1
|
Geßner C, Stillger MN, Mölders N, Fabrizius A, Folkow LP, Burmester T. Cell Culture Experiments Reveal that High S100B and Clusterin Levels may Convey Hypoxia-tolerance to the Hooded Seal (Cystophora cristata) Brain. Neuroscience 2020; 451:226-239. [PMID: 33002555 DOI: 10.1016/j.neuroscience.2020.09.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
While the brain of most mammals suffers from irreversible damage after only short periods of low oxygen levels (hypoxia), marine mammals are excellent breath-hold divers that have adapted to hypoxia. In addition to physiological adaptations, such as large oxygen storing capacity and strict oxygen economy during diving, the neurons of the deep-diving hooded seal (Cystophora cristata) have an intrinsic tolerance to hypoxia. We aim to understand the molecular basis of this neuronal hypoxia tolerance. Previously, transcriptomics of the cortex of the hooded seal have revealed remarkably high expression levels of S100B and clusterin (apolipoprotein J) when compared to the ferret, a non-diving carnivore. Both genes have much-debated roles in hypoxia and oxidative stress. Here, we evaluated the effects of S100B and of two isoforms of clusterin (soluble and nucleus clusterin) on the survival, metabolic activity and the amount of reactive oxygen species (ROS) in HN33 neuronal mouse cells exposed to hypoxia and oxidative stress. S100B and soluble clusterin had neuroprotective effects, with reduced ROS-levels and retention of normoxic energy status of cells during both stress conditions. The protective effects of nucleus clusterin were restricted to hypoxia. S100B and clusterin showed purifying selection in marine and terrestrial mammals, indicating a functional conservation across species. Immunofluorescence revealed identical cellular distributions of S100B and clusterin in mice, ferrets and hooded seals, further supporting the functional conservation. Taken together, our data suggest that the neuroprotective effects of all three proteins are exclusively facilitated by their increased expression in the brain of the hooded seal.
Collapse
Affiliation(s)
- Cornelia Geßner
- Institute of Zoology, University of Hamburg, 20146 Hamburg, Germany.
| | | | - Naomi Mölders
- Institute of Zoology, University of Hamburg, 20146 Hamburg, Germany
| | - Andrej Fabrizius
- Institute of Zoology, University of Hamburg, 20146 Hamburg, Germany
| | - Lars P Folkow
- Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway, Breivika, NO-9037 Tromsø, Norway
| | | |
Collapse
|
2
|
Helmbacher F. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis. PLoS Biol 2018; 16:e2004734. [PMID: 29768404 PMCID: PMC5973635 DOI: 10.1371/journal.pbio.2004734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non-cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types.
Collapse
|
3
|
Charnay Y, Imhof A, Vallet PG, Kovari E, Bouras C, Giannakopoulos P. Clusterin in neurological disorders: Molecular perspectives and clinical relevance. Brain Res Bull 2012; 88:434-43. [DOI: 10.1016/j.brainresbull.2012.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
4
|
Abstract
Clusterin, also known as apolipoprotein J, is a ubiquitous multifunctional glycoprotein. Following its identification in 1983, clusterin was found to be clearly increased in Alzheimer's disease (AD). Later research demonstrated that clusterin could bind amyloid-beta (Abeta) peptides and prevent fibril formation, a hallmark of AD pathology. In addition to preventing excessive inflammation, intracellular clusterin was found to reduce apoptosis and oxidative stress. Although early studies were inconclusive, two recent large-scale genome-wide association studies (GWAS) independently identified variants within the clusterin gene as risk factors for developing AD. This review focuses on the characteristics of clusterin and possible mechanisms of its relationship to AD.
