1
|
Manuweera T, Wagenknecht A, Kleckner AS, Dorsey SG, Zhu S, Tivarus ME, Kesler SR, Ciner A, Kleckner IR. Preliminary evaluation of novel Bodily Attention Task to assess the role of the brain in chemotherapy-induced peripheral neurotoxicity (CIPN). Behav Brain Res 2024; 460:114803. [PMID: 38070689 PMCID: PMC10860373 DOI: 10.1016/j.bbr.2023.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common, sometimes dose-limiting side effect of neurotoxic chemotherapy. Treatment is limited because its pathophysiology is poorly understood. Compared to research on peripheral mechanisms, the role of the brain in CIPN is understudied and it may be important to develop better treatments. We propose a novel task that assesses brain activation associated with attention to bodily sensations (interoception), without the use of painful stimulation, to understand how CIPN symptoms may be processed in the brain. The goals of this preliminary study were to assess, 1) feasibility of the task, 2) sensitivity to changes in brain activity, and 3) suitability for assessing relationships between brain activation and CIPN severity. Eleven participants with varying types of cancer completed a brain fMRI scan and rated CIPN severity (CIPN-20) before and/or 12 weeks after starting neurotoxic chemotherapy. The Bodily Attention Task is a 7.5-min long fMRI task involving attentional focus on the left fingertips, the heart, or a flashing word "target" for visual attention (reference condition). Feasibility was confirmed, as 73% of all data collected were usable and participants reported feeling or focus during 75% of the trials. Regarding brain activity, finger attention increased activation in somatosensory regions (primary sensory cortex, insula) and sensory integration regions (precuneus, dorsolateral prefrontal cortex). Exploratory analyses suggested that brain activation may be associated with CIPN severity. A larger sample size and accounting of confounding factors is needed to test for replication and to identify brain and interoceptive biomarkers to help improve the prediction, prevention, and treatment of CIPN.
Collapse
Affiliation(s)
- Thushini Manuweera
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA.
| | - Amelia Wagenknecht
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Amber S Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Shijun Zhu
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences and Department of Neuroscience University of Rochester Medical Center, Rochester, NY, USA
| | - Shelli R Kesler
- Department of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Aaron Ciner
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ian R Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| |
Collapse
|
2
|
Mandloi S, Syed M, Ailes I, Shoraka O, Leiby B, Miao J, Thalheimer S, Heller J, Mohamed FB, Sharan A, Harrop J, Krisa L, Alizadeh M. Exploring Functional Connectivity in Chronic Spinal Cord Injury Patients With Neuropathic Pain Versus Without Neuropathic Pain. Neurotrauma Rep 2024; 5:16-27. [PMID: 38249324 PMCID: PMC10797176 DOI: 10.1089/neur.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The great majority of spinal cord injury (SCI) patients have debilitating chronic pain. Despite decades of research, these pain pathways of neuropathic pain (NP) are unknown. SCI patients have been shown to have abnormal brain pain pathways. We hypothesize that SCI NP patients' pain matrix is altered compared to SCI patients without NP. This study examines the functional connectivity (FC) in SCI patients with moderate-severe chronic NP compared to SCI patients with mild-no NP. These groups were compared to control subjects. The Neuropathic Pain Questionnaire and neurological evaluation based on the International Standard Neurological Classification of SCI were utilized to define the severity and level of injury. Of the 10 SCI patients, 7 (48.6 ± 17.02 years old, 6 male and 1 female) indicated that they had NP and 3 did not have NP (39.33 ± 8.08 years old, 2 male and 1 female). Ten uninjured neurologically intact participants were used as controls (24.8 ± 4.61 years old, 5 male and 5 female). FC metrics were obtained from the comparisons of resting-state functional magnetic resonance imaging among our various groups (controls, SCI with NP, and SCI without NP). For each comparison, a region-of-interest (ROI)-to-ROI connectivity analysis was pursued, encompassing a total of 175 ROIs based on a customized atlas derived from the AAL3 atlas. The analysis accounted for covariates such as age and sex. To correct for multiple comparisons, a strict Bonferroni correction was applied with a significance level of p < 0.05/NROIs. When comparing SCI patients with moderate-to-severe pain to those with mild-to-no pain, specific thalamic nuclei had altered connections. These nuclei included: medial pulvinar; lateral pulvinar; medial geniculate nucleus; lateral geniculate nucleus; and mediodorsal magnocellular nucleus. There was increased FC between the lateral geniculate nucleus and the anteroventral nucleus in NP post-SCI. Our analysis additionally highlights the relationships between the frontal lobe and temporal lobe with pain. This study successfully identifies thalamic neuroplastic changes that occur in patients with SCI who develop NP. It additionally underscores the pain matrix and involvement of the frontal and temporal lobes as well. Our findings complement that the development of NP post-SCI involves cognitive, emotional, and behavioral influences.
