1
|
Liu W, Wang X, Wang M, Wang H. Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:93-107. [DOI: 10.1007/978-981-13-6123-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
2
|
Manohar S, Ramchander PV, Salvi R, Seigel GM. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2018; 399:184-198. [PMID: 30593923 DOI: 10.1016/j.neuroscience.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Collapse
Affiliation(s)
- S Manohar
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - P V Ramchander
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - R Salvi
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - G M Seigel
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| |
Collapse
|
3
|
BK Channels Mediate Synaptic Plasticity Underlying Habituation in Rats. J Neurosci 2017; 37:4540-4551. [PMID: 28348135 DOI: 10.1523/jneurosci.3699-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022] Open
Abstract
Habituation is a basic form of implicit learning and represents a sensory filter that is disrupted in autism, schizophrenia, and several other mental disorders. Despite extensive research in the past decades on habituation of startle and other escape responses, the underlying neural mechanisms are still not fully understood. There is evidence from previous studies indicating that BK channels might play a critical role in habituation. We here used a wide array of approaches to test this hypothesis. We show that BK channel activation and subsequent phosphorylation of these channels are essential for synaptic depression presumably underlying startle habituation in rats, using patch-clamp recordings and voltage-sensitive dye imaging in slices. Furthermore, positive modulation of BK channels in vivo can enhance short-term habituation. Although results using different approaches do not always perfectly align, together they provide convincing evidence for a crucial role of BK channel phosphorylation in synaptic depression underlying short-term habituation of startle. We also show that this mechanism can be targeted to enhance short-term habituation and therefore to potentially ameliorate sensory filtering deficits associated with psychiatric disorders.SIGNIFICANCE STATEMENT Short-term habituation is the most fundamental form of implicit learning. Habituation also represents a filter for inundating sensory information, which is disrupted in autism, schizophrenia, and other psychiatric disorders. Habituation has been studied in different organisms and behavioral models and is thought to be caused by synaptic depression in respective pathways. The underlying molecular mechanisms, however, are poorly understood. We here identify, for the first time, a BK channel-dependent molecular synaptic mechanism leading to synaptic depression that is crucial for habituation, and we discuss the significance of our findings for potential treatments enhancing habituation.
Collapse
|
4
|
Gómez-Nieto R, Horta-Júnior JDAC, Castellano O, Millian-Morell L, Rubio ME, López DE. Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex. Front Neurosci 2014; 8:216. [PMID: 25120419 PMCID: PMC4110630 DOI: 10.3389/fnins.2014.00216] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/03/2014] [Indexed: 11/13/2022] Open
Abstract
The acoustic startle reflex (ASR) is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs), neurons in the caudal pontine reticular nucleus (PnC), and motoneurons in the medulla and spinal cord. It is well-established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioral techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1 (VGLUT1). Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviorally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviors and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the ASR.
Collapse
Affiliation(s)
- Ricardo Gómez-Nieto
- Neuroscience Institute of Castilla y León, University of Salamanca Salamanca, Spain ; Department of Cell Biology and Pathology, University of Salamanca Salamanca, Spain ; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca Salamanca, Spain
| | - José de Anchieta C Horta-Júnior
- Neuroscience Institute of Castilla y León, University of Salamanca Salamanca, Spain ; Department of Anatomy, Biosciences Institute, São Paulo State University Botucatu São Paulo, Brazil
| | - Orlando Castellano
- Neuroscience Institute of Castilla y León, University of Salamanca Salamanca, Spain ; Department of Cell Biology and Pathology, University of Salamanca Salamanca, Spain ; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca Salamanca, Spain
| | - Lymarie Millian-Morell
- Neuroscience Institute of Castilla y León, University of Salamanca Salamanca, Spain ; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca Salamanca, Spain
| | - Maria E Rubio
- Department of Otolaryngology, University of Pittsburgh Pittsburgh, PA, USA
| | - Dolores E López
- Neuroscience Institute of Castilla y León, University of Salamanca Salamanca, Spain ; Department of Cell Biology and Pathology, University of Salamanca Salamanca, Spain ; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca Salamanca, Spain
| |
Collapse
|
5
|
Godfrey DA, Jin YM, Liu X, Godfrey MA. Effects of cochlear ablation on amino acid levels in the rat cochlear nucleus and superior olive. Hear Res 2014; 309:44-54. [PMID: 24291808 PMCID: PMC5819880 DOI: 10.1016/j.heares.2013.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
Abstract
Amino acids have important roles in the chemistry of the auditory system, including communication among neurons. There is much evidence for glutamate as a neurotransmitter from auditory nerve fibers to cochlear nucleus neurons. Previous studies in rodents have examined effects of removal of auditory nerve input by cochlear ablation on levels, uptake and release of glutamate in cochlear nucleus subdivisions, as well as on glutamate receptors. Effects have also been reported on uptake and release of γ-aminobutyrate (GABA) and glycine, two other amino acids strongly implicated in cochlear nucleus synaptic transmission. We mapped the effects of cochlear ablation on the levels of amino acids, including glutamate, GABA, glycine, aspartate, glutamine, taurine, serine, threonine, and arginine, in microscopic subregions of the rat cochlear nucleus. Submicrogram-size samples microdissected from freeze-dried brainstem sections were assayed for amino acid levels by high performance liquid chromatography. After cochlear ablation, glutamate and aspartate levels decreased by 2 days in regions receiving relatively dense innervation from the auditory nerve, whereas the levels of most other amino acids increased. The results are consistent with a close association of glutamate and aspartate with auditory nerve fibers and of other amino acids with other neurons and glia in the cochlear nucleus. A consistent decrease of GABA level in the lateral superior olive could be consistent with a role in some lateral olivocochlear neurons. The results are compared with those obtained with the same methods for the rat vestibular nerve root and nuclei after vestibular ganglionectomy.