Collapse
Affiliation(s)
- Zhong-Chen Wu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
5
|
Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011; 34:453-61. [PMID: 21467629 DOI: 10.1248/bpb.34.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjo, Japan.
| |
Collapse
|
6
|
Uittenbogaard M, Baxter KK, Chiaramello A. NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network. J Neurosci Res 2010; 88:33-54. [PMID: 19610105 DOI: 10.1002/jnr.22182] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During neurogenesis, expression of the basic helix-loop-helix NeuroD6/Nex1/MATH-2 transcription factor parallels neuronal differentiation and is maintained in differentiated neurons in the adult brain. To dissect NeuroD6 differentiation properties further, we previously generated a NeuroD6-overexpressing stable PC12 cell line, PC12-ND6, which displays a neuronal phenotype characterized by spontaneous neuritogenesis, accelerated NGF-induced differentiation, and increased regenerative capacity. Furthermore, we reported that NeuroD6 promotes long-term neuronal survival upon serum deprivation. In this study, we identified the NeuroD6-mediated transcriptional regulatory pathways linking neuronal differentiation to survival, by conducting a genome-wide microarray analysis using PC12-ND6 cells and serum deprivation as a stress paradigm. Through a series of filtering steps and a gene-ontology analysis, we found that NeuroD6 promotes distinct but overlapping gene networks, consistent with the differentiation, regeneration, and survival properties of PC12-ND6 cells. By using a gene-set-enrichment analysis, we provide the first evidence of a compelling link between NeuroD6 and a set of heat shock proteins in the absence of stress, which may be instrumental in conferring stress tolerance on PC12-ND6 cells. Immunocytochemistry results showed that HSP27 and HSP70 interact with cytoskeletal elements, consistent with their roles in neuritogenesis and preserving cellular integrity. HSP70 also colocalizes with mitochondria located in the soma, growing neurites, and growth cones of PC12-ND6 cells prior to and upon stress stimulus, consistent with its neuroprotective functions. Collectively, our findings support the notion that NeuroD6 links neuronal differentiation to survival via the network of molecular chaperones and endows the cells with increased stress tolerance.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
7
|
Wyatt A, Yerbury J, Poon S, Dabbs R, Wilson M. Chapter 6: The chaperone action of Clusterin and its putative role in quality control of extracellular protein folding. Adv Cancer Res 2010; 104:89-114. [PMID: 19878774 DOI: 10.1016/s0065-230x(09)04006-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The function(s) of clusterin may depend upon its topological location. A variety of intracellular "isoforms" of clusterin have been reported but further work is required to better define their identity. The secreted form of clusterin has a potent ability to inhibit both amorphous and amyloid protein aggregation. In the case of amorphous protein aggregation, clusterin forms stable, soluble high-molecular-weight complexes with misfolded client proteins. Clusterin expression is increased during many types of physiological and pathological stresses and is thought to function as an extracellular chaperone (EC). The pathology of a variety of serious human diseases is thought to arise as a consequence of the inappropriate aggregation of specific extracellular proteins (e.g., Abeta peptide in Alzheimer's disease and beta(2)-microglobulin in dialysis-related amyloidosis). We have proposed that together with other abundant ECs (e.g., haptoglobin and alpha(2)-macroglobulin), clusterin forms part of a previously unknown quality-control (QC) system for protein folding that mediates the recognition and disposal of extracellular misfolded proteins via receptor-mediated endocytosis and lysosomal degradation. Characterizing the mechanisms of this extracellular QC system will thus have major implications for our understanding of diseases of this type and may eventually lead to the development of new therapies.
Collapse
Affiliation(s)
- Amy Wyatt
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | |
Collapse
|
8
|
Abstract
Clusterin (apolipoprotein J), a highly conserved amphiphatic glycoprotein and chaperone, has been implicated in a wide range of physiological and pathological processes. As a secreted protein, clusterin has been shown to act extracellularly where it is involved in lipid transportation and clearance of cellular debris. Intracellularly, clusterin may regulate signal transduction and is upregulated after cell stress. After neural injury, clusterin may be involved in nerve cell survival and postinjury neuroplasticity. In this study, we investigated the role of extracellular clusterin on neuronal network complexity in vitro. Quantitative analysis of clustrin-treated neuronal cultures showed significantly higher network complexity. These findings suggest that in addition to previously demonstrated neuroprotective roles, clusterin may also be involved in neuronal process formation, elongation, and plasticity.