Collapse
Affiliation(s)
- Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Isaiah Ailes
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Omid Shoraka
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Benjamin Leiby
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jingya Miao
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Thalheimer
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joshua Heller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B. Mohamed
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James Harrop
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Liu R, Qiao N, Shi S, Li S, Wang Y, Song J, Jia W. Deficits in ascending pain modulation pathways in breast cancer survivors with chronic neuropathic pain: A resting-state fMRI study. Front Neurol 2022; 13:959122. [PMID: 36570451 PMCID: PMC9772282 DOI: 10.3389/fneur.2022.959122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Breast cancer (BC) is the highest frequent malignancy in women globally. Approximately 25-60% of BC patients with chronic neuropathic pain (CNP) result from advances in treating BC. Since the CNP mechanism is unclear, the various treatment methods for CNP are limited. We aimed to explore the brain alternations in BC patients with CNP and the relationship between depression and CNP utilizing resting-state functional magnetic resonance imaging (rs-fMRI). Methods To collect the data, the female BC survivors with CNP (n = 20) and healthy controls (n = 20) underwent rs-fMRI. We calculated and compared the functional connectivity (FC) between the two groups using the thalamus and periaqueductal gray (PAG) as seed regions. Results Patients with BC showed increased depression and FC between the thalamus and primary somatosensory cortices (SI). Moreover, the Hospital Anxiety and Depression Scale-Depression (HADS-D) and pain duration were linked positively to the strength of FC from the thalamus to the SI. Furthermore, the thalamus-SI FC mediated the impact of pain duration on HADS-D. Conclusion In BC patients with CNP, the ascending pain regulation mechanism is impaired and strongly associated with chronic pain and accompanying depression. This research increased our knowledge of the pathophysiology of CNP in patients with BC, which will aid in determining the optimal therapeutic strategy for those patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China,*Correspondence: Rui Liu
| | - Na Qiao
- Department of Breast Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China,Department of Breast Surgery, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Shuwei Shi
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Suyao Li
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Yingman Wang
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jie Song
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Wenting Jia
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| |
Collapse
|
4
|
Xue M, Shi W, Zhou S, Li Y, Wu F, Chen QY, Liu RH, Zhou Z, Zhang YX, Chen Y, Xu F, Bi G, Li X, Lu J, Zhuo M. Mapping thalamic-anterior cingulate monosynaptic inputs in adult mice. Mol Pain 2022; 18:17448069221087034. [PMID: 35240879 PMCID: PMC9009153 DOI: 10.1177/17448069221087034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The anterior cingulate cortex (ACC) is located in the frontal part of the
cingulate cortex, and plays important roles in pain perception and emotion. The
thalamocortical pathway is the major sensory input to the ACC. Previous studies
have show that several different thalamic nuclei receive projection fibers from
spinothalamic tract, that in turn send efferents to the ACC by using neural
tracers and optical imaging methods. Most of these studies were performed in
monkeys, cats, and rats, few studies were reported systematically in adult mice.
Adult mice, especially genetically modified mice, have provided molecular and
synaptic mechanisms for cortical plasticity and modulation in the ACC. In the
present study, we utilized rabies virus-based retrograde tracing system to map
thalamic-anterior cingulate monosynaptic inputs in adult mice. We also combined
with a new high-throughput VISoR imaging technique to generate a
three-dimensional whole-brain reconstruction, especially the thalamus. We found
that cortical neurons in the ACC received direct projections from different
sub-nuclei in the thalamus, including the anterior, ventral, medial, lateral,
midline, and intralaminar thalamic nuclei. These findings provide key anatomic
evidences for the connection between the thalamus and ACC.
Collapse
Affiliation(s)
- Man Xue
- 12480Xi'an Jiaotong University
| | | | - Sibo Zhou
- 528996Xi'an Jiaotong University Frontier Institute of Science and Technology
| | | | | | | | | | | | | | | | | | | | | | | | - Min Zhuo
- Qingdao International Academician Park
| |
Collapse
|
5
|
Enhanced Temporal Coupling between Thalamus and Dorsolateral Prefrontal Cortex Mediates Chronic Low Back Pain and Depression. Neural Plast 2021; 2021:7498714. [PMID: 34659398 PMCID: PMC8519723 DOI: 10.1155/2021/7498714] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Numerous neuroimaging studies have demonstrated that the brain plasticity is associated with chronic low back pain (cLBP). However, there is a lack of knowledge regarding the underlying mechanisms of thalamic pathways for chronic pain and psychological effects in cLBP caused by lumbar disc herniation (LDH). Combining psychophysics and magnetic resonance imaging (MRI), we investigated the structural and functional brain plasticity in 36 patients with LDH compared with 38 age- and gender-matched healthy controls. We found that (1) LDH patients had increased psychophysical disturbs (i.e., depression and anxiety), and depression (Beck-Depression Inventory, BDI) was found to be an outstanding significant factor to predict chronic pain (short form of the McGill Pain Questionnaire, SF-MPQ); (2) the LDH group showed significantly smaller fractional anisotropy values in the region of posterior corona radiate while gray matter volumes were comparable in both groups; (3) resting state functional connectivity analysis revealed that LDH patients exhibited increased temporal coupling between the thalamus and dorsolateral prefrontal cortex (DLPFC), which further mediate the relationship from chronic pain to depression. Our results emphasized that thalamic pathways underlying prefrontal cortex might play a key role in regulating chronic pain and depression of the pathophysiology of LDH.
