1
|
Yadav SC, Ganzen L, Nawy S, Kramer RH. Retinal bipolar cells borrow excitability from electrically coupled inhibitory interneurons to amplify excitatory synaptic transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601922. [PMID: 39005421 PMCID: PMC11245017 DOI: 10.1101/2024.07.03.601922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bipolar cells of the retina carry visual information from photoreceptors in the outer retina to retinal ganglion cells (RGCs) in the inner retina. Bipolar cells express L-type voltage-gated Ca2+ channels at the synaptic terminal, but generally lack other types of channels capable of regenerative activity. As a result, the flow of information from outer to inner retina along bipolar cell processes is generally passive in nature, with no opportunity for signal boost or amplification along the way. Here we report the surprising discovery that blocking voltage-gated Na+ channels profoundly reduces the synaptic output of one class of bipolar cell, the type 6 ON bipolar cell (CBC6), despite the fact that the CBC6 itself does not express voltage-gated Na+ channels. Instead, CBC6 borrows voltage-gated Na+ channels from its neighbor, the inhibitory AII amacrine cell, with whom it is connected via an electrical synapse. Thus, an inhibitory neuron aids in amplification of an excitatory signal as it moves through the retina, ensuring that small changes in the membrane potential of bipolar cells are reliably passed onto downstream RGCs.
Collapse
Affiliation(s)
- Shubhash Chandra Yadav
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Logan Ganzen
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Richard H Kramer
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| |
Collapse
|
2
|
Tsukamoto Y. Electrical synapses for a pooling layer of the convolutional neural network in retinas. Front Cell Neurosci 2023; 17:1281786. [PMID: 38026698 PMCID: PMC10648117 DOI: 10.3389/fncel.2023.1281786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
We have an example of a synergetic effect between neuroscience and connectome via artificial intelligence. The invention of Neocognitron, a machine learning algorithm, was inspired by the visual cortical circuitry for complex cells to be made by combinations of simple cells, which uses a hierarchical convolutional neural network (CNN). The CNN machine learning algorithm is powerful in classifying neuron borderlines on electron micrograph images for automatized connectomic analysis. CNN is also useful as a functional framework to analyze the neurocircuitry of the visual system. The visual system encodes visual patterns in the retina and decodes them in the corresponding cortical areas. The knowledge of evolutionarily chosen mechanisms in retinas may help the innovation of new algorithms. Since over a half-century ago, a classical style of serial section transmission electron microscopy has vastly contributed to cell biology. It is still useful to comprehensively analyze the small area of retinal neurocircuitry that is rich in natural intelligence of pattern recognition. I discuss the perspective of our study on the primary rod signal pathway in mouse and macaque retinas with special reference to electrical synapses. Photon detection under the scotopic condition needs absolute sensitivity but no intricate pattern recognition. This extreme case is regarded as the most simplified pattern recognition of the input with no autocorrelation. A comparative study of mouse and macaque retinas, where exists the 7-fold difference in linear size, may give us the underlying principle with quantitative verification of their adaptational designs of neurocircuitry.
Collapse
Affiliation(s)
- Yoshihiko Tsukamoto
- Department of Biology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Studio EM-Retina, Satonaka, Nishinomiya, Hyogo, Japan
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
3
|
Eleftheriou CG, Wright P, Allen AE, Elijah D, Martial FP, Lucas RJ. Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Front Neurosci 2020; 14:320. [PMID: 32317928 PMCID: PMC7147324 DOI: 10.3389/fnins.2020.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and project to central targets, allowing them to contribute to both image-forming and non-image forming vision. Recent studies have highlighted chemical and electrical synapses between ipRGCs and neurons of the inner retina, suggesting a potential influence from the melanopsin-born signal to affect visual processing at an early stage of the visual pathway. We investigated melanopsin responses in ganglion cell layer (GCL) neurons of both intact and dystrophic mouse retinas using 256 channel multi-electrode array (MEA) recordings. A wide 200 μm inter-electrode spacing enabled a pan-retinal visualization of melanopsin's influence upon GCL activity. Upon initial stimulation of dystrophic retinas with a long, bright light pulse, over 37% of units responded with an increase in firing (a far greater fraction than can be expected from the anatomically characterized number of ipRGCs). This relatively widespread response dissipated with repeated stimulation even at a quite long inter-stimulus interval (ISI; 120 s), to leave a smaller fraction of responsive units (<10%; more in tune with the predicted number of ipRGCs). Visually intact retinas appeared to lack such widespread melanopsin responses indicating that it is a feature of dystrophy. Taken together, our data reveal the potential for anomalously widespread melanopsin responses in advanced retinal degeneration. These could be used to probe the functional reorganization of retinal circuits in degeneration and should be taken into account when using retinally degenerate mice as a model of disease.