Collapse
Affiliation(s)
- Donald A Godfrey
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, OH, USA.
| | - Yong-Ming Jin
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, OH, USA
| | - Xiaochen Liu
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, OH, USA
| | - Matthew A Godfrey
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, OH, USA
| |
Collapse
|
6
|
Interaction between taurine and GABA(A)/glycine receptors in neurons of the rat anteroventral cochlear nucleus. Brain Res 2012; 1472:1-10. [PMID: 22796293 DOI: 10.1016/j.brainres.2012.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/30/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
Taurine, one of the most abundant endogenous amino acids in the mammalian central nervous system (CNS), is involved in neural development and many physiological functions. In this study, the interaction between taurine and GABA(A)/glycine receptors was investigated in young rat (P13-P15) anteroventral cochlear nucleus (AVCN) neurons using the whole-cell patch-clamp method. We found that taurine at low (0.1mM) and high (1mM) concentrations activated both GABA(A) and glycine receptors, but not AMPA and NMDA receptors. The reversal potentials of taurine-, GABA- or glycine-evoked currents were close to the expected chloride equilibrium potential, indicating that receptors activated by these agonists were mediating chloride conductance. Moreover, our results showed that the currents activated by co-application of GABA and glycine were cross-inhibitive. Sequential application of GABA and glycine or vice versa also reduced the glycine or GABA evoked currents. There was no cross-inhibition when taurine and GABA or taurine and glycine were applied simultaneously, but the response was larger than that evoked by GABA or glycine alone. These results suggest that taurine can serve as a neuromodulator to strengthen GABAergic and glycinergic neurotransmission in the rat AVCN.
Collapse
|
7
|
|
8
|
O’Neil JN, Connelly CJ, Limb CJ, Ryugo DK. Synaptic morphology and the influence of auditory experience. Hear Res 2011; 279:118-30. [PMID: 21310226 PMCID: PMC3116016 DOI: 10.1016/j.heares.2011.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/26/2011] [Accepted: 01/29/2011] [Indexed: 11/27/2022]
Abstract
The auditory experience is crucial for the normal development and maturation of brain structure and the maintenance of the auditory pathways. The specific aims of this review are (i) to provide a brief background of the synaptic morphology of the endbulb of Held in hearing and deaf animals; (ii) to argue the importance of this large synaptic ending in linking neural activity along ascending pathways to environmental acoustic events; (iii) to describe how the re-introduction of electrical activity changes this synapse; and (iv) to examine how changes at the endbulb synapse initiate trans-synaptic changes in ascending auditory projections to the superior olivary complex, the inferior complex, and the auditory cortex.
Collapse
Affiliation(s)
- Jahn N. O’Neil
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Catherine J. Connelly
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Charles J. Limb
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David K. Ryugo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Program in Neuroscience, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
9
|
Glavaski-Joksimovic A, Thonabulsombat C, Wendt M, Eriksson M, Ma H, Olivius P. Morphological differentiation of tau–green fluorescent protein embryonic stem cells into neurons after co-culture with auditory brain stem slices. Neuroscience 2009; 162:472-81. [DOI: 10.1016/j.neuroscience.2009.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/12/2009] [Accepted: 04/28/2009] [Indexed: 01/29/2023]
|
10
|
Malmierca M, Storm-Mathisen J, Cant N, Irvine D. From cochlea to cortex: A tribute to Kirsten Kjelsberg Osen. Neuroscience 2008. [DOI: 10.1016/j.neuroscience.2008.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Godfrey D, Chen K, Godfrey M, Jin YM, Robinson K, Hair C. Effects of cochlear ablation on amino acid concentrations in the chinchilla posteroventral cochlear nucleus, as compared to rat. Neuroscience 2008; 154:304-14. [DOI: 10.1016/j.neuroscience.2007.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/12/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
|
12
|
Gómez-Nieto R, Horta-Junior JAC, Castellano O, Herrero-Turrión MJ, Rubio ME, López DE. Neurochemistry of the afferents to the rat cochlear root nucleus: possible synaptic modulation of the acoustic startle. Neuroscience 2008; 154:51-64. [PMID: 18384963 DOI: 10.1016/j.neuroscience.2008.01.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha1 subunit (GlyRalpha1), GABAA, GABAB, and subunits of alpha2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyRalpha1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of noradrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR.
