1
|
Koshimizu H, Hirata N, Takao K, Toyama K, Ichinose T, Furuya S, Miyakawa T. Comprehensive behavioral analysis and quantification of brain free amino acids of C57BL/6J congenic mice carrying the 1473G allele in tryptophan hydroxylase-2. Neuropsychopharmacol Rep 2018; 39:56-60. [PMID: 30472790 PMCID: PMC7292325 DOI: 10.1002/npr2.12041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Aim Tryptophan hydroxylase 2 (Tph2) is a rate‐limiting enzyme for the biosynthesis of 5‐hydroxytryptamine (5‐HT, serotonin). Previous studies have reported that C1473G polymorphism of the murine Tph2 gene leads to decreased 5‐HT levels in the brain and abnormal behavioral phenotypes, such as impaired anxiety‐ and depression‐like behaviors. In this study, to confirm the effect of the C1473G polymorphism on mouse phenotypes, we conducted a comprehensive battery of behavioral tests and measured the amounts of brain free amino acids involved in the production of 5‐HT. Methods We obtained C57BL/6J congenic mice that were homozygous for the 1473G allele of Tph2 (1473G) and subjected them and their wild‐type littermates (1473C) to a battery of behavioral tests. Using reverse‐phase high‐performance liquid chromatography (HPLC), we measured the amounts of free amino acids in the 5‐HT and epinephrine synthetic/metabolic pathways in the frontal cortex, hippocampus, striatum, and midbrain. Results We failed to detect significant differences between genotypes in depression‐like behaviors, anxiety‐like behaviors, social behaviors, sensorimotor gaiting, or learning and memory, while 1473G mice exhibited a nominally significant impairment in gait analysis, which failed to reach study‐wide significance. In the HPLC analysis, there were no significant differences in the amounts of 5‐HT, dopamine, norepinephrine, and epinephrine in the frontal cortex, hippocampus, striatum, and midbrain. Conclusion Our findings do not support the idea that congenic C57BL/6J mice carrying the 1473G allele may represent an animal model of mood disorder under normal conditions without stress. We assessed the behavioral and biochemical phenotypes of congenic C57BL/6J mice carrying the 1473G allele and failed to identify significant differences between the 1473G allele‐carrying mice and their wild‐type littermates. Thus, our findings do not support the use of 1473G allele‐carrying C57BL/6J mice as an animal model of mood disorder under normal conditions without stress.
![]()
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Nao Hirata
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Keizo Takao
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Keiko Toyama
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takashi Ichinose
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
2
|
Mori M, Tsutsui-Kimura I, Mimura M, Tanaka KF. 5-HT 3 antagonists decrease discounting rate without affecting sensitivity to reward magnitude in the delay discounting task in mice. Psychopharmacology (Berl) 2018; 235:2619-2629. [PMID: 29955899 DOI: 10.1007/s00213-018-4954-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/19/2018] [Indexed: 01/15/2023]
Abstract
RATIONALE Impulsive choice has often been evaluated in rodents according to the proportion of choices for the delayed large magnitude reinforcer (%large choice) in a delay-discounting task (DDT). However, because %large choice is influenced by both sensitivity to reinforcer magnitude and sensitivity to delayed reinforcement (i.e., discounting rate), distinctively evaluating such discounting parameters represents a critical issue demanding methods to determine each parameter in rats. The serotonin (5-HT) system is well known to be involved in impulsive choice; nevertheless, only a few studies have distinguished discounting parameters and investigated how 5-HT modulators affect discounting rate. OBJECTIVE Here, we performed a discounting parameter analysis in mice and examined the effects of various 5-HT modulators on discounting rate. METHODS We set up DDTs with different delay schedules to determine which schedule could address delay-discounting rates in mice. We examined the effect of the following drugs on impulsive choice: a 5-HT reuptake inhibitor (paroxetine), a 5-HT1A receptor agonist (8-OH-DPAT), and two 5-HT3 receptor antagonists (granisetron and ondansetron). RESULTS Mice showed typical delay discounting at the shorter delay schedules (up to 4 s delay). The %large choice under shorter, but not longer, schedules followed an exponential function and allowed us to derive discounting rates. We selected a DDT with a 4-s delay schedule for further experiments. Granisetron and ondansetron, but not paroxetine or 8-OH-DPAT, decreased discounting rates without affecting sensitivity to reinforcer magnitude. CONCLUSION We found that a method to calculate discounting rates in rats is also applicable to mouse models. We also provided evidence that 5-HT3 antagonism controls impulsive choice in mice.