Collapse
|
6
|
Elina KC, Oh BH, Islam J, Kim S, Park YS. Activation of CamKIIα expressing neurons on ventrolateral periaqueductal gray improves behavioral hypersensitivity and thalamic discharge in a trigeminal neuralgia rat model. J Headache Pain 2021; 22:47. [PMID: 34044756 PMCID: PMC8161973 DOI: 10.1186/s10194-021-01257-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Preceding studies have reported the association of chronic neuropathic orofacial pain with altered ongoing function in the ventrolateral periaqueductal gray (vlPAG). However, its role in trigeminal neuralgia (TN) lacks attention. We here reported the aspect that vlPAG neurons play in TN nociceptive processing by employing excitatory neuron-specific optogenetic approaches. METHODS TN was generated via unilateral infraorbital nerve chronic constriction in Sprague Dawley rats which induced mechanical and thermal pain sensitivity in air puff and acetone test, respectively. Channelrhodopsin conjugated virus with CamKIIα promoter was used to specifically activate the excitatory vlPAG neuronal population by optogenetic stimulation and in vivo microdialysis was done to determine its effect on the excitatory-inhibitory balance. In vivo extracellular recordings from ventral posteromedial (VPM) thalamus were assessed in response to vlPAG optogenetic stimulation. Depending on the experimental terms, unpaired student's t test and two-way analysis of variance (ANOVA) were used for statistical analysis. RESULTS We observed that optogenetic activation of vlPAG subgroup neurons markedly improved pain hypersensitivity in reflexive behavior tests which was also evident on microdialysis analysis with increase glutamate concentration during stimulation period. Decreased mean firing and burst rates were evident in VPM thalamic electrophysiological recordings during the stimulation period. Overall, our results suggest the optogenetic activation of vlPAG excitatory neurons in a TN rat model has pain ameliorating effect. CONCLUSIONS This article presents the prospect of pain modulation in trigeminal pain pathway via optogenetic activation of vlPAG excitatory neurons in rat model. This outlook could potentially assist vlPAG insight and its optogenetic approach in trigeminal neuropathic pain which aid clinicians endeavoring towards enhanced pain relief therapy in trigeminal neuralgia patients.
Collapse
Affiliation(s)
- K C Elina
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Byeong Ho Oh
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, South Korea
| | - Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Soochong Kim
- Department of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, South Korea.
| |
Collapse
|
7
|
Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia. Neuroimage 2020; 221:117186. [DOI: 10.1016/j.neuroimage.2020.117186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/18/2020] [Accepted: 07/19/2020] [Indexed: 01/19/2023] Open
|
8
|
Gornati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. Differentiating Cerebellar Impact on Thalamic Nuclei. Cell Rep 2019; 23:2690-2704. [PMID: 29847799 PMCID: PMC5990493 DOI: 10.1016/j.celrep.2018.04.098] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
The cerebellum plays a role in coordination of movements and non-motor functions. Cerebellar nuclei (CN) axons connect to various parts of the thalamo-cortical network, but detailed information on the characteristics of cerebello-thalamic connections is lacking. Here, we assessed the cerebellar input to the ventrolateral (VL), ventromedial (VM), and centrolateral (CL) thalamus. Confocal and electron microscopy showed an increased density and size of CN axon terminals in VL compared to VM or CL. Electrophysiological recordings in vitro revealed that optogenetic CN stimulation resulted in enhanced charge transfer and action potential firing in VL neurons compared to VM or CL neurons, despite that the paired-pulse ratio was not significantly different. Together, these findings indicate that the impact of CN input onto neurons of different thalamic nuclei varies substantially, which highlights the possibility that cerebellar output differentially controls various parts of the thalamo-cortical network. Cerebello-thalamic axons form terminals of varying size in distinct thalamic nuclei Cerebello-thalamic responses vary in amplitude in distinct thalamic nuclei Repetitive stimuli depress cerebello-thalamic responses in all thalamic nuclei
Collapse
Affiliation(s)
- Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Carmen B Schäfer
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; Department of Neurosurgery, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Alex L Nigg
- Department of Pathology, Optical Imaging Center, Erasmus MC, 3015 AA Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; NIDOD Institute, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands.