Collapse
Affiliation(s)
- R Gómez-Nieto
- Laboratorio de Neurobiología de la Audición, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Alfonso X El Sabio s/n, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Mahendrasingam S, Wallam CA, Polwart A, Hackney CM. An immunogold investigation of the distribution of GABA and glycine in nerve terminals on the somata of spherical bushy cells in the anteroventral cochlear nucleus of guinea pig. Eur J Neurosci 2004; 19:993-1004. [PMID: 15009147 DOI: 10.1111/j.1460-9568.2004.03193.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spherical bushy neurons in the anteroventral cochlear nucleus receive glutamatergic primary terminals from the cochlear nerve and terminals of noncochlear (i.e. nonprimary) origin, many of which colocalize gamma-aminobutyric acid (GABA) and glycine. Here the relationship between GABA and glycine in these terminals has been investigated using postembedding immunogold labelling. A significant negative correlation was found between the density of terminal labelling for GABA and for glycine in four guinea pigs. Terminals could be divided into three categories, GABA-only, glycine-only, or colocalizing depending on whether they had a significantly higher labelling density for either amino acid than the primary terminals. The overall labelling density in all four animals was significantly greater for GABA in GABA-only terminals than colocalizing ones but similar for glycine in both. Within the terminals, the labelling density over synaptic vesicles, nonvesicular regions of cytoplasm and mitochondria was also investigated. No significant difference was detected in the labelling density of vesicles compared with nonvesicular regions for either amino acid. However, a significant difference was found between the overall labelling density over mitochondria and nonvesicular regions for both. There was also significantly more mitochondrial GABA labelling in GABA-only terminals compared to colocalizing terminals but mitochondrial glycine labelling was similar in glycine-only and colocalizing terminals. Thus the level of GABA is higher in single than in colocalizing terminals, particularly in the mitochondria, but similar for glycine in both. It is possible therefore that the presence of glycine affects the level of GABA in the nonprimary terminals but that the presence of GABA does not affect the level of glycine.
Collapse
Affiliation(s)
- S Mahendrasingam
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | |
Collapse
|
14
|
Abstract
The auditory nerve of birds and mammals exhibits differences and similarities, but given the millions of years since the two classes diverged from a common ancestor, the similarities are much more impressive than the differences. The avian nerve is simpler than that of mammals, but share many fundamental features including principles of development, structure, and physiological properties. Moreover, the available evidence shows that the human auditory nerve follows this same general organizational plan. Equally impressive are reports that homologous genes in worms, flies, and mice exert the same heredity influences in man. The clear implication is that animal studies will produce knowledge that has a direct bearing on the human condition.
Collapse
Affiliation(s)
- David K Ryugo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
15
|
Mahendrasingam S, Wallam CA, Hackney CM. Two approaches to double post-embedding immunogold labeling of freeze-substituted tissue embedded in low temperature Lowicryl HM20 resin. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2003; 11:134-41. [PMID: 12738009 DOI: 10.1016/s1385-299x(03)00040-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Double labeling is used for localizing two antigens simultaneously in the same tissue. We have used two approaches to post-embedding immunogold labeling to investigate whether nerve terminals in the guinea-pig anteroventral cochlear nucleus (AVCN) that contain gamma-aminobutyric acid (GABA) or glycine are capable of retrieving the other amino acid as part of an investigation of colocalization of these putative neurotransmitters. For this, vibroslices of perfusion-fixed brain stem were freeze-substituted and embedded in the low temperature resin, Lowicryl HM20. Simultaneous labeling of ultrathin sections was then performed with a mixture of a rabbit primary antibody to GABA and a guinea-pig primary antibody to the glycine transporter, GLYT2, followed by labeling with a mixture of secondary antibodies (goat anti-rabbit IgG-30 nm gold, goat anti-guinea pig IgG-15 nm gold). This approach indicated that GLYT2 occurs in the plasma membrane of some terminals that contain GABA. The other approach involved sequential labeling of ultrathin sections with a rabbit primary antibody to the GABA transporter, GAT1, followed by an anti-rabbit secondary antibody conjugated to 15-nm gold particles. Sections were then treated with paraformaldehyde vapor to denature any free anti-IgG binding sites on the first antibody, and labeled with a primary antibody to glycine also raised in rabbit followed by an anti-rabbit secondary antibody conjugated to 30-nm gold particles. This approach indicated that GAT1 occurs in the plasma membrane of some terminals that contain glycine. Thus, these techniques can be used to localize heat-labile multiple antigens in the same tissue.
Collapse
Affiliation(s)
- S Mahendrasingam
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | | | | |
Collapse
|
16
|
Russell FA, Moore DR. Ultrastructural transynaptic effects of unilateral cochlear ablation in the gerbil medial superior olive. Hear Res 2002; 173:43-61. [PMID: 12372634 DOI: 10.1016/s0378-5955(02)00606-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigated the long-term effects of unilateral hearing loss on the structure of synapses within the gerbil medial superior olivary (MSO) nuclei. Five animals had complete (surgical) left cochlear ablation at postnatal day 18. Previous studies have shown this to produce, within 3 days, significant transneuronal atrophy in the left dendritic field of both MSOs. Electron micrographs from sagittal ultrathin sections through the MSOs of the cochlear-ablated animals were compared to those from unoperated normals. Qualitatively, the ultrastructural features were similar. Most of the axodendritic terminals were R-type (round-type vesicles, putative excitatory) whereas, in the central part of the nucleus, predominated by neuron soma profiles, terminals of P- and F-type (pleomorphic- and flattened-type vesicles, putative inhibitory) were present in equal numbers with R-type terminals. F-type terminals were infrequent and occurred most around lateral parts of the MSO somata. These three types of terminals seen around the somata and proximal dendrites all had extended profiles with multiple, discontinuous appositions. Quantitative analysis revealed that R-type axodendritic terminals became smaller and less densely populated with vesicles where they synapsed onto the remaining dendrites arrayed towards the ablated side of both MSOs, and axosomatic P-type afferent terminals were smaller in the contralateral nuclei. A significant reduction in the number of terminals and synapses occurred in the central, somatic, region of the ipsilateral MSO. However, the terminal vesicle concentration in the remaining terminals increased. The results indicate that cochlear ablation can induce transynaptic reduction in the size of afferent axon terminals within the MSO, and alter their vesicle concentration. These changes are likely to affect the probability of transmitter release and thus influence their signaling power within the nucleus.