Collapse
Affiliation(s)
- Marina Mori
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Iku Tsutsui-Kimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-8582, Japan. .,Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA. .,JSPS Overseas Research Fellow, Tokyo, 102-0083, Japan.
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
3
|
Line SJ, Barkus C, Rawlings N, Jennings K, McHugh S, Sharp T, Bannerman DM. Reduced sensitivity to both positive and negative reinforcement in mice over-expressing the 5-hydroxytryptamine transporter. Eur J Neurosci 2014; 40:3735-45. [PMID: 25283165 PMCID: PMC4737229 DOI: 10.1111/ejn.12744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
The 5‐hydroxytryptamine (5‐HT) transporter (5‐HTT) is believed to play a key role in both normal and pathological psychological states. Much previous data suggest that the s allele of the polymorphic regulatory region of the 5‐HTT gene promoter is associated with reduced 5‐HTT expression and vulnerability to psychiatric disorders, including anxiety and depression. In comparison, the l allele, which increases 5‐HTT expression, is generally considered protective. However, recent data link this allele to both abnormal 5‐HT signalling and psychopathic traits. Here, we studied the processing of aversive and rewarding cues in transgenic mice that over‐express the 5‐HTT (5‐HTTOE mice). Compared with wild‐type mice, 5‐HTTOE mice froze less in response to both a tone that had previously been paired with footshock, and the conditioning context. In addition, on a decision‐making T‐maze task, 5‐HTTOE mice displayed reduced preference for a larger, delayed reward and increased preference for a smaller, immediate reward, suggesting increased impulsiveness compared with wild‐type mice. However, further inspection of the data revealed that 5‐HTTOE mice displayed a relative insensitivity to reward magnitude, irrespective of delay. In contrast, 5‐HTTOE mice appeared normal on tests of spatial working and reference memory, which required an absolute choice between options associated with either reward or no reward. Overall, the present findings suggest that 5‐HTT over‐expression results in a reduced sensitivity to both positive and negative reinforcers. Thus, these data show that increased 5‐HTT expression has some maladaptive effects, supporting recent suggestions that l allele homozygosity may be a potential risk factor for disabling psychiatric traits.
Collapse
Affiliation(s)
- Samantha J Line
- Department of Experimental Psychology, The University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Impulsive behavior is a key constituent of many psychiatric illnesses, with maladaptive response control being a feature of disorders such as ADHD, schizophrenia, mania, and addiction. In order to understand the neurological underpinnings of impulsivity, a number of behavioral tasks have been developed for use with animal models. Data from studies with rats and other animals have led to the idea of the existence of dissociable components of impulsivity, which in turn informs studies of human disorders and potentially the development of specific therapies. Increasingly, mouse models are being used to investigate the known genetic contribution to psychiatric disorders in which abnormal response control leads to altered impulsive behaviors. In order to maximize the potential of these mouse models, it is important that researchers take into account the non-unitary nature of response control and impulsivity. In this article, we briefly review the tasks available to behavioral neuroscientists and how these can be used in order to tease apart the contribution of a specific genetic lesion into the discrete aspects of impulsive behavior.
