1
|
Liu H, Wang J, Zhang Y, Gu J, Wang Y, Yan Y, Pan D, Sun Z. Cerebrospinal fluid proteomics in meningitis patients with reactivated varicella zoster virus. Immun Inflamm Dis 2023; 11:e1038. [PMID: 37904697 PMCID: PMC10549851 DOI: 10.1002/iid3.1038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE This study investigated the proteomic characteristics of cerebrospinal fluid (CSF) in patients with varicella zoster virus (VZV) meningitis to understanding the pathogenesis of central nervous system (CNS) infection by reactivated VZV. METHOD We used data-independent acquisition model to analyze the CSF proteomic differences of 28 patients with VZV meningitis and 11 herpes zoster (HZ) patients. According to the clinical manifestations at discharge, 28 VZV meningitis patients were divided into favorable outcome group and unfavorable outcome (UO) group and their differences in CSF proteome were also analyzed. RESULTS Compared with the HZ group, the proteins (CXCL10, ELANE, IL-1RN, MPO, PRTN3, etc.) related to inflammation and immune cell activation were significantly upregulated in the VZV meningitis group (p < .01). The protein related to the nerve function and energy metabolism (CKMT1B, SLITRK3, Synaptotagmin-3, KIF5B, etc.) were significantly downregulated (p < .05). The levels of a pro-inflammatory factor, IL-18, in CSF were significantly higher in patients in the UO group as compared to patients with favorable prognosis (p < .05). CONCLUSION Inflammatory immune response is an important pathophysiological mechanism of CNS infection by VZV, and the CSF IL-18 levels might be a potential prognostic indicator of the outcomes of VZV meningitis.
Collapse
Affiliation(s)
- Huili Liu
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Jun Wang
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Yan Zhang
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Jing Gu
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Yu Wang
- Department of Medical Microbiology and ParasitologyZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yongxing Yan
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Dongli Pan
- Department of Medical Microbiology and ParasitologyZhejiang University School of MedicineHangzhouZhejiangChina
- State key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Zeyu Sun
- State key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
2
|
Yin JB, Liu HX, Dong QQ, Wu HH, Liang ZW, Fu JT, Zhao WJ, Hu HQ, Guo HW, Zhang T, Lu YC, Jin S, Wang XL, Cao BZ, Wang Z, Ding T. Correlative increasing expressions of KIF5b and Nav1.7 in DRG neurons of rats under neuropathic pain conditions. Physiol Behav 2023; 263:114115. [PMID: 36773735 DOI: 10.1016/j.physbeh.2023.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Nav1.7, one of tetrodotoxin-sensitive voltage-gated sodium channels, mainly expressed in the small diameter dorsal root ganglion (DRG) neurons. The expression and accumulation on neuronal membrane of Nav1.7 increased following peripheral tissue inflammation or nerve injury. However, the mechanisms for membrane accumulation of Nav1.7 remained unclear. We report that KIF5b, a highly expressed member of the kinesin-1 family in DRGs, promoted the translocation of Nav1.7 to the plasma membrane in DRG neurons of the rat. Following nociceptive behaviors in rats induced by peripheral spared nerve injury (SNI), synchronously increased KIF5b and Nav1.7 expressions were observed in DRGs. Immunohistochemistry staining demonstrated the co-expressions of KIF5b and Nav1.7 in the same DRG neurons. Immunoprecipitation experiments further confirmed the interactions between KIF5b and Nav1.7. Moreover, intrathecal injections of KIF5b shRNA moderated the SNI-induced both mechanical and thermal hyperalgesia. The rescued analgesic effects also alleviated SNI-induced anxiety-like behaviors. In sum, KIF5b was required for the membrane localizations of Nav1.7, which suggests a novel mechanism for the trafficking of Nav1.7 involved in neuropathic pain.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China; Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Hai-Xia Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Jinan 250021, China
| | - Qin-Qin Dong
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China; Department of Neurology, Jinzhou Medical University, Jinzhou 121000, China
| | - Huang-Hui Wu
- Department of Anesthesiology, Medical College of Xiamen University, Xiamen 361005, China
| | - Zhuo-Wen Liang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jin-Tao Fu
- Department of Critical Care Medicine, Affiliated Yanzhou District Hospital of Jining Medical College, Jining 272100, China
| | - Wen-Jun Zhao
- Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Huai-Qiang Hu
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China
| | - Hong-Wei Guo
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ya-Cheng Lu
- Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Shan Jin
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China
| | - Xiao-Ling Wang
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China
| | - Bing-Zhen Cao
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China.
| | - Zhe Wang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Tan Ding
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Jepps TA. Kv7 channel trafficking by the microtubule network in vascular smooth muscle. Acta Physiol (Oxf) 2021; 232:e13692. [PMID: 34021973 PMCID: PMC8365713 DOI: 10.1111/apha.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
In arterial smooth muscle cells, changes in availability of integral membrane proteins influence the regulation of blood flow and blood pressure, which is critical for human health. However, the mechanisms that coordinate the trafficking and membrane expression of specific receptors and ion channels in vascular smooth muscle are poorly understood. In the vasculature, very little is known about microtubules, which form a road network upon which proteins can be transported to and from the cell membrane. This review article summarizes the impact of the microtubule network on arterial contractility, highlighting the importance of the network, with an emphasis on our recent findings regarding the trafficking of the voltage‐dependent Kv7 channels.
Collapse
Affiliation(s)
- Thomas A Jepps
- Vascular Biology Group Department of Biomedical Sciences University of Copenhagen Blegdamsvej 3 2200 Copenhagen N Denmark
| |
Collapse
|
4
|
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease. Life (Basel) 2020; 11:life11010008. [PMID: 33374190 PMCID: PMC7824554 DOI: 10.3390/life11010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease.
Collapse
|
5
|
Solé L, Tamkun MM. Trafficking mechanisms underlying Na v channel subcellular localization in neurons. Channels (Austin) 2020; 14:1-17. [PMID: 31841065 PMCID: PMC7039628 DOI: 10.1080/19336950.2019.1700082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage gated sodium channels (Nav) play a crucial role in action potential initiation and propagation. Although the discovery of Nav channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Nav channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Nav channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location. The importance of Nav channel localization is emphasized by the relationship between mutations, impaired trafficking and disease. While this review focuses on Nav1.6, other Nav isoforms are also discussed.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M. Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Hivert B, Marien L, Agbam KN, Faivre-Sarrailh C. ADAM22 and ADAM23 modulate the targeting of the Kv1 channel-associated protein LGI1 to the axon initial segment. J Cell Sci 2018; 132:jcs.219774. [DOI: 10.1242/jcs.219774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/19/2018] [Indexed: 01/30/2023] Open
Abstract
The distribution of voltage-gated potassium channels Kv1 at the axon initial segment (AIS) influences neuronal intrinsic excitability. Kv1.1/1.2 subunits are associated with cell adhesion molecules (CAMs), including Caspr2 and LGI1 that are implicated in autoimmune and genetic neurological diseases with seizures. In particular, mutations in the LGI1 gene cause autosomal dominant lateral temporal lobe epilepsy (ADLTE). Here, using rat hippocampal neurons in culture, we showed that LGI1 is recruited at the AIS and colocalized with ADAM22 and Kv1 channels. Strikingly, the missense mutations S473L and R474Q of LGI1 identified in ADLTE prevent its association with ADAM22 and enrichment at the AIS. Moreover, we observed that ADAM22 or ADAM23 modulates the trafficking of LGI1, and promotes its ER export and expression at the overall neuronal cell surface. Live-cell imaging indicated that LGI1 is co-transported in axonal vesicles with ADAM22 or ADAM23. Finally, we showed that ADAM22 and ADAM23 also associate with Caspr2 and TAG-1 to be selectively targeted within different axonal sub-regions. So, the combinatorial expression of Kv1-associated CAMs may be critical to tune intrinsic excitability in physiological or epileptogenic context.