Collapse
|
9
|
Hakkoum D, Imhof A, Vallet PG, Boze H, Moulin G, Charnay Y, Stoppini L, Aronow B, Bouras C, Giannakopoulos P. Clusterin increases post-ischemic damages in organotypic hippocampal slice cultures. J Neurochem 2008; 106:1791-803. [PMID: 18554319 DOI: 10.1111/j.1471-4159.2008.05519.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clusterin or apolipoprotein J is a heterodimeric glycoprotein which is known to be increased during tissue involution in response to hormonal changes or injury and under circumstances leading to apoptosis. Previous studies in wild-type (WT) and clusterin-null (Clu-/-) mice indicated a protective role of clusterin over-expression in astrocytes lasting up to 90 days post-ischemia. However, in in vitro and in vivo models of neonatal hypoxia-ischemia, clusterin exacerbates necrotic cell death. We developed recombinant forms of clusterin and examined their effect on propidium iodide uptake, neuronal and synaptic markers as well as electrophysiological recordings in hippocampal slice cultures from Clu-/- and WT mice subjected to oxygen-glucose deprivation (OGD). WT mice displayed a marked up-regulation of clusterin associated with electrophysiological deficits and dramatic increase of propidium iodide uptake 5 days post-OGD. Immunocytochemical and western blot analyses revealed a substantial decrease of neuronal nuclei and synaptophysin immunoreactivity that predominated in WT mice. These findings contrasted with the relative post-OGD resistance of Clu-/- mice. The addition of biologically active recombinant forms of human clusterin for 24 h post-OGD led to the abolishment of the ischemic tolerance in Clu-/- slices. This deleterious effect of clusterin was reverted by the concomitant administration of the NMDA receptor antagonist, d-2-amino-5-phosphonopentanoate. The present data indicate that in an in vitro model of ischemia characterized by the predominance of NMDA-mediated cell death, clusterin exerts a negative effect on the structural integrity and functionality of hippocampal neurons.
Collapse
Affiliation(s)
- David Hakkoum
- Department of Psychiatry, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Charnay Y, Imhof A, Vallet PG, Hakkoum D, Lathuiliere A, Poku N, Aronow B, Kovari E, Bouras C, Giannakopoulos P. Clusterin expression during fetal and postnatal CNS development in mouse. Neuroscience 2008; 155:714-24. [PMID: 18620027 DOI: 10.1016/j.neuroscience.2008.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/21/2008] [Accepted: 06/06/2008] [Indexed: 01/10/2023]
Abstract
Clusterin (or apolipoprotein J) is a widely distributed multifunctional glycoprotein involved in CNS plasticity and post-traumatic remodeling. Using biochemical and morphological approaches, we investigated the clusterin ontogeny in the CNS of wild-type (WT) mice and explored developmental consequences of clusterin gene knock-out in clusterin null (Clu-/-) mice. A punctiform expression of clusterin mRNA was detected through the hypothalamic region, neocortex and hippocampus at embryonic stages E14/E15. From embryonic stage E16 to the first week of the postnatal life, the vast majority of CNS neurons expressed low levels of clusterin mRNA. In contrast, a very strong hybridizing signal mainly localized in pontobulbar and spinal cord motor nuclei was observed from the end of the first postnatal week to adulthood. Astrocytes expressing clusterin mRNA were often detected through the hippocampus and neocortex in neonatal mice. Real-time polymerase chain amplification and clusterin-immunoreactivity dot-blot analyses indicated that clusterin levels paralleled mRNA expression. Comparative analyses between WT and Clu-/- mice during postnatal development showed no significant differences in brain weight, neuronal, synaptic and astrocyte markers as well myelin basic protein expression. However, quantitative estimation of large motor neuron populations in the facial nucleus revealed a significant deficit in motor cells (-16%) in Clu-/- compared with WT mice. Our data suggest that clusterin expression is already present in fetal life mainly in subcortical structures. Although the lack of this protein does not significantly alter basic aspects of the CNS development, it may have a negative impact on neuronal development in certain motor nuclei.
