1
|
Badiei A, Beltran WA, Aguirre GD. Altered transsulfuration pathway enzymes and redox homeostasis in inherited retinal degenerative diseases. Exp Eye Res 2022; 215:108902. [PMID: 34954206 PMCID: PMC8923955 DOI: 10.1016/j.exer.2021.108902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Retinal degenerative diseases result from apoptotic photoreceptor cell death. As endogenously produced gaseous molecules such as hydrogen sulfide (H2S) and nitric oxide (NO) play a key role in apoptosis, we compared the expression levels of genes and proteins involved in the production of these molecules in the retina of normal dogs and three canine models (rcd1, crd2, and xlpra2) of human inherited retinal degeneration (IRD). Using qRT-PCR, Western blot, and immunohistochemistry (IHC), we showed that mRNA and protein levels of cystathionine β-synthase (CBS), an enzyme that produces H2S in neurons, are increased in retinal degeneration, but those of cystathionine γ-lyase (CSE), an enzyme involved in the production of glutathione (GSH), an antioxidant, are not. Such findings suggest that increased levels of H2S that are not counterbalanced by increased antioxidant potential may contribute to disease in affected retinas. We also studied the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzymes responsible for NO production. Western blot and IHC results revealed increased levels of nNOS and iNOS, resulting in increased NO levels in mutant retinas. Finally, photoreceptors are rich in polyunsaturated fatty acids (PUFAs) that can make these cells vulnerable to oxidative damage through reactive oxygen species (ROS). Our results showed increased levels of acrolein and hydroxynonenal (4HNE), two main toxic products of PUFAs, surrounding the membranes of photoreceptors in affected canines. Increased levels of these toxic products, together with increased NO and ROS, likely render these cells susceptible to an intrinsic apoptotic pathway involving mitochondrial membranes. To assess this possibility, we measured the levels of BCL2, an anti-apoptotic protein in the mitochondrial membrane. Western blot results showed decreased levels of BCL2 protein in affected retinas. Overall, the results of this study identify alterations in the expression of enzymes directly involved in maintaining the normal redox status of the retina during retinal degeneration, thereby supporting future studies to investigate the role of H2S and NO in retinal degeneration and apoptosis.
Collapse
Affiliation(s)
- Alireza Badiei
- Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, AK, USA; Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Wang Y, Zhang Q, Yang G, Wei Y, Li M, Du E, Li H, Song Z, Tao Y. RPE-derived exosomes rescue the photoreceptors during retina degeneration: an intraocular approach to deliver exosomes into the subretinal space. Drug Deliv 2021; 28:218-228. [PMID: 33501868 PMCID: PMC7850421 DOI: 10.1080/10717544.2020.1870584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Retinal degeneration (RD) refers to a group of blinding retinopathies leading to the progressive photoreceptor demise and vision loss. Treatments against this debilitating disease are urgently needed. Intraocular delivery of exosomes represents an innovative therapeutic strategy against RD. In this study, we aimed to determine whether the subretinal delivery of RPE-derived exosomes (RPE-Exos) can prevent the photoreceptor death in RD. RD was induced in C57BL6 mice by MNU administration. These MNU administered mice received a single subretinal injection of RPE-Exos. Two weeks later, the RPE-Exos induced effects were evaluated via functional, morphological, and behavior examinations. Subretinal delivery of RPE-Exos efficiently ameliorates the visual function impairments, and alleviated the structural damages in the retina of MNU administered mice. Moreover, RPE-Exos exert beneficial effects on the electrical response of the inner retinal circuits. Treatment with RPE-Exos suppressed the expression levels of inflammatory factors, and mitigated the oxidative damage, indicating that subretinal delivery of RPE-Exos constructed a cytoprotective microenvironment in the retina of MNU administered mice. Our data suggest that RPE-Exos have therapeutic effects against the visual impairments and photoreceptor death. These findings will enrich our knowledge of RPE-Exos, and highlight the discovery of a promising medication for RD.
