1
|
Mohammed I, Ijaz S, Mokhtari T, Gholaminejhad M, Mahdavipour M, Jameie B, Akbari M, Hassanzadeh G. Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis 2020; 35:809-818. [PMID: 32185593 DOI: 10.1007/s11011-020-00563-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is the destruction of spinal cord motor and sensory resulted from an attack on the spinal cord, which can cause significant physiological damage. The inflammasome is a multiprotein oligomer resulting in inflammation; the NLRP3 inflammasome composed of NLRP3, apoptosis-associated speck-like protein (ASC), procaspase-1, and cleavage of procaspase-1 into caspase-1 initiates the inflammatory response. Subventricular Zone (SVZ) is the origin of neural stem/progenitor cells (NS/PCs) in the adult brain. Extracellular vesicles (EVs) are tiny lipid membrane bilayer vesicles secreted by different types of cells playing an important role in cell-cell communications. The aim of this study was to investigate the effect of intrathecal transplantation of EVs on the NLRP3 inflammasome formation in SCI rats. Male wistar rats were divided into three groups as following: laminectotomy group, SCI group, and EVs group. EVs was isolated from SVZ, and characterized by western blot and DLS, and then injected into the SCI rats. Real-time PCR and western blot were carried out for gene expression and protein level of NLRP3, ASC, and Caspase-1. H&E and cresyl violet staining were performed for histological analyses, as well as BBB test for motor function. The results indicated high level in mRNA and protein level in SCI group in comparison with laminectomy (p < 0.001), and injection of EVs showed a significant reduction in the mRNA and protein levels in EVs group compared to SCI (p < 0.001). H&E and cresyl violet staining showed recovery in neural cells of spinal cord tissue in EVs group in comparison with SCI group. BBB test showed the promotion of motor function in EVs group compared to SCI in 14 days (p < 0.05). We concluded that the injection of EVs could recover the motor function in rats with SCI and rescue the neural cells of spinal cord tissue by suppressing the formation of the NLRP3 inflammasome complex.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ijaz
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdavipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnamedin Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sankavaram SR, Hakim R, Covacu R, Frostell A, Neumann S, Svensson M, Brundin L. Adult Neural Progenitor Cells Transplanted into Spinal Cord Injury Differentiate into Oligodendrocytes, Enhance Myelination, and Contribute to Recovery. Stem Cell Reports 2019; 12:950-966. [PMID: 31031190 PMCID: PMC6524946 DOI: 10.1016/j.stemcr.2019.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Long-term survival and integration of neural progenitor cells (NPCs) transplanted following spinal cord injury (SCI) have been observed. However, questions concerning the differentiation choice, the mechanism of action, and the contribution of NPCs to functional recovery remains unanswered. Therefore, we investigated the differentiation of NPCs, global transcriptomal changes in transplanted NPCs, the effect of NPCs on neuroinflammation, and the causality between NPC transplantation and functional recovery. We found that NPCs transplanted following SCI differentiate mainly into oligodendrocytes and enhance myelination, upregulate genes related to synaptic signaling and mitochondrial activity, and downregulate genes related to cytokine production and immune system response. NPCs suppress the expression of pro-inflammatory cytokines/chemokines; moreover, NPC ablation confirm that NPCs were responsible for enhanced recovery in hindlimb locomotor function. Understanding the reaction of transplanted NPCs is important for exploiting their full potential. Existence of causality implies that NPCs are useful in the treatment of SCI. NPCs differentiate mainly into oligodendrocytes and enhance myelination NPCs suppress expression of pro-inflammatory cytokines/chemokines Causality exists between transplantation of NPCs and functional recovery NPCs upregulate genes related to synaptic signaling, oligodendrocytes/myelination
Collapse
Affiliation(s)
- Sreenivasa Raghavan Sankavaram
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Ramil Hakim
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ruxandra Covacu
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Neumann
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden.
