1
|
Elorriaga V, Pierani A, Causeret F. Cajal-retzius cells: Recent advances in identity and function. Curr Opin Neurobiol 2023; 79:102686. [PMID: 36774666 DOI: 10.1016/j.conb.2023.102686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 02/12/2023]
Abstract
Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France.
| |
Collapse
|
2
|
Anstötz M, Lee SK, Maccaferri G. Glutamate released by Cajal-Retzius cells impacts specific hippocampal circuits and behaviors. Cell Rep 2022; 39:110822. [PMID: 35584670 PMCID: PMC9190441 DOI: 10.1016/j.celrep.2022.110822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022] Open
Abstract
The impact of Cajal-Retzius cells on the regulation of hippocampal circuits and related behaviors is unresolved. Here, we directly address this issue by impairing the glutamatergic output of Cajal-Retzius cells with the conditional ablation of vGluT2, which is their main vesicular glutamate transporter. Although two distinct conditional knockout lines do not reveal major alterations in hippocampal-layer organization and dendritic length of principal neurons or GABAergic cells, we find parallel deficits in specific hippocampal-dependent behaviors and in their putative underlying microcircuits. First, conditional knockout animals show increased innate anxiety and decreased feedforward GABAergic inhibition on dentate gyrus granule cells. Second, we observe impaired spatial memory processing, which is associated with decreased spine density and reduced AMPA/NMDA ratio of postsynaptic responses at the perforant- and entorhino-hippocampal pathways. We conclude that glutamate synaptically released by Cajal-Retzius cells is critical for the regulation of hippocampal microcircuits and specific types of behaviors. Anstötz et al. report that postnatal hippocampal Cajal-Retzius cells use vGluT2 as their main glutamate vesicular transporter. Conditional inactivation of vGluT2 in mice reveals both behavioral and network alterations. The observed results indicate the involvement of Cajal-Retzius cells in the regulation of innate anxiety/spatial memory and in potentially related neuronal circuits.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Sun Kyong Lee
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus. eNeuro 2020; 7:ENEURO.0516-19.2019. [PMID: 31907212 PMCID: PMC7004485 DOI: 10.1523/eneuro.0516-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023] Open
Abstract
The study of brain circuits depends on a clear understanding of the role played by different neuronal populations. Therefore, the unambiguous identification of different cell types is essential for the correct interpretation of experimental data. Here, we emphasize to the broader neuroscience community the importance of recognizing the persistent presence of Cajal-Retzius cells in the molecular layers of the postnatal hippocampus, and then we suggest a variety of criteria for distinguishing Cajal-Retzius cells from other neurons of the hippocampal molecular layers, such as GABAergic interneurons and semilunar granule cells. The toolbox of criteria that we have investigated (in male and female mice) can be useful both for anatomical and functional experiments, and relies on the quantitative study of neuronal somatic/nuclear morphology, location and developmental profile, expression of specific molecular markers (GAD67, reelin, COUP-TFII, calretinin, and p73), single cell anatomy, and electrophysiological properties. We conclude that Cajal-Retzius cells are small, non-GABAergic neurons that are tightly associated with the hippocampal fissure (HF), and that, within this area of interest, selectively express the proteins p73 and calretinin. We highlight the dangers of using markers such as reelin or COUP-TFII to identify Cajal-Retzius cells or GABAergic interneurons because of their poor specificity. Lastly, we examine neurons of the postnatal hippocampal molecular layers and show cell type-specific differences in their dendritic/axonal morphologies and density distributions, as well as in their membrane properties and spontaneous synaptic inputs. These parameters can be used to distinguish biocytin-filled and/or electrophysiologically recorded neurons and should be considered to avoid interpretational mistakes.