Collapse
Affiliation(s)
- Yange Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Qian Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Guoqing Yang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuanmeng Wei
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Miao Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Enming Du
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Haijun Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Tam BB, Siu AW, Lam AF, Lee EY. Effects of vitamin E and pinoline on retinal lipid peroxidation. Clin Exp Optom 2021; 87:171-4. [PMID: 15186208 DOI: 10.1111/j.1444-0938.2004.tb03170.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/15/2004] [Accepted: 03/26/2004] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Pinoline is a pineal indoleamine naturally found in the retina. This study compared the effects of pinoline and vitamin E on the copper (I)-induced retinal lipid peroxidation (LPO). METHODS Porcine retinal homogenates were mixed with 120 micro M copper (I) solution. The mixtures were co-incubated with various concentrations of pinoline or trolox (water-soluble vitamin E analogue) at 37 degrees Centigrade for 60 minutes. The amounts of malondialdehyde (MDA) and protein were assayed to quantify the LPO. RESULTS Copper (I) ions significantly increased the MDA concentration in the retinal homogenates (p < 0.0007). Both pinoline and trolox significantly suppressed MDA in a dose-dependent manner (p < 0.0001) and their effects were significantly different (p = 0.004). The concentrations that inhibited 50 per cent of LPO were 0.24 mM and 0.68 mM for pinoline and trolox, respectively. DISCUSSION Pinoline suppressed the LPO at a potency of 2.8 times compared with trolox. The results support an anti-oxidative role for pinoline in the retina. Further study is required to characterise the pharmacological potency of pinoline in vivo.
Collapse
Affiliation(s)
- Benny B Tam
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
4
|
Li X, Lin J, Gao Y, Tian R, Chen D. Nitric Oxide (NO) as Antioxidant Protects HT22 Cells and Biomolecules against Fenton's Reagent-Induced Damages via Multiple Pathways. ChemistrySelect 2016. [DOI: 10.1002/slct.201500028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine; Guangzhou University of Chinese Medicine; Guangzhou Higher Education Mega Centre; Guangzhou China
| | - Jing Lin
- School of Chinese Herbal Medicine; Guangzhou University of Chinese Medicine; Guangzhou Higher Education Mega Centre; Guangzhou China
| | - Yaoxiang Gao
- School of Chinese Herbal Medicine; Guangzhou University of Chinese Medicine; Guangzhou Higher Education Mega Centre; Guangzhou China
| | - Ruimin Tian
- School of Basic Medical Science; Guangzhou University of Chinese Medicine; Guangzhou Higher Education Mega Centre; Guangzhou China
| | - Dongfeng Chen
- School of Basic Medical Science; Guangzhou University of Chinese Medicine; Guangzhou Higher Education Mega Centre; Guangzhou China
| |
Collapse
|
5
|
Siu AW, Shan SW, Li KK, Lam HY, Fung MY, Li KK, To CH, Do CW. Glutathione attenuates nitric oxide-induced retinal lipid and protein changes. Ophthalmic Physiol Opt 2015; 35:135-46. [DOI: 10.1111/opo.12198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/30/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew W. Siu
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Sze Wan Shan
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - King Kit Li
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Hiu Yan Lam
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Man Yee Fung
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Ka Ki Li
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Chi Ho To
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou China
| | - Chi Wai Do
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| |
Collapse
|
6
|
Byeon SE, Yu T, Yang Y, Lee YG, Kim JH, Oh J, Jeong HY, Hong S, Yoo BC, Cho WJ, Hong S, Cho JY. Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues. Free Radic Biol Med 2013; 57:105-18. [PMID: 23290930 DOI: 10.1016/j.freeradbiomed.2012.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/19/2012] [Accepted: 12/18/2012] [Indexed: 12/14/2022]
Abstract
The hydroxylated benzene metabolite hydroquinone (HQ) is mainly generated from benzene, an important industrial chemical, and is also a common dietary component. Although numerous papers have addressed the potential role of HQ in tumorigenic responses, the immunosuppressive and anti-inflammatory effects of hydroquinone have also been considered. In this study, we characterized the mechanism of the induction of hemeoxygenase (HO)-1 and other phase 2 enzymes by HQ and its derivatives. HQ upregulated the mRNA and protein levels of HO-1 by increasing the antioxidant-response element-dependent transcriptional activation of Nrf-2. Src knockdown or deficiency induced via siRNA treatment and infection with a retrovirus expressing shRNA targeting Src, as well as exposure to PP2, a Src kinase inhibitor, strongly abrogated HO-1 expression. Interestingly, HQ directly targeted and bound to the sulfhydryl group of cysteine-483 (C483) and C400 residues of Src, potentially leading to disruption of intracellular disulfide bonds. Src kinase activity was dramatically enhanced by mutation of these cysteine sites, implying that these sites may play an important role in the regulation of Src kinase activity. Therefore, our data suggest that Src and, particularly, its C483 target site can be considered as prime molecular targets of the HQ-mediated induction of phase 2 enzymes, which is potentially linked to HO-1-mediated cellular responses such as immunosuppressive and anti-inflammatory actions.