Collapse
Affiliation(s)
- Bruno Hivert
- Aix Marseille Université, INSERM UMR1249, F-13273 Marseille, France
- Present address: Aix Marseille Université, CNRS UMR7289, Institut de Neurosciences de la Timone, F-13385 Marseille, France
| | - Laurène Marien
- Aix Marseille Université, INSERM UMR1249, F-13273 Marseille, France
| | | | | |
Collapse
|
7
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
8
|
Cornejo VH, Luarte A, Couve A. Global and local mechanisms sustain axonal proteostasis of transmembrane proteins. Traffic 2017; 18:255-266. [PMID: 28220989 DOI: 10.1111/tra.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The control of neuronal protein homeostasis or proteostasis is tightly regulated both spatially and temporally, assuring accurate and integrated responses to external or intrinsic stimuli. Local or autonomous responses in dendritic and axonal compartments are crucial to sustain function during development, physiology and in response to damage or disease. Axons are responsible for generating and propagating electrical impulses in neurons, and the establishment and maintenance of their molecular composition are subject to extreme constraints exerted by length and size. Proteins that require the secretory pathway, such as receptors, transporters, ion channels or cell adhesion molecules, are fundamental for axonal function, but whether axons regulate their abundance autonomously and how they achieve this is not clear. Evidence supports the role of three complementary mechanisms to maintain proteostasis of these axonal proteins, namely vesicular transport, local translation and trafficking and transfer from supporting cells. Here, we review these mechanisms, their molecular machineries and contribution to neuronal function. We also examine the signaling pathways involved in local translation and their role during development and nerve injury. We discuss the relative contributions of a transport-controlled proteome directed by the soma (global regulation) versus a local-controlled proteome based on local translation or cell transfer (local regulation).
Collapse
Affiliation(s)
- Víctor Hugo Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Yasuda K, Clatterbuck-Soper SF, Jackrel ME, Shorter J, Mili S. FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination. J Cell Biol 2017; 216:1015-1034. [PMID: 28298410 PMCID: PMC5379945 DOI: 10.1083/jcb.201608022] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Amyotrophic lateral sclerosis–associated mutations promote the formation of cytoplasmic FUS inclusions. In this study, Yasuda et al. show in fibroblasts and neurons that kinesin-1 is sequestered in FUS inclusions, resulting in a loss of detyrosinated microtubules and mislocalization of specific RNAs. Cytoplasmic inclusions of the RNA-binding protein fused in sarcoma (FUS) represent one type of membraneless ribonucleoprotein compartment. Formation of FUS inclusions is promoted by amyotrophic lateral sclerosis (ALS)–linked mutations, but the cellular functions affected upon inclusion formation are poorly defined. In this study, we find that FUS inclusions lead to the mislocalization of specific RNAs from fibroblast cell protrusions and neuronal axons. This is mediated by recruitment of kinesin-1 mRNA and protein within FUS inclusions, leading to a loss of detyrosinated glutamate (Glu)–microtubules (MTs; Glu-MTs) and an inability to support the localization of RNAs at protrusions. Importantly, dissolution of FUS inclusions using engineered Hsp104 disaggregases, or overexpression of kinesin-1, reverses these effects. We further provide evidence that kinesin-1 affects MT detyrosination not through changes in MT stability, but rather through targeting the tubulin carboxypeptidase enzyme onto specific MTs. Interestingly, other pathological inclusions lead to similar outcomes, but through apparently distinct mechanisms. These results reveal a novel kinesin-dependent mechanism controlling the MT cytoskeleton and identify loss of Glu-MTs and RNA mislocalization as common outcomes of ALS pathogenic mutations.
Collapse
Affiliation(s)
- Kyota Yasuda
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sarah F Clatterbuck-Soper
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
10
|
Disparate Regulatory Mechanisms Control Fat3 and P75NTR Protein Transport through a Conserved Kif5-Interaction Domain. PLoS One 2016; 11:e0165519. [PMID: 27788242 PMCID: PMC5082931 DOI: 10.1371/journal.pone.0165519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022] Open
Abstract
Directed transport delivers proteins to specific cellular locations and is one mechanism by which cells establish and maintain polarized cellular architectures. The atypical cadherin Fat3 directs the polarized extension of dendrites in retinal amacrine cells by influencing the distribution of cytoskeletal regulators during retinal development, however the mechanisms regulating the distribution of Fat3 remain unclear. We report a novel Kinesin/Kif5 Interaction domain (Kif5-ID) in Fat3 that facilitates Kif5B binding, and determines the distribution of Fat3 cytosolic domain constructs in neurons and MDCK cells. The Kif5-ID sequence is conserved in the neurotrophin receptor P75NTR, which also binds Kif5B, and Kif5-ID mutations similarly result in P75NTR mislocalization. Despite these similarities, Kif5B-mediated protein transport is differentially regulated by these two cargos. For Fat3, the Kif5-ID is regulated by alternative splicing, and the timecourse of splicing suggests that the distribution of Fat3 may switch between early and later stages of retinal development. In contrast, P75NTR binding to Kif5B is enhanced by tyrosine phosphorylation and thus has the potential to be dynamically regulated on a more rapid time scale.