| |
Collapse
|
9
|
Kuramoto E. Method for labeling and reconstruction of single neurons using Sindbis virus vectors. J Chem Neuroanat 2019; 100:101648. [PMID: 31181303 DOI: 10.1016/j.jchemneu.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/11/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Neuronal dendrites and axons are key substrates for the input and output of information, respectively, so establishing the precise and complete morphological description of dendritic and axonal processes of a single neuron is essential for understanding the neuron's functional role in the neuronal circuits. The whole structure of single neurons was originally revealed using Golgi staining, and later the intracellular labeling method was developed, although this is technically too difficult to stain entire neurons in vivo. Since the late 1980s, molecular biology techniques have been applied to neuroscience research, leading to the development of various virus vectors, such as the Sindbis and adeno-associated virus vectors, which have facilitated the reconstruction of neurons at a single cell level. In the present review, we focus on a method for labeling and reconstruction of single neurons using Sindbis virus vectors that express membrane-targeted fluorescent proteins. We describe in detail a protocol for single-neuron labeling using Sindbis virus vectors, and we provide an example of a recent project at our laboratory in which we successfully applied these methods to study thalamocortical projection neurons. Further, we discuss the strengths and limitations of Sindbis virus vectors for single neuron reconstruction, comparing them with adeno-associated virus vectors.
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| |
Collapse
|
10
|
Fillinger C, Yalcin I, Barrot M, Veinante P. Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24a' and 24b' in the mouse. Brain Struct Funct 2016; 222:1509-1532. [PMID: 27539453 DOI: 10.1007/s00429-016-1290-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/12/2016] [Indexed: 11/29/2022]
Abstract
Areas 24a and 24b of the anterior cingulate cortex (ACC) play a major role in cognition, emotion and pain. While their connectivity has been studied in primate and in rat, a complete mapping was still missing in the mouse. Here, we analyzed the afferents to the mouse ACC by injecting retrograde tracers in the ventral and dorsal areas of the ACC (areas 24a/b) and of the midcingulate cortex (MCC; areas 24a'/b'). Our results reveal inputs from five principal groups of structures: (1) cortical areas, mainly the orbital, medial prefrontal, retrosplenial, parietal associative, primary and secondary sensory areas and the hippocampus, (2) basal forebrain, mainly the basolateral amygdaloid nucleus, the claustrum and the horizontal limb of the diagonal band of Broca, (3) the thalamus, mainly the anteromedial, lateral mediodorsal, ventromedial, centrolateral, central medial and reuniens/rhomboid nuclei, (4) the hypothalamus, mainly the lateral and retromammillary areas, and (5) the brainstem, mainly the monoaminergic centers. The neurochemical nature of inputs from the diagonal band of Broca and brainstem centers was also investigated by double-labeling, showing that only a part of these afferents were cholinergic or monoaminergic. Comparisons between the areas indicate that areas 24a and 24b receive qualitatively similar inputs, but with different densities. These differences are more pronounced when comparing the inputs to ACC's areas 24a/24b to the inputs to MCC's areas 24a'/24b'. These results provide a complete analysis of the afferents to the mouse areas 24a/24b and 24a'/24b', which shows important similarity with the connectivity of homologous areas in rats, and brings the anatomical basis necessary to address the roles of cingulate areas in mice.
Collapse
Affiliation(s)
- Clémentine Fillinger
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France. .,Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Porrero C, Rodríguez-Moreno J, Quetglas JI, Smerdou C, Furuta T, Clascá F. A Simple and Efficient In Vivo Non-viral RNA Transfection Method for Labeling the Whole Axonal Tree of Individual Adult Long-Range Projection Neurons. Front Neuroanat 2016; 10:27. [PMID: 27047347 PMCID: PMC4796015 DOI: 10.3389/fnana.2016.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
We report a highly efficient, simple, and non-infective method for labeling individual long-range projection neurons (LRPNs) in a specific location with enough sparseness and intensity to allow complete and unambiguous reconstructions of their entire axonal tree. The method is based on the "in vivo" transfection of a large RNA construct that drives the massive expression of green fluorescent protein. The method combines two components: injection of a small volume of a hyperosmolar NaCl solution containing the Pal-eGFP-Sindbis RNA construct (Furuta et al., 2001), followed by the application of high-frequency electric current pulses through the micropipette tip. We show that, although each component alone increases transfection efficacy, compared to simple volume injections of standard RNA solution, the highest efficacy (85.7%) is achieved by the combination of both components. In contrast with the infective viral Sindbis vector, RNA transfection occurs exclusively at the position of the injection micropipette tip. This method simplifies consistently labeling one or a few isolated neurons per brain, a strategy that allows unambiguously resolving and quantifying the brain-wide and often multi-branched monosynaptic circuits created by LRPNs.