Collapse
Affiliation(s)
- Se Eun Byeon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 446-746, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Increasing evidences have suggested that oxidative stress plays a major role in the pathogenesis of diabetes mellitus (DM). Oxidative stress also appears to be the pathogenic factor in underlying diabetic complications. Reactive oxygen species (ROS) are generated by environmental factors, such as ionizing radiation and chemical carcinogens, and also by endogenous processes, including energy metabolism in mitochondria. ROS produced either endogenously or exogenously can attack lipids, proteins and nucleic acids simultaneously in living cells. There are many potential mechanisms whereby excess glucose metabolites traveling along these pathways might promote the development of DM complication and cause pancreatic β cell damage. However, all these pathways have in common the formation of ROS, that, in excess and over time, causes chronic oxidative stress, which in turn causes defective insulin gene expression and insulin secretion as well as increased apoptosis. Various methods for determining biomarkers of cellular oxidative stress have been developed, and some have been proposed for sensitive assessment of antioxidant defense and oxidative damage in diabetes and its complications. However, their clinical utility is limited by less than optimal standardization techniques and the lack of sufficient large-sized, multi-marker prospective trials.
Collapse
Affiliation(s)
- Hui Yang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Ministry of Health, Beijing, PR China
| | | | | | | |
Collapse
|
8
|
Sapieha P, Joyal JS, Rivera JC, Kermorvant-Duchemin E, Sennlaub F, Hardy P, Lachapelle P, Chemtob S. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest 2010; 120:3022-32. [PMID: 20811158 DOI: 10.1172/jci42142] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a major complication of preterm birth. It encompasses a spectrum of pathologies that affect vision, from mild disease that resolves spontaneously to severe disease that causes retinal detachment and subsequent blindness. The pathologies are characterized by an arrest in normal retinal vascular development associated with microvascular degeneration. The resulting ischemia and retinal hypoxia lead to excessive abnormal compensatory blood vessel growth. However, this neovascularization can lead to fibrous scar formation and culminate in retinal detachment. Present therapeutic modalities to limit the adverse consequences of aberrant neovascularization are invasive and/or tissue-destructive. In this Review, we discuss current concepts on retinal microvascular degeneration, neovascularization, and available treatments, as well as present future perspectives toward more profound elucidation of the pathogenesis of ROP.
Collapse
Affiliation(s)
- Przemyslaw Sapieha
- Department of Ophthalmology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF. Neuroprotection in glaucoma - Is there a future role? Exp Eye Res 2010; 91:554-66. [PMID: 20800593 DOI: 10.1016/j.exer.2010.08.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/26/2010] [Accepted: 08/06/2010] [Indexed: 02/06/2023]
Abstract
In glaucoma, the major cause of global irreversible blindness, there is an urgent need for treatment modalities that directly target the RGCs. The discovery of an alternative therapeutic approach, independent of IOP reduction, is highly sought after, due to the indirect nature and limited effectiveness of IOP lowering therapy in preventing RGC loss. Several mechanisms have been implicated in initiating the apoptotic cascade in glaucomatous retinopathy and numerous drugs have been shown to be neuroprotective in animal models of glaucoma. These mechanisms and their potential treatment include excitotoxicity, protein misfolding, mitochondrial dysfunction, oxidative stress, inflammation and neurotrophin deprivation. All of these mechanisms ultimately lead to programmed cell death with loss of RGCs. In this article we summarize the mechanisms involved in glaucomatous disease, highlight the rationale for neuroprotection in glaucoma management and review current potential neuroprotective strategies targeting RGCs from the laboratory to the clinic.