Collapse
|
11
|
Norcini M, Sideris A, Adler SM, Hernandez LAM, Zhang J, Blanck TJJ, Recio-Pinto E. NR2B Expression in Rat DRG Is Differentially Regulated Following Peripheral Nerve Injuries That Lead to Transient or Sustained Stimuli-Evoked Hypersensitivity. Front Mol Neurosci 2016; 9:100. [PMID: 27803647 PMCID: PMC5068091 DOI: 10.3389/fnmol.2016.00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022] Open
Abstract
Following injury, primary sensory neurons undergo changes that drive central sensitization and contribute to the maintenance of persistent hypersensitivity. NR2B expression in the dorsal root ganglia (DRG) has not been previously examined in neuropathic pain models. Here, we investigated if changes in NR2B expression within the DRG are associated with hypersensitivities that result from peripheral nerve injuries. This was done by comparing the NR2B expression in the DRG derived from two modalities of the spared nerve injury (SNI) model, since each variant produces different neuropathic pain phenotypes. Using the electronic von Frey to stimulate the spared and non-spared regions of the hindpaws, we demonstrated that sural-SNI animals develop sustained neuropathic pain in both regions while the tibial-SNI animals recover. NR2B expression was measured at Day 23 and Day 86 post-injury. At Day 23 and 86 post-injury, sural-SNI animals display strong hypersensitivity, whereas tibial-SNI animals display 50 and 100% recovery from post-injury-induced hypersensitivity, respectively. In tibial-SNI at Day 86, but not at Day 23 the perinuclear region of the neuronal somata displayed an increase in NR2B protein. This retention of NR2B protein within the perinuclear region, which will render them non-functional, correlates with the recovery observed in tibial-SNI. In sural-SNI at Day 86, DRG displayed an increase in NR2B mRNA which correlates with the development of sustained hypersensitivity in this model. The increase in NR2B mRNA was not associated with an increase in NR2B protein within the neuronal somata. The latter may result from a decrease in kinesin Kif17, since Kif17 mediates NR2B transport to the soma’s plasma membrane. In both SNIs, microglia/macrophages showed a transient increase in NR2B protein detected at Day 23 but not at Day 86, which correlates with the initial post-injury induced hypersensitivity in both SNIs. In tibial-SNI at Day 86, but not at Day 23, satellite glia cells (SGCs) displayed an increase in NR2B protein. This study is the first to characterize of cell-specific changes in NR2B expression within the DRG following peripheral nerve injury. We discuss how the observed NR2B changes in DRG can contribute to the different neuropathic pain phenotypes displayed by each SNI variant.
Collapse
Affiliation(s)
- Monica Norcini
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Alexandra Sideris
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Samantha M Adler
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Lourdes A M Hernandez
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Jin Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Thomas J J Blanck
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New YorkNY, USA; Department of Neuroscience and Physiology, NYU Langone Medical Center, New York University, New YorkNY, USA
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New YorkNY, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University, New YorkNY, USA
| |
Collapse
|
12
|
Tumour Suppressor Adenomatous Polyposis Coli (APC) localisation is regulated by both Kinesin-1 and Kinesin-2. Sci Rep 2016; 6:27456. [PMID: 27272132 PMCID: PMC4895226 DOI: 10.1038/srep27456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
Microtubules and their associated proteins (MAPs) underpin the polarity of specialised cells. Adenomatous polyposis coli (APC) is one such MAP with a multifunctional agenda that requires precise intracellular localisations. Although APC has been found to associate with kinesin-2 subfamily members, the exact mechanism for the peripheral localization of APC remains unclear. Here we show that the heavy chain of kinesin-1 directly interacts with the APC C-terminus, contributing to the peripheral localisation of APC in fibroblasts. In rat hippocampal neurons the kinesin-1 binding domain of APC is required for its axon tip enrichment. Moreover, we demonstrate that APC requires interactions with both kinesin-2 and kinesin-1 for this localisation. Underlining the importance of the kinesin-1 association, neurons expressing APC lacking kinesin-1-binding domain have shorter axons. The identification of this novel kinesin-1-APC interaction highlights the complexity and significance of APC localisation in neurons.
Collapse
|
13
|
Miller KG. Keeping Neuronal Cargoes on the Right Track: New Insights into Regulators of Axonal Transport. Neuroscientist 2016; 23:232-250. [PMID: 27154488 DOI: 10.1177/1073858416648307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In neurons, a single motor (dynein) transports large organelles as well as synaptic and dense core vesicles toward microtubule minus ends; however, it is unclear why dynein appears more active on organelles, which are generally excluded from mature axons, than on synaptic and dense core vesicles, which are maintained at high levels. Recent studies in Zebrafish and Caenorhabditis elegans have shown that JIP3 promotes dynein-mediated retrograde transport to clear some organelles (lysosomes, early endosomes, and Golgi) from axons and prevent their potentially harmful accumulation in presynaptic regions. A JIP3 mutant suppressor screen in C. elegans revealed that JIP3 promotes the clearance of organelles from axons by blocking the action of the CSS system (Cdk5, SAD Kinase, SYD-2/Liprin). A synthesis of results in vertebrates with the new findings suggests that JIP3 blocks the CSS system from disrupting the connection between dynein and organelles. Most components of the CSS system are enriched at presynaptic active zones where they normally contribute to maintaining optimal levels of captured synaptic and dense core vesicles, in part by inhibiting dynein transport. The JIP3-CSS system model explains how neurons selectively regulate a single minus-end motor to exclude specific classes of organelles from axons, while at the same time ensuring optimal levels of synaptic and dense core vesicles.
Collapse
Affiliation(s)
- Kenneth G Miller
- 1 Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
15
|
Abstract
Fluorescence microscopy is employed to identify Kinesin-1 cargos. Recently, the heavy chain of Kinesin-1 (KIF5B) was shown to transport the nuclear transcription factor c-MYC for proteosomal degradation in the cytoplasm. The method described here involves the study of a motorless KIF5B mutant for fluorescence microscopy. The wild-type and motorless KIF5B proteins are tagged with the fluorescent protein tdTomato. The wild-type tdTomato-KIF5B appears homogenously in the cytoplasm, while the motorless tdTomato-KIF5B mutant forms aggregates in the cytoplasm. Aggregation of the motorless KIF5B mutant induces aggregation of its cargo c-MYC in the cytoplasm. Hence, this method provides a visual means to identify the cargos of Kinesin-1. A similar strategy can be utilized to identify cargos of other motor proteins.
Collapse
Affiliation(s)
- Clement M Lee
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
16
|
Benítez-King G, Valdés-Tovar M, Trueta C, Galván-Arrieta T, Argueta J, Alarcón S, Lora-Castellanos A, Solís-Chagoyán H. The microtubular cytoskeleton of olfactory neurons derived from patients with schizophrenia or with bipolar disorder: Implications for biomarker characterization, neuronal physiology and pharmacological screening. Mol Cell Neurosci 2016; 73:84-95. [PMID: 26837043 DOI: 10.1016/j.mcn.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023] Open
Abstract
Schizophrenia (SZ) and Bipolar Disorder (BD) are highly inheritable chronic mental disorders with a worldwide prevalence of around 1%. Despite that many efforts had been made to characterize biomarkers in order to allow for biological testing for their diagnoses, these disorders are currently detected and classified only by clinical appraisal based on the Diagnostic and Statistical Manual of Mental Disorders. Olfactory neuroepithelium-derived neuronal precursors have been recently proposed as a model for biomarker characterization. Because of their peripheral localization, they are amenable to collection and suitable for being cultured and propagated in vitro. Olfactory neuroepithelial cells can be obtained by a non-invasive brush-exfoliation technique from neuropsychiatric patients and healthy subjects. Neuronal precursors isolated from these samples undergo in vitro the cytoskeletal reorganization inherent to the neurodevelopment process which has been described as one important feature in the etiology of both diseases. In this paper, we will review the current knowledge on microtubular organization in olfactory neurons of patients with SZ and with BD that may constitute specific cytoskeletal endophenotypes and their relation with alterations in L-type voltage-activated Ca(2+) currents. Finally, the potential usefulness of neuronal precursors for pharmacological screening will be discussed.