Collapse
Affiliation(s)
- César Porrero
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University Madrid, Spain
| | - Javier Rodríguez-Moreno
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University Madrid, Spain
| | - José I Quetglas
- Laboratorio de Vectores, Centro de Investigación Médica AplicadaPamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Navarra Institute for Health ResearchPamplona, Spain
| | - Cristian Smerdou
- Laboratorio de Vectores, Centro de Investigación Médica AplicadaPamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Navarra Institute for Health ResearchPamplona, Spain
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University Madrid, Spain
| |
Collapse
|
12
|
Garcia-Munoz M, Arbuthnott GW. Basal ganglia-thalamus and the "crowning enigma". Front Neural Circuits 2015; 9:71. [PMID: 26582979 PMCID: PMC4631818 DOI: 10.3389/fncir.2015.00071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/22/2015] [Indexed: 11/13/2022] Open
Abstract
When Hubel (1982) referred to layer 1 of primary visual cortex as "… a 'crowning mystery' to keep area-17 physiologists busy for years to come …" he could have been talking about any cortical area. In the 80's and 90's there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1), the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU) input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory (S1) cortex before focusing on motor cortex.
Collapse
Affiliation(s)
| | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| |
Collapse
|
13
|
A Functional Magnetic Resonance Imaging Study to Investigate the Utility of a Picture Imagination Task in Investigating Neural Responses in Patients with Chronic Musculoskeletal Pain to Daily Physical Activity Photographs. PLoS One 2015; 10:e0141133. [PMID: 26496709 PMCID: PMC4619796 DOI: 10.1371/journal.pone.0141133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
Pain-related anxiety and fear are associated with increased difficulties in attention, increased awareness of pain, impaired disengagement from pain, and can moderate the effects of attentional coping attempts. Accurately assessing the direct impact of pain-related anxiety and fear on pain behavior has proved difficult. Studies have demonstrated no or limited influence of pain-related fear and anxiety on behavior but this may be due to inherent problems with the scales used. Neuroimaging has improved the understanding of neural processes underlying the factors that influence pain perception. This study aimed to establish if a Picture and Imagination Task (PIT), largely developed from the Photographs of Daily Activity (PHODA) assessment tool, could help explore how people living with chronic pain process information about daily activities. Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to compare brain responses in patients with chronic musculoskeletal pain (CMSKP) (n = 15) and healthy controls (n = 15). Subjects were asked to imagine how they would feel mentally and physically if asked to perform daily activities illustrated in PIT. The results found that a number of regions involved in pain processing saw increased BOLD activation in patients compared with controls when undertaking the task and included the insula, anterior cingulate cortex, thalamus and inferior and superior parietal cortices. Similarly, increased BOLD responses in patients compared to controls in the frontal pole, paracingulate and the supplementary motor cortex may be suggestive of a memory component to the responses The amygdala, orbitofrontal cortex, substantia nigra/ventral tegmentum, putamen, thalamus, pallidum, inferior parietal (supramarginal and angular gyrus) and cingulate cortex were also seen to have greater differences in BOLD signal changes in patients compared with controls and many of these regions are also associated with general phobic responses. Therefore, we suggest that PIT is a useful task to explore pain- and movement-related anxiety and fear in fMRI studies. Regions in the Default Mode Network remained active or were less deactivated during the PIT task in patients with CMSKP compared to healthy controls supporting the contention that the DMN is abnormal in patients with CMSKP.
Collapse
|
14
|
Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy. Pflugers Arch 2014; 467:1367-82. [PMID: 24953239 PMCID: PMC4435665 DOI: 10.1007/s00424-014-1549-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.
Collapse
|
15
|
Kuramoto E, Ohno S, Furuta T, Unzai T, Tanaka YR, Hioki H, Kaneko T. Ventral Medial Nucleus Neurons Send Thalamocortical Afferents More Widely and More Preferentially to Layer 1 than Neurons of the Ventral Anterior–Ventral Lateral Nuclear Complex in the Rat. Cereb Cortex 2013; 25:221-35. [DOI: 10.1093/cercor/bht216] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
16
|
Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 2013; 14:502-11. [PMID: 23719569 DOI: 10.1038/nrn3516] [Citation(s) in RCA: 1235] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic pain is one of the most prevalent health problems in our modern world, with millions of people debilitated by conditions such as back pain, headache and arthritis. To address this growing problem, many people are turning to mind-body therapies, including meditation, yoga and cognitive behavioural therapy. This article will review the neural mechanisms underlying the modulation of pain by cognitive and emotional states - important components of mind-body therapies. It will also examine the accumulating evidence that chronic pain itself alters brain circuitry, including that involved in endogenous pain control, suggesting that controlling pain becomes increasingly difficult as pain becomes chronic.