Collapse
Affiliation(s)
- Abeir Baltmr
- Glaucoma and Retinal Neurodegeneration Research Group, Visual Neurosciences Department, University College London Institute of Ophthalmology, Bath Street, London EC1V 9EL, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Zhang X, Le W. Pathological role of hypoxia in Alzheimer's disease. Exp Neurol 2009; 223:299-303. [PMID: 19679125 DOI: 10.1016/j.expneurol.2009.07.033] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/23/2009] [Accepted: 07/24/2009] [Indexed: 11/16/2022]
Abstract
The majority cases of Alzheimer's disease (AD) are sporadic late-onset form not being linked to APP and PS1 gene mutations. It is believed that the environmental risk factors play an important role in the onset and development of AD. Patients suffering from cerebral ischemia and stroke in which hypoxic conditions occur are much more susceptible to AD. Increasing evidence suggests that hypoxia facilitates the pathogenesis of AD through accelerating the accumulation of Abeta, increasing the hyperphosphorylation of tau, impairing the normal functions of blood-brain barrier, and promoting the degeneration of neurons. Further investigations into the relationship between hypoxia and AD may open the avenue for effective preservation and pharmacological treatments of this neurodegenerative disease.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Neurology, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | |
Collapse
|
11
|
Mozaffarieh M, Grieshaber M, Orgül S, Flammer J. The Potential Value of Natural Antioxidative Treatment in Glaucoma. Surv Ophthalmol 2008; 53:479-505. [DOI: 10.1016/j.survophthal.2008.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Zapata GL, Guajardo MH, Terrasa AM. The in vitro protective effect of alpha-tocopherol on oxidative injury in the dog retina. Vet J 2007; 177:266-72. [PMID: 17581765 DOI: 10.1016/j.tvjl.2007.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 03/27/2007] [Accepted: 04/15/2007] [Indexed: 10/23/2022]
Abstract
Oxidative stress is a risk factor for eye diseases. Free radicals elicited during the inflammatory process often lead to oxidative damage of lipids (lipid peroxidation). The retina is highly vulnerable because of its high content of polyunsaturated fatty acids (PUFAs). The aim of this study was to investigate in vitro the effect of alpha-tocopherol on the Fe(2+)-ascorbate induced lipid peroxidation in the canine retina. Lipid peroxidation of retinal homogenates was carried out with and without the addition of alpha-tocopherol and monitored both by chemiluminescence and production of thiobarbituric acid reactive substances (TBARS). Total chemiluminescence counts per minute was lower in those homogenates pre-incubated with alpha-tocopherol. Thus, with 1 micromol alpha-tocopherol/mg of protein, 100% inhibition of chemiluminescence and a decrease of TBARS content from 20.46+/-0.85 to 2.62+/-2.77 nmol/mg protein were observed. Simultaneously, changes produced by oxidative stress were noted in the fatty acid composition of retinal lipids. Docosahexaenoic acid was decreased from 14.33+/-2.32% to 1.84+/-0.14% after peroxidation, but this fatty acid remained unaltered in the presence of 1 micromol alpha-tocopherol. These results show that under these experimental conditions, alpha-tocopherol may act as anti-oxidant protecting retinal membranes from deleterious effects. Further studies are required to assess its use in free radical generating conditions affecting the canine retina.
Collapse
Affiliation(s)
- G L Zapata
- Cátedra de Patología Médica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | | | | |
Collapse
|
13
|
Tang GY, Ip AK, Siu AW. Pinoline and N-acetylserotonin reduce glutamate-induced lipid peroxidation in retinal homogenates. Neurosci Lett 2006; 412:191-4. [PMID: 17125922 DOI: 10.1016/j.neulet.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Glutamate is a neurotransmitter associated with oxidative retinal disorders. Pinoline (PIN) and N-acetylserotonin (NAS) are newly identified neural protectors. We investigated the glutamate-induced lipid peroxidation (LPO) and the protective effects of PIN and NAS in the retina. Porcine retinal homogenates were treated with different concentrations of glutamate. The malondialdehyde (MDA) level per unit weight of protein was quantified spectro-photometrically as an index of LPO. The glutamate concentration that induced a significant increase in retinal MDA was determined. The glutamate-treated retinal homogenate was then co-incubated with 5 different concentrations (0, 35.7, 71.5, 143 and 286 microM) of PIN, NAS or their combinations (concentration corresponding to 25, 50 and 75% of protection). Glutamate induced a significant dose-dependent increase in retinal MDA (p<0.0001). Co-incubation with PIN or NAS significantly suppressed the glutamate-induced MDA (p<0.01) in a dose-dependent manner (p<0.0001). The concentrations to inhibit 50% of LPO were 132.8 and 98.6 microM for PIN and NAS, respectively. In summary, elevated glutamate induced retinal LPO. Both PIN and NAS suppressed the glutamate-induced LPO and a synergic protection was evident after incubation in PIN/NAS mixtures.