Collapse
Affiliation(s)
- G Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico.
| | - M Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - C Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, C.P. 14370, Tlalpan, Distrito Federal, Mexico
| | - T Galván-Arrieta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - J Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - S Alarcón
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - A Lora-Castellanos
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - H Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| |
Collapse
|
17
|
Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity. Nat Commun 2015; 6:8815. [PMID: 26581625 PMCID: PMC4673506 DOI: 10.1038/ncomms9815] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 10/07/2015] [Indexed: 01/16/2023] Open
Abstract
Structural plasticity of the axon initial segment (AIS), the trigger zone of neurons, is a powerful means for regulating neuronal activity. Here, we show that AIS plasticity is not limited to structural changes; it also occurs as changes in ion-channel expression, which substantially augments the efficacy of regulation. In the avian cochlear nucleus, depriving afferent inputs by removing cochlea elongated the AIS, and simultaneously switched the dominant Kv channels at the AIS from Kv1.1 to Kv7.2. Due to the slow activation kinetics of Kv7.2, the redistribution of the Kv channels reduced the shunting conductance at the elongated AIS during the initiation of action potentials and effectively enhanced the excitability of the deprived neurons. The results indicate that the functional plasticity of the AIS works cooperatively with the structural plasticity and compensates for the loss of afferent inputs to maintain the homeostasis of auditory circuits after hearing loss by cochlea removal. Sensory deprivation in the avian brain can lead to structural changes in the axon initial segment. Here, the authors build on their previous work by showing that such homeostatic AIS plasticity also involves changes in Kv channel expression, which contributes to enhanced neuronal excitability.
Collapse
|
18
|
Auer TO, Xiao T, Bercier V, Gebhardt C, Duroure K, Concordet JP, Wyart C, Suster M, Kawakami K, Wittbrodt J, Baier H, Del Bene F. Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3. eLife 2015; 4. [PMID: 26076409 PMCID: PMC4467164 DOI: 10.7554/elife.05061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/18/2015] [Indexed: 12/14/2022] Open
Abstract
Development and function of highly polarized cells such as neurons depend on microtubule-associated intracellular transport, but little is known about contributions of specific molecular motors to the establishment of synaptic connections. In this study, we investigated the function of the Kinesin I heavy chain Kif5aa during retinotectal circuit formation in zebrafish. Targeted disruption of Kif5aa does not affect retinal ganglion cell differentiation, and retinal axons reach their topographically correct targets in the tectum, albeit with a delay. In vivo dynamic imaging showed that anterograde transport of mitochondria is impaired, as is synaptic transmission. Strikingly, disruption of presynaptic activity elicits upregulation of Neurotrophin-3 (Ntf3) in postsynaptic tectal cells. This in turn promotes exuberant branching of retinal axons by signaling through the TrkC receptor (Ntrk3). Thus, our study has uncovered an activity-dependent, retrograde signaling pathway that homeostatically controls axonal branching.
Collapse
Affiliation(s)
| | - Tong Xiao
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | | | | | | | - Jean-Paul Concordet
- Muséum National d'Histoire naturelle, Inserm U 1154, CNRS, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS, UMR 7225, Sorbonne Universités, UPMC University Paris 6, Paris, France
| | - Maximiliano Suster
- Neural Circuits and Behaviour Group, Uni Research AS High Technology Centre, Bergen, Norway
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Shizuoka, Japan
| | - Joachim Wittbrodt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Herwig Baier
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | | |
Collapse
|
19
|
Zhao X, Kuja-Panula J, Sundvik M, Chen YC, Aho V, Peltola MA, Porkka-Heiskanen T, Panula P, Rauvala H. Amigo adhesion protein regulates development of neural circuits in zebrafish brain. J Biol Chem 2014; 289:19958-75. [PMID: 24904058 DOI: 10.1074/jbc.m113.545582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion.
Collapse
Affiliation(s)
| | | | - Maria Sundvik
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | - Yu-Chia Chen
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | - Vilma Aho
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki FIN-00014, Finland
| | | | - Tarja Porkka-Heiskanen
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Pertti Panula
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | | |
Collapse
|
20
|
KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8. J Neurosci 2013; 33:17884-96. [PMID: 24198377 DOI: 10.1523/jneurosci.0539-13.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nav1.8 is a tetrodotoxin-resistant voltage-gated sodium channel selectively expressed in primary sensory neurons. Peripheral inflammation and nerve injury induce Nav1.8 accumulation in peripheral nerves. However, the mechanisms and related significance of channel accumulation in nerves remains unclear. Here we report that KIF5B promotes the forward transport of Nav1.8 to the plasma membrane and axons in dorsal root ganglion (DRG) neurons of the rat. In peripheral inflammation induced through the intraplantar injection of complete Freund's adjuvant, increased KIF5 and Nav1.8 accumulation were observed in the sciatic nerve. The knock-down of KIF5B, a highly expressed member of the KIF5 family in DRGs, reduced the current density of Nav1.8 in both cultured DRG neurons and ND7-23 cells. Overexpression of KIF5B in ND7-23 cells increased the current density and surface expression of Nav1.8, which were abolished through brefeldin A treatment, whereas the increases were lost in KIF5B mutants defective in ATP hydrolysis or cargo binding. Overexpression of KIF5B also decreased the proteasome-associated degradation of Nav1.8. In addition, coimmunoprecipitation experiments showed interactions between the N terminus of Nav1.8 and the 511-620 aa sequence in the stalk domain of KIF5B. Furthermore, KIF5B increased Nav1.8 accumulation, Nav1.8 current, and neuronal excitability detected in the axons of cultured DRG neurons, which were completely abolished by the disruption of interactions between KIF5B and the N terminus of Nav1.8. Therefore, our results reveal that KIF5B is required for the forward transport and axonal function of Nav1.8, suggesting a mechanism for axonal accumulation of Nav1.8 in inflammatory pain.
Collapse
|
21
|
Steele DF, Fedida D. Cytoskeletal roles in cardiac ion channel expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:665-73. [PMID: 23680626 DOI: 10.1016/j.bbamem.2013.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/25/2022]
Abstract
The cytoskeleton and cardiac ion channel expression are closely linked. From the time that newly synthesized channels exit the endoplasmic reticulum, they are either traveling along the microtubule or actin cytoskeletons or likely anchored in the plasma membrane or in internal vesicular pools by those scaffolds. Molecular motors, small GTPases and even the dynamics of the cytoskeletons themselves influence the trafficking and expression of the channels. In some cases, the functioning of the channels themselves has profound influences on the cytoskeleton. Here we provide an overview of the current state of knowledge on the involvement of the actin and microtubule cytoskeletons in the trafficking, targeting and expression of cardiac ion channels and a few channels expressed elsewhere. We highlight, also, some of the many questions that remain about these processes. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- David F Steele
- Dept. of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - David Fedida
- Dept. of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
22
|
Barry J, Gu C. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels. Neuroscientist 2013; 19:145-59. [PMID: 22910031 PMCID: PMC3625366 DOI: 10.1177/1073858412456088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Joshua Barry
- The Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Chen Gu
- The Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
23
|
Vacher H, Trimmer JS. Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 2013; 53 Suppl 9:21-31. [PMID: 23216576 DOI: 10.1111/epi.12032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K(+) (Kv) and Na(+) (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials. Aberrant intrinsic excitability in individual neurons within networks contributes to synchronous neuronal activity leading to seizures. Mutations in ion channel genes give rise to a variety of seizure-related "channelopathies," and many of the ion channel subunits associated with epilepsy mutations are localized at the AIS, making this a hotspot for epileptogenesis. Here we review the cellular mechanisms that underlie the trafficking of Kv and Nav channels found at the AIS, and how Kv and Nav channel mutations associated with epilepsy can alter these processes.