Collapse
Affiliation(s)
- Claire L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
5
|
Berger SM, Weber T, Perreau-Lenz S, Vogt MA, Gartside SE, Maser-Gluth C, Lanfumey L, Gass P, Spanagel R, Bartsch D. A functional Tph2 C1473G polymorphism causes an anxiety phenotype via compensatory changes in the serotonergic system. Neuropsychopharmacology 2012; 37:1986-98. [PMID: 22491354 PMCID: PMC3398728 DOI: 10.1038/npp.2012.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The association of single-nucleotide polymorphisms (SNPs) in the human tryptophan hydroxylase 2 (TPH2) gene with anxiety traits and depression has been inconclusive. Observed inconsistencies might result from the fact that TPH2 polymorphisms have been studied in a genetically heterogeneous human population. A defined genetic background, control over environmental factors, and the ability to analyze the molecular and neurochemical consequences of introduced genetic alterations constitute major advantages of investigating SNPs in inbred laboratory mouse strains. To investigate the behavioral and neurochemical consequences of a functional C1473G SNP in the mouse Tph2 gene, we generated congenic C57BL/6N mice homozygous for the Tph2 1473G allele. The Arg(447) substitution in the TPH2 enzyme resulted in a significant reduction of the brain serotonin (5-HT) in vivo synthesis rate. Despite decreased 5-HT synthesis, we could detect neither a reduction of brain region-specific 5-HT concentrations nor changes in baseline and stress-induced 5-HT release using a microdialysis approach. However, using a [(35)S]GTP-γ-S binding assay and 5-HT(1A) receptor autoradiography, a functional desensitization of 5-HT(1A) autoreceptors could be identified. Furthermore, behavioral analysis revealed a distinct anxiety phenotype in homozygous Tph2 1473G mice, which could be reversed with chronic escitalopram treatment. Alterations in depressive-like behavior could not be detected under baseline conditions or after chronic mild stress. These findings provide evidence for an involvement of functional Tph2 polymorphisms in anxiety-related behaviors, which are likely not caused directly by alterations in 5-HT content or release but are rather due to compensatory changes during development involving functional desensitization of 5-HT(1A) autoreceptors.
Collapse
Affiliation(s)
- Stefan M Berger
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Tillmann Weber
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Stephanie Perreau-Lenz
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Miriam A Vogt
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah E Gartside
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christiane Maser-Gluth
- Steroid Laboratory, Department of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Laurence Lanfumey
- INSERM UMRS894, CPN, Université Pierre and Marie Curie, Paris, France
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J-5, 68159 Mannheim, Germany, Tel: +49 621 1703 6202, Fax: +49 621 1703 6205, E-mail:
| |
Collapse
|
6
|
Siesser WB, Zhang X, Jacobsen JPR, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase 2 genotype determines brain serotonin synthesis but not tissue content in C57Bl/6 and BALB/c congenic mice. Neurosci Lett 2010; 481:6-11. [PMID: 20600620 DOI: 10.1016/j.neulet.2010.06.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/09/2010] [Accepted: 06/11/2010] [Indexed: 11/29/2022]
Abstract
Tryptophan hydroxylase 2 (TPH2) catalyzes the rate-limiting step in the synthesis of brain serotonin (5-HT). In a previous report, a single nucleotide polymorphism in mTph2 (C1473G) reduced 5-HT synthesis by 55%. Mouse strains expressing the 1473C allele, such as C57Bl/6, have higher 5-HT synthesis rates than strains expressing the 1473G allele, such as BALB/c. Many studies have attributed strain differences to Tph2 genotype without ruling out the potential role of alterations in other genes. To test the role of the C1473G polymorphism in strain differences, we generated C57Bl/6 and BALB/c mice congenic for the Tph2 locus. We found that the 1473G allele reduced 5-HT synthesis in C57Bl/6 mice but had no effect on 5-HT tissue content except for a slight reduction (15%) in the frontal cortex. In BALB/c mice, the 1473C allele increased 5-HT synthesis but again did not affect 5-HT tissue content. At the same time, 5-hydroxyindoleacetic acid (5-HIAA) was significantly elevated in BALB/c congenic mice. In C57Bl/6 mice, there was no effect of genotype on 5-HIAA levels. BALB/c mice had lower expression of monoamine oxidase A and B than C57Bl/6 mice, but there was no effect of Tph2 genotype. On the tail suspension test, escitalopram treatment reduced immobility regardless of genotype. These data demonstrate that the C1473G polymorphism determines differences in 5-HT synthesis rates among strains but only minimally affects 5-HT tissue levels.