Collapse
Affiliation(s)
- Cyril G. Eleftheriou
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, United States
| | - Phillip Wright
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Elijah
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Goaillard JM, Moubarak E, Tapia M, Tell F. Diversity of Axonal and Dendritic Contributions to Neuronal Output. Front Cell Neurosci 2020; 13:570. [PMID: 32038171 PMCID: PMC6987044 DOI: 10.3389/fncel.2019.00570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Our general understanding of neuronal function is that dendrites receive information that is transmitted to the axon, where action potentials (APs) are initiated and propagated to eventually trigger neurotransmitter release at synaptic terminals. Even though this canonical division of labor is true for a number of neuronal types in the mammalian brain (including neocortical and hippocampal pyramidal neurons or cerebellar Purkinje neurons), many neuronal types do not comply with this classical polarity scheme. In fact, dendrites can be the site of AP initiation and propagation, and even neurotransmitter release. In several interneuron types, all functions are carried out by dendrites as these neurons are devoid of a canonical axon. In this article, we present a few examples of "misbehaving" neurons (with a non-canonical polarity scheme) to highlight the diversity of solutions that are used by mammalian neurons to transmit information. Moreover, we discuss how the contribution of dendrites and axons to neuronal excitability may impose constraints on the morphology of these compartments in specific functional contexts.
Collapse
Affiliation(s)
- Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Estelle Moubarak
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Mónica Tapia
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Fabien Tell
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| |
Collapse
|
5
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Murphy-Baum BL, Taylor WR. Diverse inhibitory and excitatory mechanisms shape temporal tuning in transient OFF α ganglion cells in the rabbit retina. J Physiol 2018; 596:477-495. [PMID: 29222817 DOI: 10.1113/jp275195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/23/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurons combine excitatory and inhibitory signals to perform computations. In the retina, interactions between excitation and inhibition enable neurons to detect specific visual features. We describe how several excitatory and inhibitory mechanisms work together to allow transient OFF α ganglion cells in the rabbit retina to respond selectively to high temporal frequencies and thus detect faster image motion. The weightings of these different mechanisms change with the contrast and spatiotemporal properties of the visual input, and thereby support temporal tuning in α cells over a range of visual conditions. The results help us understand how ganglion cells selectively integrate excitatory and inhibitory signals to extract specific information from the visual input. ABSTRACT The 20 to 30 types of ganglion cell in the mammalian retina represent parallel signalling pathways that convey different information to the brain. α ganglion cells are selective for high temporal frequencies in visual inputs, which makes them particularly sensitive to rapid motion. Although α ganglion cells have been studied in several species, the synaptic basis for their selective temporal tuning remains unclear. Here, we analyse excitatory synaptic inputs to transient OFF α ganglion cells (t-OFF α GCs) in the rabbit retina. We show that convergence of excitatory and inhibitory synaptic inputs within the bipolar cell terminals presynaptic to the t-OFF α GCs shifts the temporal tuning to higher temporal frequencies. GABAergic inhibition suppresses the excitatory input at low frequencies, but potentiates it at high frequencies. Crossover glycinergic inhibition and sodium channel activity in the presynaptic bipolar cells also potentiate high frequency excitatory inputs. We found differences in the spatial and temporal properties, and contrast sensitivities of these mechanisms. These differences in stimulus selectivity allow these mechanisms to generate bandpass temporal tuning of t-OFF α GCs over a range of visual conditions.
Collapse
Affiliation(s)
- Benjamin L Murphy-Baum
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, 3375 SW Terwilliger Boulevard, Portland, OR, 97239, USA
| | - W Rowland Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, 3375 SW Terwilliger Boulevard, Portland, OR, 97239, USA
| |
Collapse
|
7
|
The TRPM1 Channel Is Required for Development of the Rod ON Bipolar Cell-AII Amacrine Cell Pathway in the Retinal Circuit. J Neurosci 2017; 37:9889-9900. [PMID: 28899920 DOI: 10.1523/jneurosci.0824-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1-/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development.SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate reception, or transduction channel function. We found that the TRPM1 transduction channel is required for the development of rod bipolar cells and their synaptic formation with subsequent neurons, independently of glutamate transmission. This study advances our understanding of neurotransmission-mediated retinal circuit refinement.