Collapse
Affiliation(s)
- Helene Vacher
- CRN2M CNRS UMR7286, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
24
|
Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes. J Neurosci 2011; 31:13224-35. [PMID: 21917805 DOI: 10.1523/jneurosci.0976-11.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells. While PSD95-mediated clustering was subunit independent, selective visualization of heteromeric Kv complexes in rat hippocampal neurons revealed subunit-dependent localization that was not predicted by analyzing individual subunits. Assembly of Kv1.1 with Kv1.4 prevented axonal localization but not surface expression, while inclusion of Kv1.2 imparted clustering at presynaptic sites and decreased channel mobility within the axon. This mechanism by which specific Kv channel subunits can act in a dominant manner to impose unique trafficking properties to heteromeric complexes extended to Shab-related family of Kv channels. When coexpressed, Kv2.1 and Kv2.2 heteromultimers did not aggregate in somatodendritic clusters observed with expression of Kv2.1 alone. These studies demonstrate selective axonal trafficking and surface localization of distinct Kv channels based on their subunit composition.
Collapse
|
25
|
Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels. Pflugers Arch 2011; 462:631-43. [PMID: 21822597 DOI: 10.1007/s00424-011-1004-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse partly due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability. Recent studies have revealed that Kv channel α subunits and auxiliary subunits are extensively phosphorylated, contributing to additional structural and functional diversity. Here, we highlight recent studies that show that auxiliary subunits exert some of their profound effects on dendritic Kv4 and axonal Kv1 channels through phosphorylation-dependent mechanisms, either due to phosphorylation on the auxiliary subunit itself or by influencing the extent and/or impact of α subunit phosphorylation. The complex effects of auxiliary subunits and phosphorylation provide a potent mechanism to generate additional diversity in the structure and function of Kv4 and Kv1 channels, as well as allowing for dynamic reversible regulation of these important ion channels.
Collapse
|
26
|
Lasiecka ZM, Winckler B. Mechanisms of polarized membrane trafficking in neurons -- focusing in on endosomes. Mol Cell Neurosci 2011; 48:278-87. [PMID: 21762782 DOI: 10.1016/j.mcn.2011.06.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/21/2011] [Accepted: 06/25/2011] [Indexed: 12/13/2022] Open
Abstract
Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells are necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER via the Golgi and trans-Golgi-network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes.
Collapse
Affiliation(s)
- Zofia M Lasiecka
- Department of Neuroscience, University of Virginia Medical School, 409 Lane Rd. Extension, MR4-6116, Charlottesville, VA 22908, USA
| | | |
Collapse
|
27
|
Jensen CS, Rasmussen HB, Misonou H. Neuronal trafficking of voltage-gated potassium channels. Mol Cell Neurosci 2011; 48:288-97. [PMID: 21627990 DOI: 10.1016/j.mcn.2011.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/01/2011] [Accepted: 05/16/2011] [Indexed: 11/28/2022] Open
Abstract
The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regulated by voltage-gated potassium (Kv) channels, such as Kv4.2, which are specifically localized in the dendritic membrane. The synaptic potentials eventually depolarize the membrane of the axon initial segment, thereby activating voltage-gated sodium channels to generate action potentials. Specific Kv channels localized in the axon initial segment, such as Kv1 and Kv7 channels, determine the shape and the rate of action potentials. Kv1 and Kv7 channels present at or near nodes of Ranvier and in presynaptic terminals also influence the propagation of action potentials and neurotransmitter release. The physiological significance of proper Kv channel localization is emphasized by the fact that defects in the trafficking of Kv channels are observed in several neurological disorders including epilepsy. In this review, we will summarize the current understanding of the mechanisms of Kv channel trafficking and discuss how they contribute to the establishment and maintenance of the specific localization of Kv channels in neurons.
Collapse
Affiliation(s)
- Camilla S Jensen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Gu C, Gu Y. Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. J Biol Chem 2011; 286:25835-47. [PMID: 21602278 DOI: 10.1074/jbc.m111.219113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precise localization of axonal ion channels is crucial for proper electrical and chemical functions of axons. In myelinated axons, Kv1 (Shaker) voltage-gated potassium (Kv) channels are clustered in the juxtaparanodal regions flanking the node of Ranvier. The clustering can be disrupted by deletion of various proteins in mice, including contactin-associated protein-like 2 (Caspr2) and transient axonal glycoprotein-1 (TAG-1), a glycosylphosphatidylinositol-anchored cell adhesion molecule. However, the mechanism and function of Kv1 juxtaparanodal clustering remain unclear. Here, using a new myelin coculture of hippocampal neurons and oligodendrocytes, we report that tyrosine phosphorylation plays a critical role in TAG-1-mediated clustering of axonal Kv1.2 channels. In the coculture, myelin specifically ensheathed axons but not dendrites of hippocampal neurons and clustered endogenous axonal Kv1.2 into internodes. The trans-homophilic interaction of TAG-1 was sufficient to position Kv1.2 clusters on axonal membranes in a neuron/HEK293 coculture. Mutating a tyrosine residue (Tyr⁴⁵⁸) in the Kv1.2 C terminus or blocking tyrosine phosphorylation disrupted myelin- and TAG-1-mediated clustering of axonal Kv1.2. Furthermore, Kv1.2 voltage dependence and activation threshold were reduced by TAG-1 coexpression. This effect was eliminated by the Tyr⁴⁵⁸ mutation or by cholesterol depletion. Taken together, our studies suggest that myelin regulates both trafficking and activity of Kv1 channels along hippocampal axons through TAG-1.
Collapse
Affiliation(s)
- Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
29
|
Gu C, Barry J. Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog Neurobiol 2011; 94:115-32. [PMID: 21530607 DOI: 10.1016/j.pneurobio.2011.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/22/2011] [Accepted: 04/01/2011] [Indexed: 12/20/2022]
Abstract
Precise localization of various ion channels into proper subcellular compartments is crucial for neuronal excitability and synaptic transmission. Axonal K(+) channels that are activated by depolarization of the membrane potential participate in the repolarizing phase of the action potential, and hence regulate action potential firing patterns, which encode output signals. Moreover, some of these channels can directly control neurotransmitter release at axonal terminals by constraining local membrane excitability and limiting Ca(2+) influx. K(+) channels differ not only in biophysical and pharmacological properties, but in expression and subcellular distribution as well. Importantly, proper targeting of channel proteins is a prerequisite for electrical and chemical functions of axons. In this review, we first highlight recent studies that demonstrate different roles of axonal K(+) channels in the local regulation of axonal excitability. Next, we focus on research progress in identifying axonal targeting motifs and machinery of several different types of K(+) channels present in axons. Regulation of K(+) channel targeting and activity may underlie a novel form of neuronal plasticity. This research field can contribute to generating novel therapeutic strategies through manipulating neuronal excitability in treating neurological diseases, such as multiple sclerosis, neuropathic pain, and Alzheimer's disease.