Collapse
Affiliation(s)
- F Anne Russell
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| | | |
Collapse
|
17
|
|
18
|
Godfrey DA, Farms WB, Godfrey TG, Mikesell NL, Liu J. Amino acid concentrations in rat cochlear nucleus and superior olive. Hear Res 2000; 150:189-205. [PMID: 11077203 DOI: 10.1016/s0378-5955(00)00199-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Distributions of 10 amino acids were mapped in the cochlear nucleus and superior olive of rats by microdissection of freeze-dried sections combined with high performance liquid chromatography. Glutamate concentrations were relatively high in regions containing granule cell bodies, axons and terminals, whereas aspartate concentrations were higher in the rest of the cochlear nucleus. The distribution of glutamine, a metabolic precursor of glutamate, correlated highly with that of glutamate. In the superior olive, glutamate concentrations were similar among the nuclei, whereas aspartate concentrations were higher in the more dorsal nuclei. Glycine concentrations were relatively high in dorsal portions of the cochlear nucleus and superior olive and were much higher in all regions than those of gamma-aminobutyrate (GABA). Both GABA and taurine showed decreasing gradients from superficial to deep layers of the dorsal cochlear nucleus. Concentrations of serine, threonine, arginine and alanine were generally lower than those of the other six amino acids. The results support other evidence for prominent roles of glutamate and glycine as neurotransmitters in the cochlear nucleus and superior olive. They support a neurotransmitter role also for GABA, especially in the superficial layers of the dorsal cochlear nucleus, but less in the superior olive. The literature related to our results is reviewed.
Collapse
Affiliation(s)
- D A Godfrey
- Department of Otolaryngology - Head and Neck Surgery, Medical College of Ohio, 3065 Arlington Avenue, Toledo, OH 43614-5807, USA.
| | | | | | | | | |
Collapse
|
19
|
Oertel D, Bal R, Gardner SM, Smith PH, Joris PX. Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proc Natl Acad Sci U S A 2000; 97:11773-9. [PMID: 11050208 PMCID: PMC34348 DOI: 10.1073/pnas.97.22.11773] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 M Omega), and short time constants (about 200 microsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
Collapse
Affiliation(s)
- D Oertel
- Department of Physiology, University of Wisconsin Medical School, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
20
|
Redd EE, Pongstaporn T, Ryugo DK. The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hear Res 2000; 147:160-74. [PMID: 10962182 DOI: 10.1016/s0378-5955(00)00129-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is well known that auditory deprivation affects the structure and function of the central nervous system. Congenital deafness represents one form of deprivation, and in the adult white cat, it has been shown to have a clear effect upon the synaptic interface between endbulbs of Held and spherical bushy cells. It is not known, however, whether all primary synapses are affected and/or whether they are affected in the same way and to the same extent. Thus, we studied a second neuronal circuit in the deaf white cat involving modified (small) endbulbs and globular bushy cells. Compared to normal hearing cats, modified endbulbs of congenitally deaf cats were 52.2% smaller but unchanged in structural complexity. There was also a striking loss of extracellular space between ending and cell body. The somata of postsynaptic globular bushy cells were 13.4% smaller and had enlarged postsynaptic densities. These data reveal that axosomatic synapses demonstrate abnormal structure as a consequence of deafness and that the extent of the abnormalities can vary with respect to the circuits involved. The implication of these observations is that synaptic anomalies would introduce differential delays within separate circuits, thereby desynchronizing neural activity from sound stimuli. This loss of synchronization could in turn disrupt temporal processing and compromise a host of related functions, including language comprehension.
Collapse
Affiliation(s)
- E E Redd
- Center for Hearing Sciences, Johns Hopkins University School of Medicine, Traylor Research Building, 5th Floor, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
21
|
Abstract
In vitro brain slices of the cochlear nucleus have been used for electrophysiological and pharmacological studies. More information is needed about the extent to which the slice resembles in vivo tissue, since this affects the interpretation of results obtained from slices. In this study, some chemical parameters of the dorsal cochlear nucleus (DCN) in rat brain slices were measured and compared to the in vivo state. The activities of malate dehydrogenase and lactate dehydrogenase were reduced in some DCN layers of incubated slices compared to in vivo brain tissue. The activities of choline acetyltransferase and acetylcholinesterase were increased or unchanged in DCN layers of slices. Adenosine triphosphate (ATP) concentrations for in vivo rat DCN were similar to those of cerebellar cortex. Compared with in vivo values, ATP concentrations were decreased in the DCN of brain slices, especially in the deep layer. Vibratome-cut slices had lower ATP levels than chopper-cut slices. Compared with the in vivo data, there were large losses of aspartate, glutamate, glutamine, gamma-aminobutyrate and taurine from incubated slices. These amino acid changes within the slices correlated with the patterns of release from the slices.