Collapse
Affiliation(s)
- M Catherine Bushnell
- National Center for Complementary and Alternative Medicine, National Institutes of Health, 35 Convent Drive, Room 1C917, MSC 3711, Bethesda, Maryland 20892-3711, USA. . gov
| | | | | |
Collapse
|
17
|
Abstract
Knowledge of thalamocortical (TC) processing comes mainly from studying core thalamic systems that project to middle layers of primary sensory cortices. However, most thalamic relay neurons comprise a matrix of cells that are densest in the "nonspecific" thalamic nuclei and usually target layer 1 (L1) of multiple cortical areas. A longstanding hypothesis is that matrix TC systems are crucial for regulating neocortical excitability during changing behavioral states, yet we know almost nothing about the mechanisms of such regulation. It is also unclear whether synaptic and circuit mechanisms that are well established for core sensory TC systems apply to matrix TC systems. Here we describe studies of thalamic matrix influences on mouse prefrontal cortex using optogenetic and in vitro electrophysiology techniques. Channelrhodopsin-2 was expressed in midline and paralaminar (matrix) thalamic neurons, and their L1-projecting TC axons were activated optically. Contrary to conventional views, we found that matrix TC projections to L1 could transmit relatively strong, fast, high-fidelity synaptic signals. L1 TC projections preferentially drove inhibitory interneurons of L1, especially those of the late-spiking subtype, and often triggered feedforward inhibition in both L1 interneurons and pyramidal cells of L2/L3. Responses during repetitive stimulation were far more sustained for matrix than for core sensory TC pathways. Thus, matrix TC circuits appear to be specialized for robust transmission over relatively extended periods, consistent with the sort of persistent activation observed during working memory and potentially applicable to state-dependent regulation of excitability.
Collapse
|
18
|
Kerr CE, Sacchet MD, Lazar SW, Moore CI, Jones SR. Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation. Front Hum Neurosci 2013; 7:12. [PMID: 23408771 PMCID: PMC3570934 DOI: 10.3389/fnhum.2013.00012] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022] Open
Abstract
Using a common set of mindfulness exercises, mindfulness based stress reduction (MBSR) and mindfulness based cognitive therapy (MBCT) have been shown to reduce distress in chronic pain and decrease risk of depression relapse. These standardized mindfulness (ST-Mindfulness) practices predominantly require attending to breath and body sensations. Here, we offer a novel view of ST-Mindfulness's somatic focus as a form of training for optimizing attentional modulation of 7-14 Hz alpha rhythms that play a key role in filtering inputs to primary sensory neocortex and organizing the flow of sensory information in the brain. In support of the framework, we describe our previous finding that ST-Mindfulness enhanced attentional regulation of alpha in primary somatosensory cortex (SI). The framework allows us to make several predictions. In chronic pain, we predict somatic attention in ST-Mindfulness "de-biases" alpha in SI, freeing up pain-focused attentional resources. In depression relapse, we predict ST-Mindfulness's somatic attention competes with internally focused rumination, as internally focused cognitive processes (including working memory) rely on alpha filtering of sensory input. Our computational model predicts ST-Mindfulness enhances top-down modulation of alpha by facilitating precise alterations in timing and efficacy of SI thalamocortical inputs. We conclude by considering how the framework aligns with Buddhist teachings that mindfulness starts with "mindfulness of the body." Translating this theory into neurophysiology, we hypothesize that with its somatic focus, mindfulness' top-down alpha rhythm modulation in SI enhances gain control which, in turn, sensitizes practitioners to better detect and regulate when the mind wanders from its somatic focus. This enhanced regulation of somatic mind-wandering may be an important early stage of mindfulness training that leads to enhanced cognitive regulation and metacognition.
Collapse
Affiliation(s)
| | - Matthew D. Sacchet
- Neurosciences Program, Stanford University School of MedicineStanford, CA, USA
- Department of Psychology, Stanford UniversityStanford, CA, USA
| | - Sara W. Lazar
- Athinoula A. Martinos Center For Biomedical Imaging, Mass General HospitalCharlestown, MA, USA
| | | | - Stephanie R. Jones
- Athinoula A. Martinos Center For Biomedical Imaging, Mass General HospitalCharlestown, MA, USA
- Department of Neuroscience, Brown UniversityProvidence, RI, USA
| |
Collapse
|
19
|
Clascá F, Rubio-Garrido P, Jabaudon D. Unveiling the diversity of thalamocortical neuron subtypes. Eur J Neurosci 2012; 35:1524-32. [DOI: 10.1111/j.1460-9568.2012.08033.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R. Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci 2011; 31:14204-17. [PMID: 21976505 PMCID: PMC3501387 DOI: 10.1523/jneurosci.3285-11.2011] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 12/14/2022] Open
Abstract