Collapse
Affiliation(s)
- Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, USA.
| | | |
Collapse
|
30
|
A role for myosin VI in the localization of axonal proteins. PLoS Biol 2011; 9:e1001021. [PMID: 21390300 PMCID: PMC3046960 DOI: 10.1371/journal.pbio.1001021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/18/2011] [Indexed: 12/25/2022] Open
Abstract
In neurons polarized trafficking of vesicle-bound membrane proteins gives rise to the distinct molecular composition and functional properties of axons and dendrites. Despite their central role in shaping neuronal form and function, surprisingly little is known about the molecular processes that mediate polarized targeting of neuronal proteins. Recently, the plus-end-directed motor Myosin Va was shown to play a critical role in targeting of transmembrane proteins to dendrites; however, the role of myosin motors in axonal targeting is unknown. Here we show that Myosin VI, a minus-end-directed motor, plays a vital role in the enrichment of proteins on the surface of axons. Engineering non-neuronal proteins to interact with Myosin VI causes them to become highly concentrated at the axonal surface in dissociated rat cortical neurons. Furthermore, disruption of either Myosin VI function or expression leads to aberrant dendritic localization of axonal proteins. Myosin VI mediates the enrichment of proteins on the axonal surface at least in part by stimulating dendrite-specific endocytosis, a mechanism that has been shown to underlie the localization of many axonal proteins. In addition, a version of Channelrhodopsin 2 that was engineered to bind to Myosin VI is concentrated at the surface of the axon of cortical neurons in mice in vivo, suggesting that it could be a useful tool for probing circuit structure and function. Together, our results indicate that myosins help shape the polarized distributions of both axonal and dendritic proteins. Following synthesis in the endoplasmic reticulum (ER) and Golgi apparatus, neuronal proteins follow divergent trafficking pathways to the axonal and dendritic plasma membranes. This specialized trafficking depends on motor proteins that move along microtubules or actin in either a “plus-end” or “minus-end” direction. Although the molecular details of these pathways are poorly understood, recent work suggests that a plus-end-directed myosin motor guides proteins preferentially to dendrites. Here we find that Myosin VI, a minus-end-directed motor, plays a role in the concentration of proteins at the surface of the axon. Several studies have shown that many axonal proteins are targeted to both compartments initially, and are subsequently enriched on the axonal surface after they have been specifically removed from the surface of the dendrites by endocytosis. We show here that this dendrite-specific endocytosis is promoted by interaction with Myosin VI, whereas blocking Myosin VI function prevents axonal protein from being internalized from the surface of dendrites. Our results suggest a model where neuronal proteins are enriched on the surface of either axons or dendrites based on the properties of the myosin motor with which they interact.
Collapse
|
31
|
Vacher H, Yang JW, Cerda O, Autillo-Touati A, Dargent B, Trimmer JS. Cdk-mediated phosphorylation of the Kvβ2 auxiliary subunit regulates Kv1 channel axonal targeting. ACTA ACUST UNITED AC 2011; 192:813-24. [PMID: 21357749 PMCID: PMC3051814 DOI: 10.1083/jcb.201007113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of Kvβ2 releases Kv1 channels from microtubules to control their specific distribution at the axonal membrane. Kv1 channels are concentrated at specific sites in the axonal membrane, where they regulate neuronal excitability. Establishing these distributions requires regulated dissociation of Kv1 channels from the neuronal trafficking machinery and their subsequent insertion into the axonal membrane. We find that the auxiliary Kvβ2 subunit of Kv1 channels purified from brain is phosphorylated on serine residues 9 and 31, and that cyclin-dependent kinase (Cdk)–mediated phosphorylation at these sites negatively regulates the interaction of Kvβ2 with the microtubule plus end–tracking protein EB1. Endogenous Cdks, EB1, and Kvβ2 phosphorylated at serine 31 are colocalized in the axons of cultured hippocampal neurons, with enrichment at the axon initial segment (AIS). Acute inhibition of Cdk activity leads to intracellular accumulation of EB1, Kvβ2, and Kv1 channel subunits within the AIS. These studies reveal a new regulatory mechanism for the targeting of Kv1 complexes to the axonal membrane through the reversible Cdk phosphorylation-dependent binding of Kvβ2 to EB1.
Collapse
Affiliation(s)
- Hélène Vacher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Cui J, Wang Z, Cheng Q, Lin R, Zhang XM, Leung PS, Copeland NG, Jenkins NA, Yao KM, Huang JD. Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency. Diabetes 2011; 60:320-30. [PMID: 20870970 PMCID: PMC3012189 DOI: 10.2337/db09-1078] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Suppression of Kinesin-1 by antisense oligonucleotides, or overexpression of dominant-negative acting kinesin heavy chain, has been reported to affect the sustained phase of glucose-stimulated insulin secretion in β-cells in vitro. In this study, we examined the in vivo physiological role of Kinesin-1 in β-cell development and function. RESEARCH DESIGN AND METHODS A Cre-LoxP strategy was used to generate conditional knockout mice in which the Kif5b gene is specifically inactivated in pancreatic β-cells. Physiological and histological analyses were carried out in Kif5b knockout mice as well as littermate controls. RESULTS Mice with β-cell specific deletion of Kif5b (Kif5b(fl/)⁻:RIP2-Cre) displayed significantly retarded growth as well as slight hyperglycemia in both nonfasting and 16-h fasting conditions compared with control littermates. In addition, Kif5b(fl/)⁻:RIP2-Cre mice displayed significant glucose intolerance, which was not due to insulin resistance but was related to an insulin secretory defect in response to glucose challenge. These defects of β-cell function in mutant mice were not coupled with observable changes in islet morphology, islet cell composition, or β-cell size. However, compared with controls, pancreas of Kif5b(fl/)⁻:RIP2-Cre mice exhibited both reduced islet size and increased islet number, concomitant with an increased insulin vesicle density in β-cells. CONCLUSIONS In addition to being essential for maintaining glucose homeostasis and regulating β-cell function, Kif5b may be involved in β-cell development by regulating β-cell proliferation and insulin vesicle synthesis.