Collapse
|
8
|
Tsukamoto Y, Omi N. Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina. J Comp Neurol 2014; 521:3541-55. [PMID: 23749582 PMCID: PMC4265793 DOI: 10.1002/cne.23370] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/07/2013] [Accepted: 05/23/2013] [Indexed: 11/09/2022]
Abstract
Retinal microcircuits for night vision at the absolute threshold are required to relay a single-photon rod signal reliably to ganglion cells via rod bipolar (RB) cells and AII amacrine cells. To assess the noise reduction of intercellular signal transmission in this rod-specific pathway, we quantified its synaptic connectivity by 3D reconstruction of a series of electron micrographs. In most cases (94%), each rod made ribbon synaptic contacts onto two adjacent RB cells. Conversely, each RB cell was contacted by 25 rods. Each RB axon terminal contacted four or five AII amacrine cells via 53 ribbon synapses. Thus, the signal from one rod may be represented as 106 replicates at two RB axons. Moreover, the two adjacent RB cells contacted two to four AII amacrine cells in common, where the signals relayed by two RB cells were reunited. In more detail, over 50% of each RB output was directed predominantly to a single, preferred AII amacrine cell, although each RB cell also separately contacted another one to three AII amacrine cells. Most of the replicate signals at two RB axons were collected on a few AII amacrine cells via reunions, dominant connections, and electrical coupling by AII-AII gap junctions. Thus the original signal may be reliably represented by signal amplification with focal accumulation without gathering unnecessary noise from a wide surrounding area. This allocation of RB-AII synaptic contacts may serve as the structural basis for the physiological properties of the AII single-photon response that include high amplification, local adaptation, and regenerative acceleration.
Collapse
Affiliation(s)
- Yoshihiko Tsukamoto
- Studio Retina, Satonaka, Nishinomiya, Hyogo, 663-8183, Japan; Department of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | | |
Collapse
|
9
|
NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina. J Neurosci 2013; 33:16045-59. [PMID: 24107939 DOI: 10.1523/jneurosci.1249-13.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the primate visual system, the ganglion cells of the magnocellular pathway underlie motion and flicker detection and are relatively transient, while the more sustained ganglion cells of the parvocellular pathway have comparatively lower temporal resolution, but encode higher spatial frequencies. Although it is presumed that functional differences in bipolar cells contribute to the tuning of the two pathways, the properties of the relevant bipolar cells have not yet been examined in detail. Here, by making patch-clamp recordings in acute slices of macaque retina, we show that the bipolar cells within the magnocellular pathway, but not the parvocellular pathway, exhibit voltage-gated sodium (NaV), T-type calcium (CaV), and hyperpolarization-activated, cyclic nucleotide-gated (HCN) currents, and can generate action potentials. Using immunohistochemistry in macaque and human retinae, we show that NaV1.1 is concentrated in an axon initial segment (AIS)-like region of magnocellular pathway bipolar cells, a specialization not seen in transient bipolar cells of other vertebrates. In contrast, CaV3.1 channels were localized to the somatodendritic compartment and proximal axon, but were excluded from the AIS, while HCN1 channels were concentrated in the axon terminal boutons. Simulations using a compartmental model reproduced physiological results and indicate that magnocellular pathway bipolar cells initiate spikes in the AIS. Finally, we demonstrate that NaV channels in bipolar cells augment excitatory input to parasol ganglion cells of the magnocellular pathway. Overall, the results demonstrate that selective expression of voltage-gated channels contributes to the establishment of parallel processing in the major visual pathways of the primate retina.