Collapse
|
4
|
Ratié L, Desmaris E, García-Moreno F, Hoerder-Suabedissen A, Kelman A, Theil T, Bellefroid EJ, Molnár Z. Loss of Dmrt5 Affects the Formation of the Subplate and Early Corticogenesis. Cereb Cortex 2019; 30:3296-3312. [PMID: 31845734 PMCID: PMC7197206 DOI: 10.1093/cercor/bhz310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dmrt5 (Dmrta2) and Dmrt3 are key regulators of cortical patterning and progenitor proliferation and differentiation. In this study, we show an altered apical to intermediate progenitor transition, with a delay in SP neurogenesis and premature birth of Ctip2+ cortical neurons in Dmrt5−/− mice. In addition to the cortical progenitors, DMRT5 protein appears present in postmitotic subplate (SP) and marginal zone neurons together with some migrating cortical neurons. We observed the altered split of preplate and the reduced SP and disturbed radial migration of cortical neurons into cortical plate in Dmrt5−/− brains and demonstrated an increase in the proportion of multipolar cells in primary neuronal cultures from Dmrt5−/− embryonic brains. Dmrt5 affects cortical development with specific time sensitivity that we described in two conditional mice with slightly different deletion time. We only observed a transient SP phenotype at E15.5, but not by E18.5 after early (Dmrt5lox/lox;Emx1Cre), but not late (Dmrt5lox/lox;NestinCre) deletion of Dmrt5. SP was less disturbed in Dmrt5lox/lox;Emx1Cre and Dmrt3−/− brains than in Dmrt5−/− and affects dorsomedial cortex more than lateral and caudal cortex. Our study demonstrates a novel function of Dmrt5 in the regulation of early SP formation and radial cortical neuron migration. Summary Statement Our study demonstrates a novel function of Dmrt5 in regulating marginal zone and subplate formation and migration of cortical neurons to cortical plate.
Collapse
Affiliation(s)
- Leslie Ratié
- ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041 Gosselies, Belgium.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Elodie Desmaris
- ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Fernando García-Moreno
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, E-48940 Leioa, Spain.,IKERBASQUE Foundation, 48013 Bilbao, Spain
| | | | - Alexandra Kelman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
5
|
Anstötz M, Karsak M, Rune GM. Integrity of Cajal-Retzius cells in the reeler-mouse hippocampus. Hippocampus 2018; 29:550-565. [PMID: 30394609 DOI: 10.1002/hipo.23049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Cajal-Retzius (CR) cells are early-born glutamatergic neurons that are primarily known as the early main source of the signal protein Reelin. In the reeler mutant, the absence of Reelin causes severe defects in the radial migration of neurons, resulting in abnormal cortical layering. To date, the exact morphological properties of CR-cells independent of Reelin are unknown. With this in view, we studied the ontogenesis, density, and distribution of CR-cells in reeler mice that were cross-bred with a CXCR4-EGFP reporter mouse line, thus enabling us to clearly identify CR-cells positions in the disorganized hippocampus of the reeler mouse. As evidenced by morphological analysis, differences were found regarding CR-cell distribution and density: generally, we found fewer CR-cells in the developing and adult reeler hippocampus as compared to the hippocampus of wild-type animals (WT); however, in reeler mice, CR-cells were much more closely associated to the hippocampal fissure (HF), resulting in relatively higher local CR-cell densities. This higher local cell density was accompanied by stronger immunoreactivity of the CXCR4 ligand, stroma-derived factor-1 (SDF-1) that is known to regulate CR-cell positioning. Importantly, confocal microscopy indicates an integration of CR-cells into the developing and adult hippocampal network in reeler mice, raising evidence that network integration of CR-cells might be independent of Reelin.