Collapse
Affiliation(s)
- Ju Cui
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Zai Wang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qianni Cheng
- Department of Physiology, The Chinese University of Hong Kong, Hong Kong
| | - Raozhou Lin
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xin-Mei Zhang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Po Sing Leung
- Department of Physiology, The Chinese University of Hong Kong, Hong Kong
| | - Neal G. Copeland
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Nancy A. Jenkins
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Kwok-Ming Yao
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Corresponding author: Jian-Dong Huang, , or Kwok-Ming Yao,
| | - Jian-Dong Huang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Corresponding author: Jian-Dong Huang, , or Kwok-Ming Yao,
| |
Collapse
|
33
|
Kinesin I transports tetramerized Kv3 channels through the axon initial segment via direct binding. J Neurosci 2010; 30:15987-6001. [PMID: 21106837 DOI: 10.1523/jneurosci.3565-10.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Precise targeting of various voltage-gated ion channels to proper membrane domains is crucial for their distinct roles in neuronal excitability and synaptic transmission. How each channel protein is transported within the cytoplasm is poorly understood. Here, we report that KIF5/kinesin I transports Kv3.1 voltage-gated K(+) (Kv) channels through the axon initial segment (AIS) via direct binding. First, we have identified a novel interaction between Kv3.1 and KIF5, confirmed by immunoprecipitation from mouse brain lysates and by pull-down assays with exogenously expressed proteins. The interaction is mediated by a direct binding between the Kv3.1 N-terminal T1 domain and a conserved region in KIF5 tail domains, in which proper T1 tetramerization is crucial. Overexpression of this region of KIF5B markedly reduces axonal levels of Kv3.1bHA. In mature hippocampal neurons, endogenous Kv3.1b and KIF5 colocalize. Suppressing the endogenous KIF5B level by RNA interference significantly reduces the Kv3.1b axonal level. Furthermore, mutating the Zn(2+)-binding site within T1 markedly decreases channel axonal targeting and forward trafficking, likely through disrupting T1 tetramerization and hence eliminating the binding to KIF5 tail. The mutation also alters channel activity. Interestingly, coexpression of the YFP (yellow fluorescent protein)-tagged KIF5B assists dendritic Kv3.1a and even mutants with a faulty axonal targeting motif to penetrate the AIS. Finally, fluorescently tagged Kv3.1 channels colocalize and comove with KIF5B along axons revealed by two-color time-lapse imaging. Our findings suggest that the binding to KIF5 ensures properly assembled and functioning Kv3.1 channels to be transported into axons.
Collapse
|
34
|
Silver KE, Harrison RE. Kinesin 5B is necessary for delivery of membrane and receptors during FcγR-mediated phagocytosis. THE JOURNAL OF IMMUNOLOGY 2010; 186:816-25. [PMID: 21149599 DOI: 10.4049/jimmunol.1002161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FcγR-mediated phagocytosis is a cellular event that is evolutionary conserved to digest IgG-opsonized pathogens. Pseudopod formation during phagocytosis is a limiting step in managing the uptake of particles, and in this paper, we show that the conventional kinesin is involved in both receptor and membrane delivery to the phagocytic cup. Expression of a mutant kinesin isoform (GFP dominant negative mutant of kinesin H chain [EGFP-Kif5B-DN]) in RAW264.7 cells significantly reduced binding of IgG-sheep RBCs when macrophages were faced with multiple encounters with opsonized particles. Scanning electron microscopy analysis of EGFP-Kif5B-DN-expressing cells challenged with two rounds of IgG-sheep RBCs showed sparse, extremely thin pseudopods. We saw disrupted Rab11 trafficking to the phagocytic cup in EGFP-Kif5B-DN-transfected cells. Our particle overload assays also implicated phagosome membrane recycling in pseudopod formation. We observed reduced phagosome fission and trafficking in mutant kinesin-expressing cells, as well as reduced cell surface expression of FcγRs and Mac-1 receptors. In conclusion, anterograde trafficking via kinesin is essential for both receptor recycling from the phagosome and delivery of Rab11-containing membrane stores to effect broad and functional pseudopods during FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Kristen E Silver
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4 Canada
| | | |
Collapse
|
35
|
Abstract
Concerted actions of various ion channels that are precisely targeted along axons are crucial for action potential initiation and propagation, and neurotransmitter release. However, the dynamics of channel protein transport in axons remain unknown. Here, using time-lapse imaging, we found fluorescently tagged Kv1.2 voltage-gated K(+) channels (YFP-Kv1.2) moved bi-directionally in discrete puncta along hippocampal axons. Expressing Kvbeta2, a Kv1 accessory subunit, markedly increased the velocity, the travel distance, and the percentage of moving time of these puncta in both anterograde and retrograde directions. Suppressing the Kvbeta2-associated protein, plus-end binding protein EB1 or kinesin II/KIF3A, by siRNA, significantly decreased the velocity of YFP-Kv1.2 moving puncta in both directions. Kvbeta2 mutants with disrupted either Kv1.2-Kvbeta2 binding or Kvbeta2-EB1 binding failed to increase the velocity of YFP-Kv1.2 puncta, confirming a central role of Kvbeta2. Furthermore, fluorescently tagged Kv1.2 and Kvbeta2 co-moved along axons. Surprisingly, when co-moving with Kv1.2 and Kvbeta2, EB1 appeared to travel markedly faster than its plus-end tracking. Finally, using fission yeast S. pombe expressing YFP-fusion proteins as reference standards to calibrate our microscope, we estimated the numbers of YFP-Kv1.2 tetramers in axonal puncta. Taken together, our results suggest that proper amounts of Kv1 channels and their associated proteins are required for efficient transport of Kv1 channel proteins along axons.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Akhavan A. Motorized traffic of a cardiac ion channel: implication of conventional kinesin in transport of Kv1.5 channels to the plasma membrane. J Physiol 2010; 588:903-4. [PMID: 20231146 DOI: 10.1113/jphysiol.2009.186692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Armin Akhavan
- California Pacific Medical Center Research, Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA.
| |
Collapse
|
37
|
Zadeh AD, Cheng Y, Xu H, Wong N, Wang Z, Goonasekara C, Steele DF, Fedida D. Kif5b is an essential forward trafficking motor for the Kv1.5 cardiac potassium channel. J Physiol 2009; 587:4565-74. [PMID: 19675065 DOI: 10.1113/jphysiol.2009.178442] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have investigated the role of the kinesin I isoform Kif5b in the trafficking of a cardiac voltage-gated potassium channel, Kv1.5. In Kv1.5-expressing HEK293 cells and H9c2 cardiomyoblasts, current densities were increased from control levels of 389 +/- 50.0 and 317 +/- 50.3 pA pF(1), respectively, to 614 +/- 74.3 and 580 +/- 90.9 pA pF(1) in cells overexpressing the Kif5b motor. Overexpression of the Kif5b motor increased Kv1.5 expression additively with several manipulations that reduce channel internalization, suggesting that it is involved in the delivery of the channel to the cell surface. In contrast, expression of a Kif5b dominant negative (Kif5bDN) construct increased Kv1.5 expression non-additively with these manipulations. Thus, the dominant negative acts by indirectly inhibiting endocytosis. The increase in Kv1.5 currents induced by wild-type Kif5b was dependent on Golgi function; a 6 h treatment with Brefeldin A reduced Kv1.5 currents to control levels in Kif5b-overexpressing cells but had little effect on the increase associated with Kif5bDN expression. Finally, expression of the Kif5bDN prior to induction of Kv1.5 in a tetracycline inducible system blocked surface expression of the channel in both HEK293 cells and H9c2 cardiomyoblasts. Thus, Kif5b is essential to anterograde trafficking of a cardiac voltage-gated potassium channel.