Collapse
|
7
|
Osipova DV, Kulikov AV, Mekada K, Yoshiki A, Moshkin MP, Kotenkova EV, Popova NK. Distribution of the C1473G polymorphism in tryptophan hydroxylase 2 gene in laboratory and wild mice. GENES BRAIN AND BEHAVIOR 2010; 9:537-43. [PMID: 20398061 DOI: 10.1111/j.1601-183x.2010.00586.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neurotransmitter serotonin is implicated in the regulation of various forms of behavior, including aggression, sexual behavior and stress response. The rate of brain serotonin synthesis is determined by the activity of neuronal-specific enzyme tryptophan hydroxylase 2. The missense C1473G substitution in mouse tryptophan hydroxylase 2 gene has been shown to lower the enzyme activity and brain serotonin level. Here, the C1473G polymorphism was investigated in 84 common laboratory inbred strains, 39 inbred and semi-inbred strains derived from wild ancestors (mostly from Eurasia) and in 75 wild mice trapped in different locations in Russia and Armenia. Among all the classical inbred strains studied, only substrains of BALB/c, A and DBA, as well as the IITES/Nga and NZW/NSlc strains were homozygous for the 1473G allele. In contrast to laboratory strains, the 1473G allele was not present in any of the samples from wild and wild-derived mice, although the wild mice varied substantially in the C1477T neutral substitution closely linked to the C1473G polymorphism. According to these results, the frequency of the 1473G allele in natural populations does not exceed 0.5%, and the C1473G polymorphism is in fact a rare mutation that is possibly eliminated by the forces of natural selection.
Collapse
Affiliation(s)
- D V Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
8
|
Neal KB, Parry LJ, Bornstein JC. Strain-specific genetics, anatomy and function of enteric neural serotonergic pathways in inbred mice. J Physiol 2008; 587:567-86. [PMID: 19064621 DOI: 10.1113/jphysiol.2008.160416] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) powerfully affects small intestinal motility and 5-HT-immunoreactive (IR) neurones are highly conserved between species. 5-HT synthesis in central neurones and gastrointestinal mucosa depends on tissue-specific isoforms of the enzyme tryptophan hydroxylase (TPH). RT-PCR identified strain-specific expression of a polymorphism (1473C/G) of the tph2 gene in longitudinal muscle-myenteric plexus preparations of C57Bl/6 and Balb/c mice. The former expressed the high-activity C allele, the latter the low-activity G allele. Confocal microscopy was used to examine close contacts between 5-HT-IR varicosities and myenteric neurones immunoreactive for neuronal nitric oxide synthase (NOS) or calretinin in these two strains. Significantly more close contacts were identified to NOS- (P < 0.05) and calretinin-IR (P < 0.01) neurones in C57Bl/6 jejunum (NOS 1.6 +/- 0.3, n = 52; calretinin 5.2 +/- 0.4, n = 54), than Balb/c jejunum (NOS 0.9 +/- 0.2, n = 78; calretinin 3.5 +/- 0.3, n = 98). Propagating contractile complexes (PCCs) were identified in the isolated jejunum by constructing spatiotemporal maps from video recordings of cannulated segments in vitro. These clusters of contractions usually arose towards the anal end and propagated orally. Regular PCCs were initiated at intraluminal pressures of 6 cmH(2)O, and abolished by tetrodotoxin (1 microm). Jejunal PCCs from C57Bl/6 mice were suppressed by a combination of granisetron (1 microm, 5-HT(3) antagonist) and SB207266 (10 nm, 5-HT(4) antagonist), but PCCs from Balb/c mice were unaffected. There were, however, no strain-specific differences in sensitivity of longitudinal muscle contractions to exogenous 5-HT or blockade of 5-HT(3) and 5-HT(4) receptors. These data associate a genetic difference with significant structural and functional consequences for enteric neural serotonergic pathways in the jejunum.