Collapse
Affiliation(s)
- Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
6
|
Luhmann HJ, Kirischuk S, Kilb W. The Superior Function of the Subplate in Early Neocortical Development. Front Neuroanat 2018; 12:97. [PMID: 30487739 PMCID: PMC6246655 DOI: 10.3389/fnana.2018.00097] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
During early development the structure and function of the cerebral cortex is critically organized by subplate neurons (SPNs), a mostly transient population of glutamatergic and GABAergic neurons located below the cortical plate. At the molecular and morphological level SPNs represent a rather diverse population of cells expressing a variety of genetic markers and revealing different axonal-dendritic morphologies. Electrophysiologically SPNs are characterized by their rather mature intrinsic membrane properties and firing patterns. They are connected via electrical and chemical synapses to local and remote neurons, e.g., thalamic relay neurons forming the first thalamocortical input to the cerebral cortex. Therefore SPNs are robustly activated at pre- and perinatal stages by the sensory periphery. Although SPNs play pivotal roles in early neocortical activity, development and plasticity, they mostly disappear by programmed cell death during further maturation. On the one hand, SPNs may be selectively vulnerable to hypoxia-ischemia contributing to brain damage, on the other hand there is some evidence that enhanced survival rates or alterations in SPN distribution may contribute to the etiology of neurological or psychiatric disorders. This review aims to give a comprehensive and up-to-date overview on the many functions of SPNs during early physiological and pathophysiological development of the cerebral cortex.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
7
|
Anstötz M, Quattrocolo G, Maccaferri G. Cajal-Retzius cells and GABAergic interneurons of the developing hippocampus: Close electrophysiological encounters of the third kind. Brain Res 2018; 1697:124-133. [PMID: 30071194 DOI: 10.1016/j.brainres.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 01/24/2023]
Abstract
In contrast to the large number of studies investigating the electrophysiological properties and synaptic connectivity of hippocampal pyramidal neurons, granule cells, and GABAergic interneurons, much less is known about Cajal-Retzius cells. In this review article, we discuss the possible reasons underlying this difference, and review experimental work performed on this cell type in the hippocampus, comparing it with results obtained in the neocortex. Our main emphasis is on data obtained with in vitro electrophysiology. In particular, we address the bidirectional connectivity between Cajal-Retzius cells and GABAergic interneurons, examine their synaptic properties and propose specific functions of Cajal-Retzius cell/GABAergic interneuron microcircuits. Lastly, we discuss the potential involvement of these microcircuits in critical physiological hippocampal functions such as postnatal neurogenesis or pathological scenarios such as temporal lobe epilepsy.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Ruiz-Reig N, Andrés B, Huilgol D, Grove EA, Tissir F, Tole S, Theil T, Herrera E, Fairén A. Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. Cereb Cortex 2018; 27:2841-2856. [PMID: 27178193 DOI: 10.1093/cercor/bhw126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Current address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Eloisa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Alfonso Fairén
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| |
Collapse
|
9
|
Ascenzi M, Bony G. The building of the neocortex with non-hyperpolarizing neurotransmitters. Dev Neurobiol 2017; 77:1023-1037. [PMID: 28276653 DOI: 10.1002/dneu.22495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
The development of the neocortex requires the synergic action of several secreted molecules to achieve the right amount of proliferation, differentiation, and migration of neural cells. Neurons are well known to release neurotransmitters (NTs) in adult and a growing body of evidences describes the presence of NTs already in the embryonic brain, long before the generation of synapses. NTs are classified as inhibitory or excitatory based on the physiological responses of the target neuron. However, this view is challenged by the fact that glycine and GABA NTs are excitatory during development. Many reviews have described the role of nonhyperpolarizing GABA at this stage. Nevertheless, a global consideration of the inhibitory neurotransmitters and their downstream signaling during the embryonic cortical development is still needed. For example, taurine, the most abundant neurotransmitter during development is poorly studied regarding its role during cortical development. In the light of recent discoveries, we will discuss the functions of glycine, GABA, and taurine during embryonic cortical development with an emphasis on their downstream signaling. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1023-1037, 2017.