Collapse
Affiliation(s)
- Alireza Dehghani Zadeh
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 2008; 88:1407-47. [PMID: 18923186 DOI: 10.1152/physrev.00002.2008] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific populations of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons. Much recent effort has focused on determining which of these subunits coassemble into native neuronal channel complexes, and the cellular and subcellular distributions of these complexes, as a crucial step in understanding the contribution of these channels to specific aspects of neuronal function. Here we review progress made on recent studies aimed to determine the cellular and subcellular distribution of specific ion channel subunits in mammalian brain neurons using in situ hybridization and immunohistochemistry. We also discuss the repertoire of ion channel subunits in specific neuronal compartments and implications for neuronal physiology. Finally, we discuss the emerging mechanisms for determining the discrete subcellular distributions observed for many neuronal ion channels.
Collapse
Affiliation(s)
- Helene Vacher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, California 95616-8519, USA
| | | | | |
Collapse
|
39
|
Argyropoulos G, Stütz AM, Ilnytska O, Rice T, Teran-Garcia M, Rao DC, Bouchard C, Rankinen T. KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise. Physiol Genomics 2008; 36:79-88. [PMID: 18984674 DOI: 10.1152/physiolgenomics.00003.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A genome-wide linkage scan for endurance training-induced changes in stroke volume detected a quantitative trait locus on chromosome 10p11 in white families of the HERITAGE Family Study. Dense microsatellite mapping narrowed down the linkage region to a 7 Mb area containing 16 known and 14 predicted genes. Association analyses with 90 single nucleotide polymorphisms (SNPs) provided suggestive evidence (P values from 0.03 to 0.06) for association in the kinesin heavy chain (KIF5B) gene locus in the whole cohort. The associations at the KIF5B locus were stronger (P values from 0.001 to 0.008) when the analyses were performed on linkage-informative families only (family-specific logarithm of the odds ratio scores >0.025 at peak linkage location). Resequencing the coding and regulatory regions of KIF5B revealed no new exonic SNPs. However, the putative promoter region was particularly polymorphic, containing eight SNPs with at least 5% minor allele frequency within 1850 bp upstream of the start codon. Functional analyses using promoter haplotype reporter constructs led to the identification of sequence variants that had significant effects on KIF5B promoter activity. Analogous inhibition and overexpression experiments showed that changes in KIF5B expression alter mitochondrial localization and biogenesis in a manner that could affect the ability of the heart to adjust to regular exercise. Our data suggest that KIF5B is a strong candidate gene for the response of stroke volume to regular exercise. Furthermore, training-induced changes in submaximal exercise stroke volume may be due to mitochondrial function and variation in KIF5B expression as determined by functional SNPs in its promoter.
Collapse
Affiliation(s)
- George Argyropoulos
- Energy Balance Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2. J Neurosci 2008; 28:5731-9. [PMID: 18509034 DOI: 10.1523/jneurosci.4431-07.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Postsynaptic density-93 (PSD-93)/Chapsyn-110 is a PDZ (PSD-95/Discs large/zona occludens-1) domain-containing membrane-associated guanylate kinase (MAGUK) that functions as a scaffold to assemble channels, receptors, and other signaling proteins at cell membranes. PSD-93 is highly enriched at synapses, but mice lacking this protein have no synaptic structural abnormalities, probably because of overlapping expression and redundancy with other MAGUKs. Consequently, the function of PSD-93 is not well understood. Here, we show that PSD-93, but not other MAGUKs, is enriched at the axon initial segment (AIS), where it colocalizes with Kv1.1, Kv1.2, Kv1.4, and Kvbeta2 subunit-containing K(+) channels, Caspr2, and TAG-1 (transient axonal glycoprotein-1). When coexpressed with Kv1 channels in heterologous cells, PSD-93 induces formation of large cell-surface clusters. Knockdown of PSD-93 in cultured hippocampal neurons by RNA interference disrupted Kv1 channel localization at the AIS. Similarly, PSD-93-/- mice failed to cluster Kv1 channels at the AIS of cortical and hippocampal neurons. In contrast, Caspr2, which mediates Kv1 channel clustering at the juxtaparanode, is not required for localization of Kv1 channels at the AIS. These results show PSD-93 mediates AIS accumulation of Kv1 channels independently of Caspr2.
Collapse
|
41
|
Morokuma J, Blackiston D, Levin M. KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 2008; 21:357-72. [PMID: 18453744 PMCID: PMC3632048 DOI: 10.1159/000129628] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2008] [Indexed: 01/12/2023] Open
Abstract
Several ion transporters have been implicated in left-right (LR) patterning. Here, we characterize a new component of the early bioelectrical circuit: the potassium channel KCNQ1 and its accessory subunit KCNE1. Having cloned the native Xenopus versions of both genes, we show that both are asymmetrically localized as maternal proteins during the first few cleavages of frog embryo development in a process dependent on microtubule and actin organization. Molecular loss-of-function using dominant negative constructs demonstrates that both gene products are required for normal LR asymmetry. We propose a model whereby these channels provide an exit path for K(+) ions brought in by the H(+),K(+)-ATPase. This physiological module thus allows the obligate but electroneutral H(+),K(+)-ATPase to generate an asymmetric voltage gradient on the left and right sides. Our data reveal a new, bioelectrical component of the mechanisms patterning a large-scale axis in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Junji Morokuma
- Center for Regenerative and Developmental Biology, Forsyth Institute, Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | |
Collapse
|
42
|
Yap CC, Nokes RL, Wisco D, Anderson E, Fölsch H, Winckler B. Pathway selection to the axon depends on multiple targeting signals in NgCAM. J Cell Sci 2008; 121:1514-25. [PMID: 18411247 DOI: 10.1242/jcs.022442] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Similar to most differentiated cells, both neurons and epithelial cells elaborate distinct plasma membrane domains that contain different membrane proteins. We have previously shown that the axonal cell-adhesion molecule L1/NgCAM accumulates on the axonal surface by an indirect transcytotic pathway via somatodendritic endosomes. MDCK epithelial cells similarly traffic NgCAM to the apical surface by transcytosis. In this study, we map the signals in NgCAM required for routing via the multi-step transcytotic pathway. We identify both a previously mapped tyrosine-based signal as a sufficient somatodendritic targeting signal, as well as a novel axonal targeting signal in the cytoplasmic tail of NgCAM. The axonal signal is glycine and serine rich, but only the glycine residues are required for activity. The somatodendritic signal is cis-dominant and needs to be inactivated in order for the axonal signal to be executed. Additionally, we show that the axonal cytoplasmic signal promotes apical targeting in MDCK cells. Transcytosis of NgCAM to the axon thus requires the sequential regulated execution of multiple targeting signals.
Collapse
Affiliation(s)
- Chan Choo Yap
- University of Virginia Medical School, Department of Neuroscience, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|