This study identifies massive axonal arbors of trigeminovascular (dura-sensitive) thalamic neurons in multiple cortical areas and proposes a novel framework for conceptualizing migraine headache and its associated symptoms. Individual dura-sensitive neurons identified and characterized electrophysiologically in first-order and higher-order relay thalamic nuclei were juxtacellularly filled with an anterograde tracer that labeled their cell bodies and processes. First-order neurons located in the ventral posteromedial nucleus projected mainly to trigeminal areas of primary (S1) as well as secondary (S2) somatosensory and insular cortices. Higher-order neurons located in the posterior (Po), lateral posterior (LP), and lateral dorsal (LD) nuclei projected to trigeminal and extra-trigeminal areas of S1 and S2, as well as parietal association, retrosplenial, auditory, ectorhinal, motor, and visual cortices. Axonal arbors spread at various densities across most layers of the different cortical areas. Such parallel network of thalamocortical projections may play different roles in the transmission of nociceptive signals from the meninges to the cortex. The findings that individual dura-sensitive Po, LP, and LD neurons project to many functionally distinct and anatomically remote cortical areas extend current thinking on projection patterns of high-order thalamic neurons and position them to relay nociceptive information directly rather than indirectly from one cortical area to another. Such extensive input to diverse cortical areas that are involved in regulation of affect, motor function, visual and auditory perception, spatial orientation, memory retrieval, and olfaction may explain some of the common disturbances in neurological functions during migraine.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Moshe Jakubowski
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Vanessa Kainz
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, and
| | - David Borsook
- Pain and Analgesia Imaging and Neuroscience Group, Brain Imaging Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478
| | - Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, and
| |
Collapse
|
21
|
Apkarian VA, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 2010; 152:S49-S64. [PMID: 21146929 DOI: 10.1016/j.pain.2010.11.010] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 12/23/2022]
Affiliation(s)
- Vania A Apkarian
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA Departments of Anesthesia and Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
22
|
Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. ACTA ACUST UNITED AC 2009; 19:2380-95. [PMID: 19188274 DOI: 10.1093/cercor/bhn259] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Input to apical dendritic tufts is now deemed crucial for associative learning, attention, and similar "feedback" interactions in the cerebral cortex. Excitatory input to apical tufts in neocortical layer 1 has been traditionally assumed to be predominantly cortical, as thalamic pathways directed to this layer were regarded relatively scant and diffuse. However, the sensitive tracing methods used in the present study show that, throughout the rat neocortex, large numbers (mean approximately 4500/mm(2)) of thalamocortical neurons converge in layer 1 and that this convergence gives rise to a very high local density of thalamic terminals. Moreover, we show that the layer 1-projecting neurons are present in large numbers in most, but not all, motor, association, limbic, and sensory nuclei of the rodent thalamus. Some layer 1-projecting axons branch to innervate large swaths of the cerebral hemisphere, whereas others arborize within only a single cortical area. Present data imply that realistic modeling of cortical circuitry should factor in a dense axonal canopy carrying highly convergent thalamocortical input to pyramidal cell apical tufts. In addition, they are consistent with the notion that layer 1-projecting axons may be a robust anatomical substrate for extensive "feedback" interactions between cortical areas via the thalamus.
Collapse
Affiliation(s)
- Pablo Rubio-Garrido
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Abstract
In this review, we integrate recent human and animal studies from the viewpoint of chronic pain. First, we briefly review the impact of chronic pain on society and address current pitfalls of its definition and clinical management. Second, we examine pain mechanisms via nociceptive information transmission cephalad and its impact and interaction with the cortex. Third, we present recent discoveries on the active role of the cortex in chronic pain, with findings indicating that the human cortex continuously reorganizes as it lives in chronic pain. We also introduce data emphasizing that distinct chronic pain conditions impact on the cortex in unique patterns. Fourth, animal studies regarding nociceptive transmission, recent evidence for supraspinal reorganization during pain, the necessity of descending modulation for maintenance of neuropathic behavior, and the impact of cortical manipulations on neuropathic pain is also reviewed. We further expound on the notion that chronic pain can be reformulated within the context of learning and memory, and demonstrate the relevance of the idea in the design of novel pharmacotherapies. Lastly, we integrate the human and animal data into a unified working model outlining the mechanism by which acute pain transitions into a chronic state. It incorporates knowledge of underlying brain structures and their reorganization, and also includes specific variations as a function of pain persistence and injury type, thereby providing mechanistic descriptions of several unique chronic pain conditions within a single model.