Collapse
Affiliation(s)
| | - Guillaume Bony
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| |
Collapse
|
10
|
Sano N, Shimogawa T, Sakaguchi H, Ioroi Y, Miyawaki Y, Morizane A, Miyamoto S, Takahashi J. Enhanced Axonal Extension of Subcortical Projection Neurons Isolated from Murine Embryonic Cortex using Neuropilin-1. Front Cell Neurosci 2017; 11:123. [PMID: 28507510 PMCID: PMC5410565 DOI: 10.3389/fncel.2017.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
The cerebral cortical tissue of murine embryo and pluripotent stem cell (PSC)-derived neurons can survive in the brain and extend axons to the spinal cord. For efficient cell integration to the corticospinal tract (CST) after transplantation, the induction or selection of cortical motor neurons is important. However, precise information about the appropriate cell population remains unclear. To address this issue, we isolated cells expressing Neuropilin-1 (NRP1), a major axon guidance molecule receptor during the early developmental stage, from E14.5 mouse embryonic frontal cortex by fluorescence-activated cell sorting. Aggregates of NRP1+ cells gradually expressed subcortical projection neuron markers, Ctip2 and VGluT1, and axon guidance molecule receptors, Robo1 and deleted in colorectal calcinoma (Dcc), in vitro, suggesting that they contained early-stage subcortical projection neurons. We transplanted NRP1+ cells into the frontal cortex of P2 neonatal mice. Compared with grafts derived from NRP1− or unsorted cells, those derived from NRP1+ cells extended a larger number of axons to the spinal cord along the CST. Our data suggest that sorting NRP1+ cells from the embryonic cerebral cortex enriches subcortical projection neurons to reconstruct the CST.
Collapse
Affiliation(s)
- Noritaka Sano
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan.,Department of Neurosurgery, Kyoto University School of MedicineKyoto, Japan
| | - Takafumi Shimogawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan.,Department of Neurosurgery, Graduate School of Medical sciences, Kyushu UniversityFukuoka, Japan
| | - Hideya Sakaguchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan
| | - Yoshihiko Ioroi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan.,Department of Neurosurgery, National Hospital Organization Himeji Medical CenterHyogo, Japan
| | - Yoshifumi Miyawaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University School of MedicineKyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto UniversityKyoto, Japan.,Department of Neurosurgery, Kyoto University School of MedicineKyoto, Japan
| |
Collapse
|
11
|
A Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci 2017; 7:brainsci7040034. [PMID: 28350371 PMCID: PMC5406691 DOI: 10.3390/brainsci7040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia patients are waiting for a treatment free of detrimental effects. Psychotic disorders are devastating mental illnesses associated with dysfunctional brain networks. Ongoing brain network gamma frequency (30–80 Hz) oscillations, naturally implicated in integrative function, are excessively amplified during hallucinations, in at-risk mental states for psychosis and first-episode psychosis. So, gamma oscillations represent a bioelectrical marker for cerebral network disorders with prognostic and therapeutic potential. They accompany sensorimotor and cognitive deficits already present in prodromal schizophrenia. Abnormally amplified gamma oscillations are reproduced in the corticothalamic systems of healthy humans and rodents after a single systemic administration, at a psychotomimetic dose, of the glutamate N-methyl-d-aspartate receptor antagonist ketamine. These translational ketamine models of prodromal schizophrenia are thus promising to work out a preventive noninvasive treatment against first-episode psychosis and chronic schizophrenia. In the present essay, transcranial electric stimulation (TES) is considered an appropriate preventive therapeutic modality because it can influence cognitive performance and neural oscillations. Here, I highlight clinical and experimental findings showing that, together, the corticothalamic pathway, the thalamus, and the glutamatergic synaptic transmission form an etiopathophysiological backbone for schizophrenia and represent a potential therapeutic target for preventive TES of dysfunctional brain networks in at-risk mental state patients against psychotic disorders.
Collapse
|
12
|
|
13
|
|
14
|
Anstötz M, Huang H, Marchionni I, Haumann I, Maccaferri G, Lübke JHR. Developmental Profile, Morphology, and Synaptic Connectivity of Cajal-Retzius Cells in the Postnatal Mouse Hippocampus. Cereb Cortex 2015; 26:855-72. [PMID: 26582498 PMCID: PMC4712808 DOI: 10.1093/cercor/bhv271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cajal–Retzius (CR) cells are early generated neurons, involved in the assembly of developing neocortical and hippocampal circuits. However, their roles in networks of the postnatal brain remain poorly understood. In order to get insights into these latter functions, we have studied their morphological and synaptic properties in the postnatal hippocampus of the CXCR4-EGFP mouse, where CR cells are easily identifiable. Our data indicate that CR cells are nonuniformly distributed along different subfields of the hippocampal formation, and that their postnatal decline is regulated in a region-specific manner. In fact, CR cells persist in distinct areas of fully mature animals. Subclasses of CR cells project and target either local (molecular layers) or distant regions [subicular complex and entorhinal cortex (EC)] of the hippocampal formation, but have similar firing patterns. Lastly, CR cells are biased toward targeting dendritic shafts compared with spines, and produce large-amplitude glutamatergic unitary postsynaptic potentials on γ-aminobutyric acid (GABA) containing interneurons. Taken together, our results suggest that CR cells are involved in a novel excitatory loop of the postnatal hippocampal formation, which potentially contributes to shaping the flow of information between the hippocampus, parahippocampal regions and entorhinal cortex, and to the low seizure threshold of these brain areas.