Collapse
Affiliation(s)
- Gordon Y Tang
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
14
|
Siu AW, Maldonado M, Sanchez-Hidalgo M, Tan DX, Reiter RJ. Protective effects of melatonin in experimental free radical-related ocular diseases. J Pineal Res 2006; 40:101-9. [PMID: 16441546 DOI: 10.1111/j.1600-079x.2005.00304.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine with a range of antioxidative properties. Melatonin is endogenously produced in the eye and in other organs. Current evidence suggests that melatonin may act as a protective agent in ocular conditions such as photo-keratitis, cataract, glaucoma, retinopathy of prematurity and ischemia/reperfusion injury. These diseases are sight-threatening and they currently remain, for the most part, untreatable. The pathogenesis of these conditions is not entirely clear but oxidative stress has been proposed as one of the causative factors. Elevated levels of various reactive oxygen and nitrogen species have been identified in diseased ocular structures. These reactants damage the structure and deplete the eye of natural defense systems, such as the antioxidant, reduced glutathione, and the antioxidant enzyme superoxide dismutase. Oxidative damage in the eye leads to apoptotic degeneration of retinal neurons and fluid accumulation. Retinal degeneration decreases visual sensitivity and even a small change in the fluid content of the cornea and crystalline lens is sufficient to disrupt ocular transparency. In the eye, melatonin is produced in the retina and in the ciliary body. Continuous regeneration of melatonin in the eye offers a frontier antioxidative defense for both the anterior and posterior eye. However, melatonin production is minimal in newborns and its production gradually wanes in aging individuals as indicated by the large drop in circulating blood concentrations of the indoleamine. These individuals are possibly at risk of contracting degenerative eye diseases that are free radical-based. Supplementation with melatonin, a potent antioxidant, in especially the aged population should be considered as a prophylaxis to preserve visual functions. It may benefit many individuals worldwide, especially in countries where access to medical facilities is limited.
Collapse
Affiliation(s)
- Andrew W Siu
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | | | |
Collapse
|
15
|
Hardy P, Beauchamp M, Sennlaub F, Gobeil F, Tremblay L, Mwaikambo B, Lachapelle P, Chemtob S. New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukot Essent Fatty Acids 2005; 72:301-25. [PMID: 15850712 DOI: 10.1016/j.plefa.2005.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 12/21/2004] [Accepted: 02/11/2005] [Indexed: 10/25/2022]
Abstract
Ischemic proliferative retinopathy develops in various retinal disorders, including retinal vein occlusion, diabetic retinopathy and retinopathy of prematurity. Ischemic retinopathy remains a common cause of visual impairment and blindness in the industrialized world due to relatively ineffective treatment. Oxygen-induced retinopathy (OIR) is an established model of retinopathy of prematurity associated with vascular cell injury culminating in microvascular degeneration, which precedes an abnormal neovascularization. The retina is a tissue particularly rich in polyunsaturated fatty acids and the ischemic retina becomes highly sensitive to lipid peroxidation initiated by oxygenated free radicals. Consequently, the retina constitutes an excellent model for testing the functional consequences of membrane lipid peroxidation. Retinal tissue responds to physiological and pathophysiological stimuli by the activation of phospholipases and the consequent release from membrane phospholipids of biologically active metabolites. Activation of phospholipase A(2) is the first step in the synthesis of two important classes of lipid second messengers, the eicosanoids and a membrane-derived phospholipid mediator platelet-activating factor (PAF). These lipid mediators accumulate in the retina in response to injury and a physiologic role of these metabolites in retinal vasculature remains for the most part to be determined; albeit proposed roles have been suggested for some. The eicosanoids, in particular the prostanoids, thromboxane (TXA2) and PAF are abundantly generated following an oxidant stress and contribute to neurovascular injury. TXA2 and PAF play an important role in the retinal microvacular degeneration of OIR by directly inducing endothelial cell death and potentially could contribute to the pathogenesis of ischemic retinopathies. Despite these advances there are still a number of important questions that remain to be answered before we can confidently target pathological signals. This review focuses on mechanisms that precede the development of neovascularization, most notably regarding the role of lipid mediators that partake in microvascular degeneration.