Collapse
Affiliation(s)
- L Zheng
- Department of Otolaryngology, Head and Neck Surgery, Medical College of Ohio, 3065 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chapter II Aspartate—neurochemical evidence for a transmitter role. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Ramírez-León V, Kullberg S, Hjelle OP, Ottersen OP, Ulfhake B. Increased glutathione levels in neurochemically identified fibre systems in the aged rat lumbar motor nuclei. Eur J Neurosci 1999; 11:2935-48. [PMID: 10457189 DOI: 10.1046/j.1460-9568.1999.00710.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spinal cord motor nuclei have been the focus of a number of investigations exploring neurodegenerative mechanisms, e.g. excitotoxicity mediated by glutamate and oxidative stress. Here, high-resolution quantitative post-embedding immunocytochemistry with antibodies to oxidized and reduced glutathione (GSH), an ubiquitously expressed scavenger of free radicals, was used to examine if GSH synthesis is upregulated pre- and/or postsynaptically in the lumbar motor nuclei of aged (30 month old) rats. The purpose was, moreover, to resolve the extent of correlation between GSH expression, transmitter identity and degenerative changes. Tissue from young adult rats was co-processed for comparison. The quantitative immunogold analysis revealed an increase in GSH-immunoreactivity in both pre- and postsynaptic compartments in the lumbar motor nuclei of aged rats. Presynaptically, the enrichment of GSH-immunoreactivity was seen in axonal boutons of normal appearance, and was furthermore restricted to the extra-mitochondrial compartment. Postsynaptically, the aged rats disclosed, in comparison with young adults, higher values for GSH-immunoreactivity both over mitochondria (+49%) and cytoplasmic matrix (+130%). When analysing the transmitter identity of the bouton profiles, it turned out that close to 50% of all glutamate-immunoreactive boutons in the aged rats contained very high levels (> 40 gold particles/microm2) of GSH-immunoreactivity. Strong GSH-immunoreactivity was also a typical feature of a subset of axon terminal- and axon fibre-like profiles in the aged rat that showed signs of axon dystrophy and degeneration. When comparing with normally appearing axon fibre profiles located in close vicinity, the population of aberrant axons had higher average levels of glutamate-immunoreactivity (+93%), and lower average levels of glycine-immunoreactivity (-88%). No difference was seen regarding the levels of GABA. The results of this study lend support to the idea that aging in the spinal cord motor nuclei is associated with an increased oxidative stress and indicate that different transmitter systems are differentially affected by the degenerative process.
Collapse
Affiliation(s)
- V Ramírez-León
- Department of Neuroscience, Karolinska Institutet, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Ruud HK, Blackstad TW. PALIREL, a computer program for analyzing particle-to-membrane relations, with emphasis on electron micrographs of immunocytochemical preparations and gold labeled molecules. COMPUTERS AND BIOMEDICAL RESEARCH, AN INTERNATIONAL JOURNAL 1999; 32:93-122. [PMID: 10337493 DOI: 10.1006/cbmr.1999.1508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many vital substances, such as receptors, transporters, and ion channels, in cells occur associated with membranes. To an increasing extent their precise localization is demonstrated by immunocytochemical methods including labeling with gold particles followed by electron microscopy. PALIREL has primarily been developed to facilitate such research, enabling rapid analysis of topographic relations of particles (gold or others) to neighboring linear interfaces (membranes). After digitization of membranes and particles, the program particularly allows computation of (1) the particle number and number per unit length of membrane, in individual bins (membrane lengths) interactively defined along the membrane; (2) the distance of each particle from the membrane; (3) the particle number, and the density (number per micron2), in zones defined along (over and under) the membrane; and (4) the particle number and density in "zonebins" resulting from zones and bins being defined simultaneously. If there occurs, somewhere in the membrane, a segment of different nature, such as a synapse, the quantitative data may be had separately for that and the adjoining parts of the membrane. PALIREL allows interactive redefinition of bins, zones, or objects (particle-line files) while other definitions are retained. The results can be presented on the screen as tables and histograms and be printed on request. A dedicated graphic routine permits inspection on screen of lines, particles, zones, and bins. PALIREL is equally applicable to biological investigations of other kinds, in which the topographic relations of points (structures represented as points) to lines (boundaries) are to be examined. PALIREL is available from the authors on a noncommercial basis.
Collapse
Affiliation(s)
- H K Ruud
- Department of Anatomy, University of Oslo, Norway
| | | |
Collapse
|
25
|
Abstract
Neurons in the cochlear ganglion and auditory brain stem nuclei preserve the relative timing of action potentials passed through sequential synaptic levels. To accomplish this task, these neurons have unique morphological and biophysical specializations in axons, dendrites, and nerve terminals. At the membrane level, these adaptations include low-threshold, voltage-gated potassium channels and unusually rapid-acting transmitter-gated channels, which govern how quickly and reliably action potential threshold is reached during a synaptic response. Some nerve terminals are remarkably large and release large amounts of excitatory neurotransmitter. The high output of transmitter at these terminals can lead to synaptic depression, which may itself be regulated by presynaptic transmitter receptors. The way in which these different cellular mechanisms are employed varies in different cell types and circuits and reflects refinements suited to different aspects of acoustic processing.
Collapse
Affiliation(s)
- L O Trussell
- Department of Physiology, University of Wisconsin, Madison 53706, USA.