Collapse
Affiliation(s)
- Max Anstötz
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich 52425, Germany Institute for Neuroanatomy, University/University Hospital Hamburg, Hamburg 20246, Germany
| | - Hao Huang
- Department of Physiology, Northwestern University, Feinberg School of Medicine, IL 60611-3008, USA
| | - Ivan Marchionni
- Department of Physiology, Northwestern University, Feinberg School of Medicine, IL 60611-3008, USA Current address: Instituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova 16163, Italy
| | - Iris Haumann
- Institute for Neuroanatomy, University/University Hospital Hamburg, Hamburg 20246, Germany
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, IL 60611-3008, USA
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich 52425, Germany Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH/University Hospital Aachen, Aachen 52074, Germany JARA Translational Medicine, Jülich/Aachen, Germany
| |
Collapse
|
15
|
Migration Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of Higher-Order Cortical Areas. Curr Biol 2015; 25:2466-78. [DOI: 10.1016/j.cub.2015.08.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022]
|
16
|
Jacobs B, Lee L, Schall M, Raghanti MA, Lewandowski AH, Kottwitz JJ, Roberts JF, Hof PR, Sherwood CC. Neocortical neuronal morphology in the newborn giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana). J Comp Neurol 2015; 524:257-87. [DOI: 10.1002/cne.23841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology Department of Psychology, Colorado College; Colorado Springs Colorado 80903
| | - Laura Lee
- Laboratory of Quantitative Neuromorphology Department of Psychology, Colorado College; Colorado Springs Colorado 80903
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology Department of Psychology, Colorado College; Colorado Springs Colorado 80903
| | | | | | - Jack J. Kottwitz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine; Auburn University; Auburn Alabama 36849
| | - John F. Roberts
- Thompson Bishop Sparks State Diagnostic Laboratory Alabama Department of Agriculture and Industries; Auburn Alabama 36849
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York 10029
| | - Chet C. Sherwood
- Department of Anthropology; The George Washington University; Washington DC 20052
| |
Collapse
|
17
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Optogenetic activation of cajal-retzius cells reveals their glutamatergic output and a novel feedforward circuit in the developing mouse hippocampus. J Neurosci 2014; 34:13018-32. [PMID: 25253849 DOI: 10.1523/jneurosci.1407-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cajal-Retzius cells orchestrate the development of cortical circuits by secreting the glycoprotein reelin. However, their computational functions are still unknown. In fact, the nature of their postsynaptic targets, major neurotransmitter released, as well as the class of postsynaptic receptors activated by their firing remain unclear. Here, we have addressed these questions by activating Cajal-Retzius cells optogenetically in mouse hippocampal slices. Light delivered to stratum lacunosum-moleculare triggered EPSCs both on local interneurons and on pyramidal cells. Responses recorded under voltage-clamp conditions had identical short latencies and similar amplitudes, but were kinetically different (i.e., faster in interneurons vs pyramidal cells). In both cases, responses were blocked by TTX, indicating that they were generated by action potential-dependent release. Responses in interneurons were rescued by the addition of 4-AP to TTX, and decreased when presynaptic firing in Cajal-Retzius cells was reduced by the chemokine CXCL12, indicating the existence of a direct Cajal-Retzius cell-interneuron monosynaptic connection. Although the combined application of 4-AP and TTX did not rescue responses in pyramidal cells, neither were they affected by the GABAA receptor blocker gabazine, which would be expected if they were polysynaptic. Both connections showed physiological and pharmacological properties indicating the involvement of AMPA- and NMDA-type glutamate receptors. The connectivity from presynaptic Cajal-Retzius cells to interneurons was strong enough to generate long-latency feedforward GABAergic input onto pyramidal cells. We propose that this newly defined Cajal-Retzius cell-dependent microcircuit may regulate synaptic plasticity and dendritic development in stratum lacunosum-moleculare, thus impacting the integrative properties of the developing hippocampus.
