse
Affiliation(s)
- Stephen L Cameron
- Earth, Environmental & Biological Sciences School, Science & Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| |
Collapse
|
8
|
Ewen-Campen B, Jones TEM, Extavour CG. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2013; 2:556-68. [PMID: 23789106 PMCID: PMC3683158 DOI: 10.1242/bio.20134390] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 01/23/2023] Open
Abstract
Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Simon Y W Ho
- School of Biological Sciences; University of Sydney; Sydney; NSW; 2006; Australia
| | - Nathan Lo
- School of Biological Sciences; University of Sydney; Sydney; NSW; 2006; Australia
| |
Collapse
|
10
|
Hadrys H, Simon S, Kaune B, Schmitt O, Schöner A, Jakob W, Schierwater B. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate. PLoS One 2012; 7:e34682. [PMID: 22685537 PMCID: PMC3369913 DOI: 10.1371/journal.pone.0034682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/08/2012] [Indexed: 01/10/2023] Open
Abstract
Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.
Collapse
Affiliation(s)
- Heike Hadrys
- ITZ, Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Simon S, Narechania A, Desalle R, Hadrys H. Insect phylogenomics: exploring the source of incongruence using new transcriptomic data. Genome Biol Evol 2012; 4:1295-309. [PMID: 23175716 PMCID: PMC3542558 DOI: 10.1093/gbe/evs104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/13/2022] Open
Abstract
The evolution of the diverse insect lineages is one of the most fascinating issues in evolutionary biology. Despite extensive research in this area, the resolution of insect phylogeny especially of interordinal relationships has turned out to be still a great challenge. One of the challenges for insect systematics is the radiation of the polyneopteran lineages with several contradictory and/or unresolved relationships. Here, we provide the first transcriptomic data for three enigmatic polyneopteran orders (Dermaptera, Plecoptera, and Zoraptera) to clarify one of the most debated issues among higher insect systematics. We applied different approaches to generate 3 data sets comprising 78 species and 1,579 clusters of orthologous genes. Using these three matrices, we explored several key mechanistic problems of phylogenetic reconstruction including missing data, matrix selection, gene and taxa number/choice, and the biological function of the genes. Based on the first phylogenomic approach including these three ambiguous polyneopteran orders, we provide here conclusive support for monophyletic Polyneoptera, contesting the hypothesis of Zoraptera + Paraneoptera and Plecoptera + remaining Neoptera. In addition, we employ various approaches to evaluate data quality and highlight problematic nodes within the Insect Tree that still exist despite our phylogenomic approach. We further show how the support for these nodes or alternative hypotheses might depend on the taxon- and/or gene-sampling.
Collapse
Affiliation(s)
- Sabrina Simon
- ITZ, Ecology & Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany.
| | | | | | | |
Collapse
|