| |
Collapse
|
3
|
Sandhu MS, Ross HH, Lee KZ, Ormerod BK, Reier PJ, Fuller DD. Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury. Exp Neurol 2017; 287:205-215. [PMID: 27302679 PMCID: PMC6154390 DOI: 10.1016/j.expneurol.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023]
Abstract
Following spinal cord injury (SCI), intraspinal transplantation of neural progenitor cells (NPCs) harvested from the forebrain sub-ventricular zone (SVZ) can improve locomotor outcomes. Cervical SCI often results in respiratory-related impairments, and here we used an established model cervical SCI (C2 hemisection, C2Hx) to confirm the feasibility of mid-cervical transplantation of SVZ-derived NPCs and the hypothesis that that this procedure would improve spontaneous respiratory motor recovery. NPCs were isolated from the SVZ of enhanced green fluorescent protein (GFP) expressing neonatal rats, and then intraspinally delivered immediately caudal to an acute C2Hx lesion in adult non-GFP rats. Whole body plethysmography conducted at 4 and 8wks post-transplant demonstrated increased inspiratory tidal volume in SVZ vs. sham transplants during hypoxic (P=0.003) or hypercapnic respiratory challenge (P=0.019). Phrenic nerve output was assessed at 8wks post-transplant; burst amplitude recorded ipsilateral to C2Hx was greater in SVZ vs. sham rats across a wide range of conditions (e.g., quiet breathing through maximal chemoreceptor stimulation; P<0.001). Stereological analyses at 8wks post-injury indicated survival of ~50% of transplanted NPCs with ~90% of cells distributed in ipsilateral white matter at or near the injection site. Peak inspiratory phrenic bursting after NPC transplant was positively correlated with the total number of surviving cells (P<0.001). Immunohistochemistry confirmed an astrocytic phenotype in a subset of the transplanted cells with no evidence for neuronal differentiation. We conclude that intraspinal transplantation of SVZ-derived NPCs can improve respiratory recovery following high cervical SCI.
Collapse
Affiliation(s)
- M S Sandhu
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - H H Ross
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - K Z Lee
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - B K Ormerod
- University of Florida, Department of Biomedical Engineering, P.O. Box 116131, Gainesville, FL 32611-6131, United States
| | - P J Reier
- University of Florida, Department of Neuroscience, P.O. Box 100244, Gainesville, FL 32610-0244, United States
| | - D D Fuller
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States.
| |
Collapse
|
4
|
White matter tracts for the trafficking of neural progenitor cells characterized by cellular MRI and immunohistology: the role of CXCL12/CXCR4 signaling. Brain Struct Funct 2014; 220:2073-85. [PMID: 24771246 PMCID: PMC4481304 DOI: 10.1007/s00429-014-0770-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/01/2014] [Indexed: 02/08/2023]
Abstract
White matter tracts are important for the trafficking of neural progenitor cells (NPCs) in both normal and pathological conditions, but the underlying mechanism is not clear. The directionality of white matter is advantageous for molecules or cells to distribute over a long distance, but this feature is unlikely solely responsible for efficient migration. The present study hypothesizes that the efficient migration of NPCs into white matter is under the influences of neurochemical attraction—CXCL12/CXCR4 signaling, a major mechanism underlying the targeted migration of NPCs. To test this view, the present study investigated the effects of CXCL12 administration into the corpus callosum (CC) on the migratory behavior of transplanted NPCs. A living animal tracking platform based on MRI and a magnetic cell labeling technique was employed. The NPCs were magnetically labeled and then transplanted at the right end of the CC. CXCL12 was infused continuously at the left end. Migration of NPCs was monitored repeatedly over a 7-day course using 3D gradient echo T2*-weighted imaging. It was found that, CXCL12 induced NPCs to migrate up to 1,881 μm from the graft whereas the spontaneous migration was mere 200 μm. CXCL12 induced migration that was nine times as efficient in the speed. The results indicate that the CXCL12/CXCR4 signaling may be a mechanism via which NPCs efficiently migrate along the white matter tracts. The study also presents a potential strategy for facilitating the targeted migration in NPC therapy for brain disorders.