Collapse
Affiliation(s)
- Y Charnay
- Division of Neuropsychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Ch du petit-Bel-Air, CH-1225 Chene-Bourg, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nowicki M, Kosacka J, Brossmer R, Spanel-Borowski K, Borlak J. The myelin-associated glycoprotein inhibitor BENZ induces outgrowth and survival of rat dorsal root ganglion cell cultures. J Neurosci Res 2008; 85:3053-63. [PMID: 17722062 DOI: 10.1002/jnr.21422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The novel myelin-associated glycoprotein (MAG) inhibitor BENZ binds to the N-acetylneuraminic acid (Neu5Ac) portion of the N-terminal Ig-like domain of MAG. Treatment of rat dorsal root ganglion (DRG) cell cultures with BENZ-induced outgrowth of neurofilament 200-positive neurites improved survival of neurons and increased the number of GFAP-positive cells, as determined by fluorescence and confocal laser microscopy and by Western immunoblotting. Furthermore, treatment of DRG cell cultures with BENZ repressed gene and protein expression of the small GTPase RhoA but induced expression of Rho GTP-activating proteins 5 and 24, likely to counteract protein kinase A activity. Specifically, expression of inhibitors of neurite outgrowth, for example, Rock2 and PAK4, was repressed, but cofilin 1, a promoter of axonal growth, was induced. We propose that the MAG inhibitor BENZ abrogates the RhoA-ROCK-cofilin pathway to promote neurite outgrowth. Our findings require confirmation by in vivo animal studies.
Collapse
Affiliation(s)
- Marcin Nowicki
- University of Leipzig, Institute of Anatomy, Leipzig, Germany
| | | | | | | | | |
Collapse
|
12
|
Dati G, Quattrini A, Bernasconi L, Malaguti MC, Antonsson B, Nicoletti F, Alliod C, Di Marco R, Sagot Y, Vitte PA, Hiver A, Greco B, Roach A, Zaratin PF. Beneficial effects of r-h-CLU on disease severity in different animal models of peripheral neuropathies. J Neuroimmunol 2007; 190:8-17. [PMID: 17714795 DOI: 10.1016/j.jneuroim.2007.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 10/22/2022]
Abstract
Clusterin is a protein involved in multiple biological events, including neuronal cytoprotection, membrane recycling and regulation of complement-mediated membrane attack after injury. We investigated the effect of recombinant human clusterin in preclinical models of peripheral neuropathies. Daily treatment with clusterin accelerated the recovery of nerve motor evoked potential parameters after sciatic nerve injury. Prophylactic or therapeutic treatment of experimental autoimmune neuritis rats with clusterin also accelerated the rate of recovery from the disease, associated with remyelination of demyelinated nerve fibers. These data demonstrate that clusterin is capable of ameliorating clinical, neurophysiological and pathological signs in models of peripheral neuropathies.
Collapse
Affiliation(s)
- G Dati
- RBM, Società soggetta all'attività di direzione e coordinamento da parte della Merck Serono S.A., Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brandes IF, Zuperku EJ, Dean C, Hopp FA, Jakovcevic D, Stuth EAE. Retrograde labeling reveals extensive distribution of genioglossal motoneurons possessing 5-HT2A receptors throughout the hypoglossal nucleus of adult dogs. Brain Res 2006; 1132:110-9. [PMID: 17188659 DOI: 10.1016/j.brainres.2006.10.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Inspiratory hypoglossal motoneurons (IHMNs) innervate the muscles of the tongue and play an important role in maintaining upper airway patency. However, this may be reduced during sleep and by sedatives, potent analgesics, and volatile anesthetics. The genioglossal (GG) muscle is the main protruder and depressor muscle of the tongue and contributes to upper airway patency during inspiration. In vitro data suggest that serotonin (5-hydroxytryptamine, 5-HT), via the 5-HT(2A) receptor (5-HT(2A)R) subtype, plays a key role in controlling the excitability of IHMNs. The distribution of GG motoneurons (GGMNs) within the hypoglossal (XII) nucleus has not been studied in the adult dog. Further, it is uncertain whether the 5-HT(2A)R is located on GGMNs in the adult dog. We therefore used the cholera toxin B (CTB) subunit as a retrograde tracer to map the location of GGMNs in combination with immunofluorescent labeling to determine the presence and colocalization of 5-HT(2A)R within the XII nucleus in adult mongrel dogs. Injection of CTB into the GG muscle resulted in retrogradely labeled cells in a compact column throughout the XII nucleus, extending from 0.75 mm caudal to 3.45 mm rostral to the obex. Fluorescence immunohistochemistry revealed extensive 5-HT(2A)R labeling on CTB-labeled GGMNs. Identification of the 5-HT(2A)R on GGMNs in the XII nucleus of the adult dog supports in vitro data and suggests a physiological role for this receptor subtype in controlling the excitability of GGMNs, which contribute to the maintenance of upper airway patency.