Collapse
|
10
|
Hartveit E, Veruki ML. Electrical synapses between AII amacrine cells in the retina: Function and modulation. Brain Res 2012; 1487:160-72. [PMID: 22776293 DOI: 10.1016/j.brainres.2012.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/09/2012] [Indexed: 12/24/2022]
Abstract
Adaptation enables the visual system to operate across a large range of background light intensities. There is evidence that one component of this adaptation is mediated by modulation of gap junctions functioning as electrical synapses, thereby tuning and functionally optimizing specific retinal microcircuits and pathways. The AII amacrine cell is an interneuron found in most mammalian retinas and plays a crucial role for processing visual signals in starlight, twilight and daylight. AII amacrine cells are connected to each other by gap junctions, potentially serving as a substrate for signal averaging and noise reduction, and there is evidence that the strength of electrical coupling is modulated by the level of background light. Whereas there is extensive knowledge concerning the retinal microcircuits that involve the AII amacrine cell, it is less clear which signaling pathways and intracellular transduction mechanisms are involved in modulating the junctional conductance between electrically coupled AII amacrine cells. Here we review the current state of knowledge, with a focus on the recent evidence that suggests that the modulatory control involves activity-dependent changes in the phosphorylation of the gap junction channels between AII amacrine cells, potentially linked to their intracellular Ca(2+) dynamics. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Espen Hartveit
- University of Bergen, Department of Biomedicine, Bergen, Norway.
| | | |
Collapse
|
11
|
Cembrowski MS, Logan SM, Tian M, Jia L, Li W, Kath WL, Riecke H, Singer JH. The mechanisms of repetitive spike generation in an axonless retinal interneuron. Cell Rep 2012; 1:155-66. [PMID: 22832164 DOI: 10.1016/j.celrep.2011.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 11/19/2022] Open
Abstract
Several types of retinal interneurons exhibit spikes but lack axons. One such neuron is the AII amacrine cell, in which spikes recorded at the soma exhibit small amplitudes (<10 mV) and broad time courses (>5 ms). Here, we used electrophysiological recordings and computational analysis to examine the mechanisms underlying this atypical spiking. We found that somatic spikes likely represent large, brief action potential-like events initiated in a single, electrotonically distal dendritic compartment. In this same compartment, spiking undergoes slow modulation, likely by an M-type K conductance. The structural correlate of this compartment is a thin neurite that extends from the primary dendritic tree: local application of TTX to this neurite, or excision of it, eliminates spiking. Thus, the physiology of the axonless AII is much more complex than would be anticipated from morphological descriptions and somatic recordings; in particular, the AII possesses a single dendritic structure that controls its firing pattern.
Collapse
Affiliation(s)
- Mark S Cembrowski
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell. J Neurosci 2011; 31:14654-9. [PMID: 21994381 DOI: 10.1523/jneurosci.1861-11.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In axon-bearing neurons, action potentials conventionally initiate at the axon initial segment (AIS) and are important for neuron excitability and cell-to-cell communication. However in axonless neurons, spike origin has remained unclear. Here we report in the axonless, spiking AII amacrine cell of the mouse retina a dendritic process sharing organizational and functional similarities with the AIS. This process was revealed through viral-mediated expression of channelrhodopsin-2-GFP with the AIS-targeting motif of sodium channels (Na(v)II-III). The AII processes showed clustering of voltage-gated Na+ channel 1.1 (Na(v)1.1) as well as AIS markers ankyrin-G and neurofascin. Furthermore, Na(v)II-III targeting disrupted Na(v)1.1 clustering in the AII process, which drastically decreased Na+ current and abolished the ability of the AII amacrine cell to generate spiking. Our findings indicate that, despite lacking an axon, spiking in the axonless neuron can originate at a specialized AIS-like process.
Collapse
|
13
|
Abstract
Gap junctions are frequently observed in the adult vertebrate retina. It has been shown that gap junctions function as passive electrotonic pathways and play various roles, such as noise reduction, synchronization of electrical activities, regulation of the receptive field size, and transmission of rod signals to cone pathways. The presence of gap junctions between bipolar cells has been reported in various species but their functions are not known. In the present study, we applied dual whole-cell clamp techniques to the adult goldfish retina to elucidate the functions of gap junctions between ON-type bipolar cells with a giant axon terminal (Mb1-BCs). Electrophysiological and immunohistochemical experiments revealed that Mb1-BCs were coupled with each other through gap junctions that were located at the distal dendrites. The coupling conductance between Mb1-BCs under light-adapted conditions was larger than that under dark-adapted conditions. The gap junctions showed neither rectification nor voltage dependence, and behaved as a low-pass filter. Mb1-BCs could generate Ca(2+) spikes in response to depolarization, especially under dark-adapted conditions. The Ca(2+) spike evoked electrotonic depolarization through gap junctions in neighboring Mb1-BCs, and the depolarization in turn could trigger Ca(2+) spikes with a time lag. A brief depolarizing pulse applied to an Mb1-BC evoked a long-lasting EPSC in the postsynaptic ganglion cell. The EPSC was shortened in duration when gap junctions were pharmacologically or mechanically impaired. These results suggest that the spread of Ca(2+) spikes through gap junctions between bipolar cells may play a key role in lateral interactions in the adult retina.