Collapse
Affiliation(s)
- A Vania Apkarian
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
24
|
|
25
|
Effects of catastrophizing on pain perception and pain modulation. Exp Brain Res 2007; 186:79-85. [DOI: 10.1007/s00221-007-1206-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
26
|
Rubio-Garrido P, Pérez-de-Manzo F, Clascá F. Calcium-binding proteins as markers of layer-I projecting vs. deep layer-projecting thalamocortical neurons: A double-labeling analysis in the rat. Neuroscience 2007; 149:242-50. [PMID: 17850982 DOI: 10.1016/j.neuroscience.2007.07.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/20/2007] [Accepted: 07/27/2007] [Indexed: 11/27/2022]
Abstract
The thalamus contains two main populations of projection neurons that selectively innervate different elements of the cortical microcircuit: the well-known "specific" or "core" (C-type) cells that innervate cortical layer IV, and, the "matrix" (M-type) cells that innervate layer I. Observations in different mammal species suggest that this may be a conserved, basic organizational principle of thalamocortical networks. Fragmentary observations in primate sensory nuclei suggest that M-type and C-type cells might be distinguished by their selective expression of calcium binding-proteins. In adult rats, we tested this proposal in a systematic manner throughout the thalamus. Applying Fast-Blue (FB) to a large swath of the pial surface in the lateral aspect of the cerebral hemisphere we labeled a large part of the M-type cell populations in the thalamus and subsequently examined FB co-localization with calbindin or parvalbumin immunoreactivity in thalamic neuron somata. FB-labeled cells were present in large numbers in the ventromedial, interanteromedial, posterior, lateral posterior and medial geniculate nuclei. Distribution of the FB-labeled neuron somata was roughly coextensive with that of the calbindin immunolabeled somata, while parvalbumin immunoreactive somata were virtually absent from dorsal thalamus. Co-localization of FB and calbindin immunolabeling ranged from >95% in the ventromedial and interanteromedial nuclei, to 30% in the dorsal lateral geniculate. Moreover, in the ventromedial and interanteromedial nuclei nearly all of the calbindin-immunoreactive neurons were also labeled with FB. In most other nuclei, however, a major population of M-type cells cannot be identified with calbindin immunolabeling. Consistent with studies in primates and carnivores, present data show that in rats M-type cells are numerous and widely distributed across the rat thalamus; however, calbindin is expressed only by a fraction, albeit a large one, of these cells.
Collapse
Affiliation(s)
- P Rubio-Garrido
- Department of Anatomy and Neuroscience, Autonoma University School of Medicine, Avenida Arzobispo Morcillo s/n, Madrid, E-28029, Spain
| | | | | |
Collapse
|
27
|
Galazo MJ, Martinez-Cerdeño V, Porrero C, Clascá F. Embryonic and Postnatal Development of the Layer I–Directed (“Matrix”) Thalamocortical System in the Rat. Cereb Cortex 2007; 18:344-63. [PMID: 17517678 DOI: 10.1093/cercor/bhm059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in "top-down" interactions in the cerebral cortex. A large population of thalamocortical cells, the "matrix" (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the thalamocortical input to layer VI. The developmental timecourse of M-type axons is examined here in rats aged E (embryonic day) 16 to P (postnatal day) 30. Anterograde techniques were used to label axons arising from 2 thalamic nuclei mainly made up of M-type cells, the Posterior and the Ventromedial. The primary growth cones of M-type axons rapidly reached the subplate of dorsally situated cortical areas. After this, interstitial branches would sprout from these axons under more lateral cortical regions to invade the overlying cortical plate forming secondary arbors. Moreover, retrograde labeling of M-type cell somata in the thalamus after tracer deposits confined to layer I revealed that large numbers of axons from multiple thalamic nuclei had already converged in a given spot of layer I by P3. Because of early ingrowth in such large numbers, interactions of M-type axons may significantly influence the early development of cortical circuits.
Collapse
Affiliation(s)
- Maria J Galazo
- Department of Anatomy & Neuroscience, School of Medicine, Autónoma University, E-28871 Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Monconduit L, Lopez-Avila A, Molat JL, Chalus M, Villanueva L. Corticofugal output from the primary somatosensory cortex selectively modulates innocuous and noxious inputs in the rat spinothalamic system. J Neurosci 2006; 26:8441-50. [PMID: 16914669 PMCID: PMC6674349 DOI: 10.1523/jneurosci.1293-06.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 06/21/2006] [Accepted: 07/01/2006] [Indexed: 11/21/2022] Open
Abstract
Sensory maps for pain can be modified by deafferentation or injury, and such plasticity has been attributed mainly to changes in the convergence of projections in "bottom-up" mechanisms. We addressed the possible contribution of "top-down" mechanisms by investigating the functional significance of corticofugal influences from the primary somatosensory cortex (S1) to the ventroposterolateral thalamic nucleus (VPL). The strong convergence of spinal and lemniscal afferents to the VPL and the close correspondence between afferents and efferents within the VPL-S1 network suggest the existence of functionally related thalamocortical circuits that are implicated in the detection of innocuous and noxious inputs. Functional characterization of single nociceptive, wide dynamic range, and non-nociceptive VPL neurons and labeling the axons and terminal fields with the juxtacellular technique showed that all three types of cells project to a restricted area, within S1. The convergence of the terminal trees of axons from VPL neurons activated by innocuous, noxious, or both inputs suggests that their inputs are not segregated into anatomically distinct regions. Microinjections within S1 were performed for pharmacological manipulation of corticofugal modulation. Glutamatergic activation of corticofugal output enhanced noxious-evoked responses and affected in a biphasic way tactile-evoked responses of VPL cells. GABA(A)-mediated depression of corticofugal output concomitantly depressed noxious and enhanced innocuous-evoked responses of VPL neurons. Microinjections of a GABA(A) antagonist on corticofugal cells enhanced noxious-evoked responses of VPL cells. Our findings demonstrate that corticofugal influences from S1 contribute to selectively modulate somatosensory submodalities at the thalamic level.
Collapse
|