Collapse
Affiliation(s)
- Kathleen B Neal
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
9
|
Guzzetti S, Calcagno E, Canetta A, Sacchetti G, Fracasso C, Caccia S, Cervo L, Invernizzi RW. Strain differences in paroxetine-induced reduction of immobility time in the forced swimming test in mice: role of serotonin. Eur J Pharmacol 2008; 594:117-24. [PMID: 18691569 DOI: 10.1016/j.ejphar.2008.07.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/11/2008] [Accepted: 07/21/2008] [Indexed: 11/16/2022]
Abstract
We studied the antidepressant-like effect of paroxetine in strains of mice carrying different isoforms of tryptophan hydroxylase-2 (TPH-2), the enzyme responsible for the synthesis of brain serotonin (5-HT). The effect of paroxetine alone and in combination with pharmacological treatments enhancing or lowering 5-HT synthesis or melatonin was assessed in the forced swimming test in mice carrying allelic variants of TPH-2 (1473C in C57BL/6 and 1473G in DBA/2 and BALB/c). Changes in brain 5-hydroxytryptophan (5-HTP) accumulation and melatonin levels were measured by high-performance liquid chromatography. Paroxetine (2.5 and 5 mg/kg) reduced immobility time in C57BL/6J and C57BL/6N mice but had no such effect in DBA/2J, DBA/2N and BALB/c mice, even at 10 mg/kg. Enhancing 5-HT synthesis with tryptophan reinstated the antidepressant-like effect of paroxetine in DBA/2J, DBA/2N and BALB/c mice whereas inhibition of 5-HT synthesis prevented the effect of paroxetine in C57BL/6N mice. The response to paroxetine was not associated with changes in locomotor activity, brain melatonin or brain levels of the drug measured at the end of the behavioral test. These results support the importance of 5-HT synthesis in the response to SSRIs and suggest that melatonin does not contribute to the ability of tryptophan to rescue the antidepressant-like effect of paroxetine.
Collapse
Affiliation(s)
- Sara Guzzetti
- Istituto di Ricerche Farmacologiche Mario Negri, Department of Neuroscience, Laboratory of Experimental Psychopharmacology, Via La Masa 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Calcagno E, Canetta A, Guzzetti S, Cervo L, Invernizzi RW. Strain differences in basal and post-citalopram extracellular 5-HT in the mouse medial prefrontal cortex and dorsal hippocampus: relation with tryptophan hydroxylase-2 activity. J Neurochem 2007; 103:1111-20. [PMID: 17666043 DOI: 10.1111/j.1471-4159.2007.04806.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used the microdialysis technique to compare basal extracellular serotonin (5-HT) and the response to citalopram in different strains of mice with functionally different allelic forms of tryptophan hydroxylase-2 (TPH-2), the rate-limiting enzyme in brain 5-HT synthesis. DBA/2J, DBA/2N and BALB/c mice carrying the 1473G allele of TPH-2 had less dialysate 5-HT in the medial prefrontal cortex and dorsal hippocampus (DH) (20-40% reduction) than C57BL/6J and C57BL/6N mice carrying the 1473C allele. Extracellular 5-HT estimated by the zero-net flux method confirmed the result of conventional microdialysis. Citalopram, 1.25, 5 and 20 mg/kg, dose-dependently raised extracellular 5-HT in the medial prefrontal cortex of C57BL/6J mice, with maximum effect at 5 mg/kg, but had significantly less effect in DBA/2J and BALB/c mice and in the DH of DBA/2J mice. A tryptophan (TRP) load enhanced basal extracellular 5-HT in the medial prefrontal cortex of DBA/2J mice but did not affect citalopram's ability to raise cortical and hippocampal extracellular 5-HT. The impairment of 5-HT synthesis quite likely accounts for the reduction of basal 5-HT and the citalopram-induced rise in mice carrying the mutated enzyme. These findings might explain why DBA/2 and BALB/c mice do not respond to citalopram in the forced swimming test. Although TRP could be a useful strategy to improve the antidepressant effect of citalopram (Cervo et al. 2005), particularly in subjects with low 5-HT synthesis, the contribution of serotonergic and non-serotonergic mechanisms to TRP's effect remains to be elucidated.