Collapse
|
14
|
Voltage-gated Na channels in AII amacrine cells accelerate scotopic light responses mediated by the rod bipolar cell pathway. J Neurosci 2010; 30:4650-9. [PMID: 20357115 DOI: 10.1523/jneurosci.4212-09.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During night (i.e., scotopic) vision in mammals, rod photoreceptor output is conveyed to ganglion cells (GCs), the output cells of the retina, by a specialized neural circuit comprising rod bipolar (RB) and AII amacrine cells. Here, we examined how intrinsic postsynaptic conductances in AIIs contribute to transmission of rod-derived signals. Using paired recordings from synaptically coupled RBs and AIIs, we found that a voltage-gated Na conductance in AII amacrines accelerated EPSPs arising from RB synaptic input. EPSPs also could be amplified by the Na conductance when AIIs were hyperpolarized below resting membrane potential, thereby increasing the availability of Na channels. AII amacrines are coupled electrically, and coupled AII amacrines likely receive common input from individual RBs. Na channel-mediated effects on EPSPs, however, appeared to occur at the single-cell rather than the AII network level. By recording light-evoked synaptic currents from GCs, we determined that the Na channel-dependent acceleration, but not amplification, of RB output by AII amacrines is reflected in the dynamics of AII synaptic output to retinal ganglion cells: synaptic inputs to both ON and OFF GCs are slowed equivalently, although not attenuated in amplitude, when Na channels in AIIs are blocked. Thus, during scotopic vision, Na conductances in AIIs serve to accelerate RB output.
Collapse
|
15
|
Veruki ML, Oltedal L, Hartveit E. Electrical Synapses Between AII Amacrine Cells: Dynamic Range and Functional Consequences of Variation in Junctional Conductance. J Neurophysiol 2008; 100:3305-22. [DOI: 10.1152/jn.90957.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AII amacrine cells form a network of electrically coupled interneurons in the mammalian retina and tracer coupling studies suggest that the junctional conductance ( Gj) can be modulated. However, the dynamic range of Gjand the functional consequences of varying Gjover the dynamic range are unknown. Here we use whole cell recordings from pairs of coupled AII amacrine cells in rat retinal slices to provide direct evidence for physiological modulation of Gj, appearing as a time-dependent increase from about 500 pS to a maximum of about 3,000 pS after 30–90 min of recording. The increase occurred in recordings with low- but not high-resistance pipettes, suggesting that it was related to intracellular washout and perturbation of a modulatory system. Computer simulations of a network of electrically coupled cells verified that our recordings were able to detect and quantify changes in Gjover a large range. Dynamic-clamp electrophysiology, with insertion of electrical synapses between AII amacrine cells, allowed us to finely and reversibly control Gjwithin the same range observed for physiologically coupled cells and to examine the quantitative relationship between Gjand steady-state coupling coefficient, synchronization of subthreshold membrane potential fluctuations, synchronization and transmission of action potentials, and low-pass filter characteristics. The range of Gjvalues over which signal transmission was modulated depended strongly on the specific functional parameter examined, with the largest range observed for action potential transmission and synchronization, suggesting that the full range of Gjvalues observed during spontaneous run-up of coupling could represent a physiologically relevant dynamic range.