Collapse
|
5
|
Royce Hynes S, McGregor LM, Ford Rauch M, Lavik EB. Photopolymerized poly(ethylene glycol)/poly(L-lysine) hydrogels for the delivery of neural progenitor cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1017-30. [PMID: 17705996 DOI: 10.1163/156856207781494368] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neural progenitor cells (NPCs) have shown promise in a number of models of disease and injury, but for these cells to be safe and effective, they must be directed to differentiate appropriately following transplantation. We have developed a photopolymerized hydrogel composed of macromers of poly(ethylene glycol) (PEG) bound to poly(L-lysine) (PLL) that supports NPC survival and directs differentiation. Green fluorescent protein (GFP) positive NPCs were encapsulated in these gels and demonstrated survival up to 17 days. When encapsulated in the gels at a photoinitiator concentration of 5.0 mg/ml, few NPCs (0.5 +/- 0.25%) demonstrated apoptosis. Furthermore, 55 +/- 6% of the NPCs cultured within the gels in epidermal growth factor (EGF) containing media differentiated into a mature neuronal cell type (neurofilament 200 positive) while the remainder 44 +/- 8% were undifferentiated (nestin positive). A small percentage, 1 +/- 0.4%, expressed the astrocytic marker glial acidic fibrilary protein. Photopolymerized PEG/PLL gels promote the survival and direct the differentiation of NPCs, making this system a promising delivery vehicle for NPCs in the treatment of injuries and diseases of the central nervous system.
Collapse
Affiliation(s)
- Sara Royce Hynes
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
6
|
Niranjan A, Fellows W, Stauffer W, Burton EA, Hong CS, Lunsford LD, Kondziolka D, Glorioso JC, Gobbel GT. Survival of transplanted neural progenitor cells enhanced by brain irradiation. J Neurosurg 2007; 107:383-91. [PMID: 17695394 DOI: 10.3171/jns-07/08/0383] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Authors of previous studies have reported that adult transplanted neural progenitor cells (NPCs) are suitable for brain cell replacement or gene delivery. In this study, the authors evaluated survival and integration of adult rat-derived NPCs after transplantation and explored the potential impact on transplant survival of various mechanical and biological factors of clinical importance. METHODS Adult female Fischer 344 rats were used both as a source and recipient of transplanted NPCs. Both 9L and RG2 rat glioma cells were used to generate in vivo brain tumor models. On the 5th day after tumor implantation, NPCs expressing green fluorescent protein (GFP) were administered either intravenously (3.5 x 10(7) cells) or by stereotactic injection (1 x 10(4)-1 x 10(6) cells) into normal or tumor-bearing brain. The authors evaluated the effect of delivery method (sharp compared with blunt needles, normal compared with zero-volume needles, phosphate-buffered saline compared with medium as vehicle), delivery sites (intravenous compared with intratumoral compared with intraparenchymal), and pretreatment with an immunosuppressive agent (cyclosporin) or brain irradiation (20-40 Gy) on survival and integration of transplanted NPCs. RESULTS Very few cells survived when less than 10(5) cells were transplanted. When 10(5) cells or more were transplanted, only previously administered brain irradiation significantly affected survival and integration of NPCs. Although GFP-containing NPCs could be readily detected 1 day after injection, few cells survived 4 days to 1 week unless preceded by whole-brain radiation (20 or 40 Gy in a single fraction), which increased the number of GFP-containing NPCs within the tissue more than fivefold. CONCLUSIONS The authors' findings indicate that most NPCs, including those from a syngeneic autologous source, do not survive at the site of implantation, but that brain irradiation can facilitate subsequent survival in both normal and tumor-bearing brain. An understanding of the mechanisms of this effect could lead to improved survival and clinical utility of transplanted NPCs.
Collapse
Affiliation(s)
- Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|