| |
Collapse
|
26
|
Caicedo A, Eybalin M. Glutamate receptor phenotypes in the auditory brainstem and mid-brain of the developing rat. Eur J Neurosci 1999; 11:51-74. [PMID: 9987011 DOI: 10.1046/j.1460-9568.1999.00410.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamate receptors mediate most excitatory synaptic transmission in the adult vertebrate brain, but their activation in developing neurons also influences developmental processes. However, little is known about the developmental regulation of the subunits composing these receptors. Here we have studied age-dependent changes in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits in the cochlear nucleus complex (CN), the superior olivary complex (SOC), the nuclei of the lateral lemniscus, and the inferior colliculus of the developing rat. In the lateral superior olive, the medial nucleus of the trapezoid body, and the ventral nucleus of the lateral lemniscus, the distribution of AMPA receptor subunits changed drastically with age. While GluR1 and GluR2 subunits were highly expressed in the first 2 postnatal weeks, GluR4 staining was detectable only thereafter. GluR1 and GluR2 immunoreactivities rapidly decreased during the third postnatal week, with the GluR1 subunits disappearing from most neurons. In contrast, the adult pattern of the distribution of AMPA receptor subunits emerged gradually in most of the other auditory nuclei. Thus, progressive as well as regressive events characterized AMPA receptor development in some nuclei, while a monotonically maturation was seen in other regions. In contrast, the staining patterns of NMDA receptor subunits remained stable or only decreased during the same period. Although our data are not consistent with a generalized pattern of AMPA receptor development, the abundance of GluR1 subunits is a distinctive feature of early AMPA receptors. As similar AMPA receptors are present during plasticity periods throughout the brain, neurons undergoing synaptic and structural remodelling might have a particular need for these receptors.
Collapse
Affiliation(s)
- A Caicedo
- INSERM U. 254, Laboratoire de Neurobiologie de l'Audition, Université de Montpellier I, France
| | | |
Collapse
|
27
|
Smeraski CA, Dunwiddie TV, Diao L, Finger TE. Excitatory amino acid neurotransmission in the primary gustatory nucleus of the goldfish Carassius auratus. Ann N Y Acad Sci 1998; 855:442-9. [PMID: 10049227 DOI: 10.1111/j.1749-6632.1998.tb10604.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The vagal lobe in goldfish is a laminated structure in the midmedulla responsible for processing vagal gustatory input from the oropharynx. The anatomical arrangement of the vagal lobe is conducive to an in vitro slice preparation for investigating the physiology and pharmacology of primary gustatory fibers. Postsynaptic population responses (N2 and N3) were evoked from sensory layers of the vagal lobe following stimulation of the incoming vagal fibers. Application of 100 microM kynurenic acid, a broad spectrum glutamate receptor antagonist, abolished or significantly decreased the evoked responses. These results indicate that excitatory amino acids are the neurotransmitter at the first relay in the taste pathway in the central nervous system.
Collapse
Affiliation(s)
- C A Smeraski
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | |
Collapse
|
28
|
Rubio ME, Juiz JM. Chemical anatomy of excitatory endings in the dorsal cochlear nucleus of the rat: differential synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc. J Comp Neurol 1998; 399:341-58. [PMID: 9733082 DOI: 10.1002/(sici)1096-9861(19980928)399:3<341::aid-cne4>3.0.co;2-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to identify cytochemical traits relevant to understanding excitatory neurotransmission in brainstem auditory nuclei, we have analyzed in the dorsal cochlear nucleus the synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc, three molecules probably involved in different steps of excitatory glutamatergic signaling. High levels of glutamate immunolabeling were found in three classes of synaptic endings in the dorsal cochlear nucleus, as determined by quantitation of immunogold labeling. The first type included auditory nerve endings, the second were granule cell endings in the molecular layer, and the third very large endings, better described as "mossy." This finding points to a neurotransmitter role for glutamate in at least three synaptic populations in the dorsal cochlear nucleus. The same three types of endings enriched in glutamate immunoreactivity also contained histochemically detectable levels of aspartate aminotransferase activity, suggesting that this enzyme may be involved in the synaptic handling of glutamate in excitatory endings in the dorsal cochlear nucleus. There was also extrasynaptic localization of the enzyme. Zinc ions were localized exclusively in granule cell endings, as determined by a Danscher-selenite method, suggesting that this ion is involved in the operation of granule cell synapses in the dorsal cochlear nucleus.
Collapse
Affiliation(s)
- M E Rubio
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain.
| | | |
Collapse
|
29
|
Bilak SR, Morest DK. Differential expression of the metabotropic glutamate receptor mGluR1alpha by neurons and axons in the cochlear nucleus: in situ hybridization and immunohistochemistry. Synapse 1998; 28:251-70. [PMID: 9517834 DOI: 10.1002/(sici)1098-2396(199804)28:4<251::aid-syn1>3.0.co;2-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
mGluR1alpha is a metabotropic glutamate receptor involved in synaptic modifiability. A differential expression in specific neuronal types could reflect their different connections and response properties in central auditory processing. Using in situ hybridization and immunohistochemistry, we studied mGluR1alpha receptor expression throughout the cochlear nucleus. Robust labeling occurred in the dorsal cochlear nucleus and small cell shell, with less in the ventral cochlear nucleus. Among the most intensely labeled were the granule cells of the small cell shell. In the dorsal cochlear nucleus, most cell types expressed message and receptor protein, except granule cells. High levels of receptor were expressed by corn cells and cartwheel cells. The terminal dendrites and synaptic spines of cartwheel and fusiform cells contained receptor protein in the molecular layer, where they could synapse with parallel fibers. Fusiform dendrites also expressed mRNA for mGluR1alpha. The basal dendrites of fusiform cells contained receptor protein in the region where they receive cochlear nerve synapses. Immunostaining of terminal axons was prominent in the molecular layer and the small cell shell, where they were associated with synaptic nests, structures thought to provide long-term changes in excitability. Differential expression levels may reflect different functional requirements of specific cell types, including inhibitory interneurons, like corn cells and cartwheel cells, and excitatory interneurons, like granule cells in the small cell shell, which may participate in local circuits involved in modulatory or gating functions, such as stimulus enhancement or suppression. In presynaptic axons, mGluR1alpha may relate to the long-term signaling requirements of their modulatory functions.