Collapse
|
16
|
Schubert T, Kerschensteiner D, Eggers ED, Misgeld T, Kerschensteiner M, Lichtman JW, Lukasiewicz PD, Wong ROL. Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific. J Neurophysiol 2008; 100:304-16. [PMID: 18436633 DOI: 10.1152/jn.90202.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic integration is modulated by inhibition onto the dendrites of postsynaptic cells. However, presynaptic inhibition at axonal terminals also plays a critical role in the regulation of neurotransmission. In contrast to the development of inhibitory synapses onto dendrites, GABAergic/glycinergic synaptogenesis onto axon terminals has not been widely studied. Because retinal bipolar cells receive subclass-specific patterns of GABAergic and glycinergic presynaptic inhibition, they are a good model for studying the development of inhibition at axon terminals. Here, using whole cell recording methods and transgenic mice in which subclasses of retinal bipolar cells are labeled, we determined the temporal sequence and patterning of functional GABAergic and glycinergic input onto the major subclasses of bipolar cells. We found that the maturation of GABAergic and glycinergic synapses onto the axons of rod bipolar cells (RBCs), on-cone bipolar cells (ON-CBCs) and off-cone bipolar cells (OFF-CBCs) were temporally distinct: spontaneous chloride-mediated currents are present in RBCs earlier in development compared with ON- and OFF-CBC, and RBCs receive GABAergic and glycinergic input simultaneously, whereas in OFF-CBCs, glycinergic transmission emerges before GABAergic transmission. Because on-CBCs show little inhibitory activity, GABAergic and glycinergic events could not be pharmacologically distinguished for these bipolar cells. The balance of GABAergic and glycinergic input that is unique to RBCs and OFF-CBCs is established shortly after the onset of synapse formation and precedes visual experience. Our data suggest that presynaptic modulation of glutamate transmission from bipolar cells matures rapidly and is differentially coordinated for GABAergic and glycinergic synapses onto distinct bipolar cell subclasses.
Collapse
Affiliation(s)
- Timm Schubert
- Department of Biological Structure, University of Washington, Seattle, Washington 98195-7420, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Synaptic transmission from photoreceptors to all types of ON bipolar cells is primarily mediated by the mGluR6 receptor. This receptor, which is apparently expressed uniquely in the nervous system by ON bipolar cells, couples negatively to a nonselective cation channel. This arrangement results in a sign reversal at photoreceptor/ON bipolar cell synapse, which is necessary in order to establish parallel ON and OFF pathways in the retina. The synapse is an important target for second messenger molecules that are known to modulate synaptic transmission elsewhere in the nervous system, second messengers that act on a time scale ranging from milliseconds to minutes. This review focuses on two of these molecules, Ca2+ and cGMP, summarizing our current knowledge of how they modulate gain at the photoreceptor/ON bipolar cell synapse, as well as their proposed sites of action within the mGluR6 cascade. The implications of plasticity at this synapse for retinal function will also be examined.
Collapse
Affiliation(s)
- Josefin Snellman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, SHM-B103, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
18
|
Kaneko Y, Watanabe SI. Expression of Nav1.1 in rat retinal AII amacrine cells. Neurosci Lett 2007; 424:83-8. [PMID: 17709186 DOI: 10.1016/j.neulet.2007.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/19/2007] [Accepted: 07/16/2007] [Indexed: 12/19/2022]
Abstract
In retinal ganglion cells (RGCs), the expression of various types of voltage-gated sodium channel (Nav) alpha-subunits (Nav1.1, Nav1.2, Nav1.3, and Nav1.6) has been reported. Like RGCs, certain subsets of retinal amacrine cells, including AII amacrine cells, generate tetrodotoxin (TTX)-sensitive action potentials in response to light; however, the Nav subtypes expressed in these cells have not been identified. We examined the Nav subtypes expressed in rat retinal amacrine cells by in situ hybridization (ISH) using RNA probes specific for TTX-sensitive Na(v)s (Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7). Our results confirmed that Nav1.1, Nav1.2, Nav1.3, and Nav1.6 are localized in the ganglion cell layer (GCL). Interestingly, Nav1.1 was expressed not only in the GCL, but also in the inner nuclear layer (INL). The cell bodies of the Nav1.1-positive cells in the INL were located at the INL/inner plexiform layer (IPL) border. The cell bodies of AII amacrine cells are located close to the INL/IPL border, and these cells can be labeled with antibodies against parvalbumin (PV). Therefore, we combined ISH with immunohistochemistry and discovered that most of the PV-immunoreactive cells located at the INL/IPL border express Nav1.1. Our results show that AII amacrine cells express Nav1.1.
Collapse
Affiliation(s)
- Yuko Kaneko
- Department of Physiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan.
| | | |
Collapse
|