Collapse
Affiliation(s)
- E Calcagno
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | |
Collapse
|
11
|
Lopez de Lara C, Brezo J, Rouleau G, Lesage A, Dumont M, Alda M, Benkelfat C, Turecki G. Effect of tryptophan hydroxylase-2 gene variants on suicide risk in major depression. Biol Psychiatry 2007; 62:72-80. [PMID: 17217922 DOI: 10.1016/j.biopsych.2006.09.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/27/2006] [Accepted: 09/03/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Suicide and depressive disorders are strongly associated, yet not all depressed patients commit suicide. Genetic factors may partly explain this difference. We investigated whether variation at the tryptophan hydroxylase-2 (TPH2) gene and its 5' upstream region may predispose to suicide in major depressive disorder (MDD) and whether this predisposition is mediated by impulsive-aggressive behaviors (IABs). METHODS We genotyped 14 single nucleotide polymorphisms (SNPs) in 259 depressed subjects, 114 of which committed suicide while depressed. Phenotypic assessments were carried out by means of proxy-based interviews. Single-marker and haplotype association analyses were conducted. Differences in behavioral and personality traits according to genotypic variation were investigated, as well as genetic and clinical predictors of suicide. RESULTS We found two upstream and two intronic SNPs associated with suicide. No direct effect of these variants was observed on IABs. However, a slight association with reward dependence scores was found. Controlling for suicide risk factors, two SNPs (rs4448731 and rs4641527) significantly predicted suicide, along with cluster B personality disorders and family history of suicide. CONCLUSIONS The TPH2 gene and its 5' upstream region variants may be involved in the predisposition to suicide in MDD; however, our findings do not support the role of IABs as mediators.
Collapse
|
12
|
Invernizzi RW. Role of TPH-2 in brain function: News from behavioral and pharmacologic studies. J Neurosci Res 2007; 85:3030-5. [PMID: 17492791 DOI: 10.1002/jnr.21330] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The recent discovery of TPH-2, a new isoform of tryptophan hydroxylase, the enzyme that catalyses the transformation of tryptophan into 5-hydroxytryptophan and the rate-limiting step in brain serotonin (5-HT) biosynthesis, has boosted new interest in the many functions of 5-HT in the brain and non-nervous tissues. Recent studies on TPH-2 are reviewed with particular attention to the role of this enzyme in behavior and in response to drugs as assessed by comparing strains of mice carrying a functional polymorphism of TPH-2. Most studies concur to indicate that 5-HT synthesis through TPH-2 influence nervous tissues whereas TPH-1 is responsible for the synthesis and action of 5-HT in peripheral organs. Partial impairment of brain 5-HT synthesis caused by polymorphism of the gene encoding TPH-2 causes reduced release of the neurotransmitter, increased aggressiveness, and alters the response to drugs inhibiting the reuptake of 5-HT. Strain comparison might be a useful strategy to investigate the genotype-dependent alterations of TPH-2.
Collapse
Affiliation(s)
- Roberto W Invernizzi
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
13
|
Zhang X, Beaulieu JM, Gainetdinov RR, Caron MG. Functional polymorphisms of the brain serotonin synthesizing enzyme tryptophan hydroxylase-2. Cell Mol Life Sci 2006; 63:6-11. [PMID: 16378243 PMCID: PMC2792355 DOI: 10.1007/s00018-005-5417-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many neuropsychiatric disorders are considered to be related to the dysregulation of brain serotonergic neurotransmission. Tryptophan hydroxylase-2 (TPH2) is the neuronal-specific enzyme that controls brain serotonin synthesis. There is growing genetic evidence for the possible involvement of TPH2 in serotonin-related neuropsychiatric disorders; however, the degree of genetic variation in TPH2 and, in particular, its possible functional consequences remain unknown. In this short review, we will summarize some recent findings with respect to the functional analysis of TPH2.
Collapse
Affiliation(s)
- X. Zhang
- Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Box 3287, Durham, North Carolina 27710 USA
| | - J.-M. Beaulieu
- Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Box 3287, Durham, North Carolina 27710 USA
| | - R. R. Gainetdinov
- Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Box 3287, Durham, North Carolina 27710 USA
| | - M. G. Caron
- Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Box 3287, Durham, North Carolina 27710 USA
| |
Collapse
|