Collapse
Affiliation(s)
- S R Bilak
- Department of Anatomy and Center for Neurological Sciences, The University of Connecticut Health Center, Farmington 06030-3405, USA
| | | |
Collapse
|
30
|
Caicedo A, Kungel M, Pujol R, Friauf E. Glutamate-induced Co2+ uptake in rat auditory brainstem neurons reveals developmental changes in Ca2+ permeability of glutamate receptors. Eur J Neurosci 1998; 10:941-54. [PMID: 9753161 DOI: 10.1046/j.1460-9568.1998.00104.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca2+ influx through glutamate receptors (GluRs) is thought to play a crucial part in developmental processes and neuronal plasticity. Here we have examined the spatiotemporal distribution of Ca2+-permeable GluRs in auditory brainstem neurons of the rat from birth to adulthood, using the cobalt-staining technique of Pruss and collaborators. In slices of young adult rats, 1 mM glutamate evoked intense cobalt uptake in subsets of neurons in the ventral cochlear nuclei, the medial nucleus of the trapezoid body, the lateral and the medial superior olive, and the lateral lemniscal nuclei. Neurones in the central nucleus of the inferior colliculus, and thalamic auditory nuclei appear to express few, if any, Ca2+-permeable GluRs. Thus, in adults, Ca2+-permeable GluRs are present in neurons of almost all main relay stations of the auditory brainstem. During development, cobalt-stained cells first appeared at about hearing onset (at postnatal day 12 [P12]). At P16, staining levels were highest and the pattern of distribution was already adult-like. The staining intensity slightly declined during the fourth postnatal week. In contrast, Ca2+-permeable receptors were detected in the external cortex of the inferior colliculus as early as P4. Our results show that auditory neurons, characterized by a high temporal precision in neuronal activity, display Ca2+-permeable GluRs. Because Ca2+ permeability appears at about the onset of hearing and is highest during the following 2 weeks, Ca2+ influx through GluRs is likely to be implicated in remodelling processes occurring during this ontogenetic period.
Collapse
Affiliation(s)
- A Caicedo
- INSERM U. 254, Laboratoire de Neurobiologie de l'Audition, Université de Montpellier I, France.
| | | | | | | |
Collapse
|
31
|
Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. J Neurosci 1998. [PMID: 9437035 DOI: 10.1523/jneurosci.18-03-01148.1998] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anteroventral cochlear nucleus (AVCN) acts as the first relay center in the conduction of auditory information from the ear to the brain, and it probably performs a crucial role in sound localization. Auditory nerve input to the principal neurons of the AVCN, the spherical bushy cells, appears to be mediated by an excitatory amino acid such as glutamate, which acts at a specialized, large synaptic ending called an endbulb of Held. Presumably, endbulb synapses contain some specific combination of glutamate receptors to facilitate rapid neurotransmission of auditory signals. AMPA glutamate receptor composition at the endbulb synapses was examined with both light and electron microscope immunocytochemistry. Electron microscope localization of AMPA receptors was examined with two techniques, preembedding immunoperoxidase and postembedding immunogold, which provide maximum sensitivity and greatest accuracy, respectively. Dense and frequent labeling was seen with the AMPA receptor subunit antibodies GluR2/3 and GluR4, which were colocalized at the endbulb synapses. In contrast, immunolabeling with antibody to GluR2 was low. These data indicate that the major glutamate receptor at this synapse is an AMPA receptor made up mainly of GluR3 and GluR4 subunits. Receptors composed of these subunits display properties, such as calcium permeability and rapid desensitization, that facilitate their specialized functions in auditory information processing.
Collapse
|
32
|
Abstract
The objective of the present study was to determine if a neuron that expresses multiple glutamate receptors targets the same receptors to all glutamatergic postsynaptic populations, or if the receptors are differentially targeted to specific postsynaptic populations. As a model for this study, we chose the fusiform cell of the dorsal cochlear nucleus. This neuron expresses multiple glutamate receptors and receives two distinct glutamatergic inputs: parallel fibers synapse on apical dendrites, and auditory nerve fibers synapse on basal dendrites. Pre- and postembedding immunocytochemistry were combined with retrograde tracing to identify the receptors expressed on postsynaptic membranes of parallel fiber and auditory nerve synapses. Most receptors were found at both populations of synapses, but the AMPA receptor subunit, GluR4, and the metabotropic receptor, mGluR1 alpha, were found only at the auditory nerve synapse. These results demonstrate that glutamate receptors are targeted to specific postsynaptic populations of glutamatergic synapses.