Collapse
Affiliation(s)
- Ivo F Brandes
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
14
|
Imhof A, Charnay Y, Vallet PG, Aronow B, Kovari E, French LE, Bouras C, Giannakopoulos P. Sustained astrocytic clusterin expression improves remodeling after brain ischemia. Neurobiol Dis 2006; 22:274-83. [PMID: 16473512 DOI: 10.1016/j.nbd.2005.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 11/15/2005] [Accepted: 11/17/2005] [Indexed: 11/16/2022] Open
Abstract
Clusterin is a glycoprotein highly expressed in response to tissue injury. Using clusterin-deficient (Clu-/-) mice, we investigated the role of clusterin after permanent middle cerebral artery occlusion (MCAO). In wild-type (WT) mice, clusterin mRNA displayed a sustained increase in the peri-infarct area from 14 to 30 days post-MCAO. Clusterin transcript was still present up to 90 days post-ischemia in astrocytes surrounding the core infarct. Western blot analysis also revealed an increase of clusterin in the ischemic hemisphere of WT mice, which culminates up to 30 days post-MCAO. Concomitantly, a worse structural restoration and higher number of GFAP-reactive astrocytes in the vicinity of the infarct scar were observed in Clu-/- as compared to WT mice. These findings go beyond previous data supporting a neuroprotective role of clusterin in early ischemic events in that they demonstrate that this glycoprotein plays a central role in the remodeling of ischemic damage.
Collapse
Affiliation(s)
- Anouk Imhof
- Department of Psychiatry, HUG, Belle-Idée, 2, ch. du Petit-Bel-Air, 1225 Chêne-Bourg Geneva Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Many CNS diseases of primarily noninflammatory origin, such as chronic neurodegenerative diseases, stroke and trauma, display inflammatory features. Conversely, damage to nerve cells and axons has emerged as a clinically important parameter of autoimmune neuroinflammatory conditions such as multiple sclerosis. Experimental data are conflicting as to whether neuroinflammatory reactions should be regarded as detrimental, or as an apt response serving to minimize nervous tissue damage. Despite this, modulation of inflammation is one of the most dynamic areas in the search for new therapeutic targets for a spectrum of CNS diseases. Recent developments in the field have unravelled an intricate regulation of neuroinflammation and disclosed several avenues that, with further exploration, may result in new ways of treating common and disabling CNS diseases.
Collapse
Affiliation(s)
- Fredrik Piehl
- Karolinska Institute, Neuroimmunology Unit, Department of Clinical Neuroscience, CMM L08:04, S171 76 Stockholm, Sweden
| |
Collapse
|
16
|
Ohlsson M, Havton LA. Complement activation after lumbosacral ventral root avulsion injury. Neurosci Lett 2005; 394:179-83. [PMID: 16289555 DOI: 10.1016/j.neulet.2005.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/26/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
A lumbosacral ventral root avulsion (VRA) injury results in a pronounced loss of motoneurons, in part due to apoptosis. Caspase inhibitors may rescue motoneurons after a VRA in neonatal rats, but this treatment approach has been unsuccessful to protect motoneurons subjected to the same injury in adult rats. Other mechanisms may contribute to the retrograde motoneuron death encountered in adult animals. Here, we study whether the complement system, a part of the innate immune system, contributes to motoneuron death after a lumbosacral VRA. Adult Sprague-Dawley rats underwent a unilateral L5-S2 VRA injury. At 10 days postoperatively, quantitative immunohistochemical studies demonstrated that the lytic membrane attack complex (MAC) targeted approximately 38% of axotomized motoneurons. The MAC inhibitor Clusterin was concurrently expressed at significantly higher levels in astrocytes and de novo in 30% of the remaining motoneurons. Our data suggest that complement activation and necrosis contribute to motoneuron death after lumbosacral VRA injuries. We speculate that inhibition of MAC may constitute a potential neuroprotective strategy following cauda equina injuries.
Collapse
Affiliation(s)
- Marcus Ohlsson
- Department of Neurology and Brain Research Institute, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | |
Collapse
|