Collapse
Affiliation(s)
- Pierre Hardy
- Department of Obstetrics, Research Center Sainte-Justine Hospital and University of Montreal, Montreal, Quebec, Canada, H3T 1C5.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75:207-46. [PMID: 15882775 DOI: 10.1016/j.pneurobio.2005.02.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 02/16/2005] [Accepted: 02/16/2005] [Indexed: 01/28/2023]
Abstract
Despite our present knowledge of some of the cellular pathways that modulate central nervous system injury, complete therapeutic prevention or reversal of acute or chronic neuronal injury has not been achieved. The cellular mechanisms that precipitate these diseases are more involved than initially believed. As a result, identification of novel therapeutic targets for the treatment of cellular injury would be extremely beneficial to reduce or eliminate disability from nervous system disorders. Current studies have begun to focus on pathways of oxidative stress that involve a variety of cellular pathways. Here we discuss novel pathways that involve the generation of reactive oxygen species and oxidative stress, apoptotic injury that leads to nuclear degradation in both neuronal and vascular populations, and the early loss of cellular membrane asymmetry that mitigates inflammation and vascular occlusion. Current work has identified exciting pathways, such as the Wnt pathway and the serine-threonine kinase Akt, as central modulators that oversee cellular apoptosis and their downstream substrates that include Forkhead transcription factors, glycogen synthase kinase-3beta, mitochondrial dysfunction, Bad, and Bcl-x(L). Other closely integrated pathways control microglial activation, release of inflammatory cytokines, and caspase and calpain activation. New therapeutic avenues that are just open to exploration, such as with brain temperature regulation, nicotinamide adenine dinucleotide modulation, metabotropic glutamate system modulation, and erythropoietin targeted expression, may provide both attractive and viable alternatives to treat a variety of disorders that include stroke, Alzheimer's disease, and traumatic brain injury.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
17
|
Chong ZZ, Li F, Maiese K. Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer's disease. ACTA ACUST UNITED AC 2005; 49:1-21. [PMID: 15960984 PMCID: PMC2276700 DOI: 10.1016/j.brainresrev.2004.11.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/28/2004] [Accepted: 11/12/2004] [Indexed: 01/24/2023]
Abstract
More than a century has elapsed since the description of Alois Alzheimer's patient Auguste D. Yet, the well-documented generation of beta-amyloid aggregates and neurofibrillary tangles that define Alzheimer's disease is believed to represent only a portion of the cellular processes that can determine the course of Alzheimer's disease. Understanding of the complex nature of this disorder has evolved with an increased appreciation for pathways that involve the generation of reactive oxygen species and oxidative stress, apoptotic injury that leads to nuclear degradation in both neuronal and vascular populations, and the early loss of cellular membrane asymmetry that mitigates inflammation and vascular occlusion. Recent work has identified novel pathways, such as the Wnt pathway and the serine-threonine kinase Akt, as central modulators that oversee cellular apoptosis and the formation of neurofibrillary tangles through their downstream substrates that include glycogen synthase kinase-3beta, Bad, and Bcl-xL. Other closely integrated pathways control microglial activation, release of inflammatory cytokines, and caspase and calpain activation for the processing of amyloid precursor protein, tau protein cleavage, and presenilin disposal. New therapeutic avenues that are just open to exploration, such as with nicotinamide adenine dinucleotide modulation, cell cycle modulation, metabotropic glutamate system modulation, and erythropoietin targeted expression, may provide both attractive and viable alternatives to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Neurology and Anatomy and Cell Biology, Center for Molecular Medicine and Genetics, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding author. Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201. Fax: +1 313 966 0486. E-mail address: (K. Maiese)
| |
Collapse
|
18
|
Chong ZZ, Kang JQ, Maiese K. Essential cellular regulatory elements of oxidative stress in early and late phases of apoptosis in the central nervous system. Antioxid Redox Signal 2004; 6:277-87. [PMID: 15025929 DOI: 10.1089/152308604322899341] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The generation of reactive oxygen species and subsequent oxidative stress in the central nervous system is now considered to be one of the primary etiologies of a host of neurodegenerative disorders, such as Alzheimer disease, Parkinson disease, and cerebral ischemia. On a cellular level, oxidative stress leads to an apoptotic early phase that involves cellular membrane phosphatidylserine (PS) exposure and a late phase that pertains to the degradation of genomic DNA. The translocation of membrane PS from the inner cellular membrane to the surface is a critical component for both microglial activation and cellular disposal of injured cells. During oxidative stress, this early phase of apoptosis is intimately controlled by neuronal PS exposure and microglial PS receptor expression. The late phase of apoptosis that involves a loss of genomic DNA integrity can result as a function of an ill-fated attempt to enter the cell cycle in postmitotic neurons. By using a cascade of pathways that involve cysteine proteases to modulate programmed cell death, protein kinase B (Akt) surfaces as a key regulatory element of both extrinsic pathways of inflammation and intrinsic pathways of cellular integrity. Further understanding of the cellular mechanisms modulating neuronal cellular integrity and phagocytic cell disposal during oxidative stress may form the basis for the future development of cytoprotective strategies in the nervous system.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Center for Molecular Medicine and Genetics, and Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|