Collapse
Affiliation(s)
- M E Rubio
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
33
|
Caicedo A, d'Aldin C, Eybalin M, Puel JL. Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem. J Comp Neurol 1997; 378:1-15. [PMID: 9120049 DOI: 10.1002/(sici)1096-9861(19970203)378:1<1::aid-cne1>3.0.co;2-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Auditory brainstem neurons probably depend on afferent input to maintain calcium homeostasis within a narrow range. These neurons are endowed with high concentrations of the calcium-binding proteins parvalbumin, calretinin, and calbindin D28k that are presumed to buffer cytosolic calcium transients. To determine the effects of functional deafferentation on these proteins in the auditory brainstem of adult guinea pigs, we have manipulated the sensory input with an intracochlear perfusion of the glutamate agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), which is known to transiently disconnect inner hair cells and primary auditory dendrites. Semiquantitative measures of immunostaining intensities showed rapid and reversible changes in calcium-binding protein levels. By 24 hours after AMPA treatment, calretinin immunostaining was reduced in deafferented neurons of the cochlear nuclei and their axons in the superior olivary nuclei. In contrast, calbindin D28k immunoreactivity levels by this time were higher in deafferented neurons of the medial nucleus of the trapezoid body and their axons in the lateral superior olivary nucleus (LSO). Parvalbumin immunostaining was also generally increased in deafferented neurons, but changes were less evident and more complex. The changes in all three immunoreactivities disappeared with the progressive restoration of afferent input. Normal levels were reestablished by 5 days after AMPA treatment, when afferent activity had almost completely recovered. These results show that calcium-binding protein immunostaining in auditory neurons is functionally responsive to afferent activity. The increased buffering capacity in deafferented neurons as shown by the rises in parvalbumin and calbindin D28k immunostaining may be part of mechanisms promoting neuronal survival after loss of sensory input. This input, on the other hand, may be necessary for maintaining the high calretinin levels normally present in cochlear nucleus neurons.
Collapse
Affiliation(s)
- A Caicedo
- INSERM U. 254, Neurobiologie de l'Audition-Plasticité Synaptique, CHU Hôpital St. Charles, Montpellier, France
| | | | | | | |
Collapse
|
34
|
Mugnaini E, Diño MR, Jaarsma D. The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. PROGRESS IN BRAIN RESEARCH 1997; 114:131-50. [PMID: 9193142 DOI: 10.1016/s0079-6123(08)63362-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The unipolar brush cell (UBC) is a novel type of small neuron that is characterized by sets of morphological and chemical phenotypes. UBCs occur in the granular layer of the mammalian cerebellar cortex, particularly in folia of the vestibulocerebellum, and in the granule cell domains of the dorsal cochlear nucleus. The UBC is characterized by a single dendrite that terminates with a brush-like tip of dendrioles. The soma, the dendritic stem, and especially the dendrioles emit short, non-synaptic appendages. The dendrioles represent the main synaptic apparatus of the UBC and articulate tightly with a single mossy fiber rosette forming a glomerular array characterized by an extraordinarily extensive synaptic contact. Electron microscopic and electrophysiological observations indicate that the unusual synaptic ultrastructure may produce entrapment of neurotransmitter in the synaptic cleft. While ionotropic glutamate receptors are enriched in correspondence of the postsynaptic density, metabotropic glutamate receptors are situated extrasynaptically and are particularly enriched at the appendages, which usually do not bear synaptic junctions. Some of the UBCs receive their input from choline acetyltransferase-positive mossy rosettes originating from the vestibular nuclei, suggesting that ACh and glutamate are co-released at these synapses. The UBC brush occupies a glomerulus where granule cell dendrites are intermixed with the UBC dendrioles, both of which receive synapses from the same mossy fiber rosette and portions of the Golgi axonal plexus. In addition, the dendrioles are presynaptic to granule cell dendrites, forming dendrodendritic contacts that display features of excitatory synapses. Branches of the UBC axon in the granular layer bear large endings resembling mossy fibers. The UBCs may represent an extraordinary device for feedforward, excitatory links along the mossy fiber pathways of cerebellum and dorsal cochlear nucleus.
Collapse
Affiliation(s)
- E Mugnaini
- Northwestern University Institute for Neuroscience, Chicago, IL 60611-S205, USA.
| | | | | |
Collapse
|
35
|
Moore JK, Osen KK, Storm-Mathisen J, Ottersen OP. gamma-Aminobutyric acid and glycine in the baboon cochlear nuclei: an immunocytochemical colocalization study with reference to interspecies differences in inhibitory systems. J Comp Neurol 1996; 369:497-519. [PMID: 8761924 DOI: 10.1002/(sici)1096-9861(19960610)369:4<497::aid-cne2>3.0.co;2-#] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies of the cochlear nuclei in cat, rat, and guinea pig have demonstrated neural structures that are enriched in the inhibitory neurotransmitter amino acids gamma-aminobutyric acid (GABA) and glycine. In these mammals, inhibitory terminals are widely distributed throughout the nuclear complex, but somata of inhibitory neurons are concentrated in the dorsal cochlear nucleus, in granule cell regions, and in the cap area. Because these are the subdivisions that undergo the most pronounced phylogenetic changes in primates, we wanted to see whether the inhibitory systems are influenced by changes in cytoarchitecture. Therefore, we applied light microscopic postembedding immunostaining and optical densitometry to the cochlear nuclei of an anthropoid primate, the Senegalese baboon (Papio anubis). Our results demonstrate that, in baboon 1) glycinergic neurons and axons in the ventral cochlear nucleus seem to form a commissural system similar to that of other mammals; 2) the tuberculoventral system appears to be unchanged in morphology but exhibits a higher level of colocalization of GABA with glycine; 3) there is a reduction of the granule/cartwheel cell system, which is reflected in lesser numbers of inhibitory cartwheel, Golgi, and molecular layer stellate cells; 4) the cap area is larger than in rodents and carnivores and contains many neurons that colocalize GABA and glycine; and 5) throughout the nuclear complex, a higher proportion of the inhibitory terminals colocalize GABA and glycine. We conclude that modulation of the ascending auditory pathway in baboon is likely to differ from that in rodents and cat.
Collapse
Affiliation(s)
- J K Moore
- Department of Neuroanatomy, House Ear Institute, Los Angeles, California 90057, USA
| | | | | | | |
Collapse
|