Collapse
|
19
|
Yu D, Fan W, Wu P, Deng J, Liu J, Niu Y, Li M, Deng J. Characterization of hippocampal Cajal-Retzius cells during development in a mouse model of Alzheimer's disease (Tg2576). Neural Regen Res 2014; 9:394-401. [PMID: 25206826 PMCID: PMC4146192 DOI: 10.4103/1673-5374.128243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 12/05/2022] Open
Abstract
Cajal-Retzius cells are reelin-secreting neurons in the marginal zone of the neocortex and hippocampus. The aim of this study was to investigate Cajal-Retzius cells in Alzheimer's disease pathology. Results revealed that the number of Cajal-Retzius cells markedly reduced with age in both wild type and in mice over-expressing the Swedish double mutant form of amyloid precursor protein 695 (transgenic (Tg) 2576 mice). Numerous reelin-positive neurons were positive for activated caspase 3 in Tg2576 mice, suggesting that Cajal-Retzius neuronal loss occurred via apoptosis in this Alzheimer's disease model. Compared with wild type, the number of Cajal-Retzius cells was significantly lower in Tg2576 mice. Western blot analysis confirmed that reelin levels were markedly lower in Tg2576 mice than in wild-type mice. The decline in Cajal-Retzius cells in Tg2576 mice was found to occur concomitantly with the onset of Alzheimer's disease amyloid pathology and related behavioral deficits. Overall, these data indicated that Cajal-Retzius cell loss occurred with the onset and development of Alzheimer's disease.
Collapse
Affiliation(s)
- Dongming Yu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Wenjuan Fan
- Laboratory of Molecular Medicine, Luohe Medical College, Luohe, Henan Province, China
| | - Ping Wu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jiexin Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jing Liu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Yanli Niu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Mingshan Li
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jinbo Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
20
|
Martínez-Cerdeño V, Noctor SC. Cajal, Retzius, and Cajal-Retzius cells. Front Neuroanat 2014; 8:48. [PMID: 24987337 PMCID: PMC4060955 DOI: 10.3389/fnana.2014.00048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/29/2014] [Indexed: 01/06/2023] Open
Abstract
The marginal zone (MZ) of the prenatal cerebral cortex plays a crucial role in cellular migration and laminar patterning in the developing neocortex and its equivalent in the adult brain – layer I, participates in cortical circuitry integration within the adult neocortex. The MZ/layer I, which has also been called the plexiform layer and cell-poor zone of Meynert, among others, is home to several cell populations including glia, neurons, and Cajal–Retzius (CR) cells. Cajal once said that the MZ is one of the oldest formations in the phylogenetic series, and that the characteristics of layer I in human are similar in all vertebrates except fish (Ramon y Cajal, 1899). Despite the presence of CR cells in the MZ/layer I of all developing and adult vertebrate brains, and more than one hundred years of research, the phenotype and function of layer I cells have still not been clearly defined. Recent technological advances have yielded significant progress in functional and developmental studies, but much remains to be understood about neurons in MZ/layer I. Since the time of Retzius and Cajal, and continuing with modern era research from the likes of Marín-Padilla, the study of CR cells has been based on their morphological characteristics in Golgi staining. However, since Cajal’s initial description, the term “CR cell” has been applied differently and now is often used to indicate reelin (Reln)-positive cells in MZ/layer I. Here we review the history of work by Cajal, Retzius, and others pertaining to CR cells. We will establish a link between original descriptions of CR cell morphology by Cajal, Retzius, and others, and current understandings of the cell populations that reside in MZ/layer I based on the use of cellular markers. We propose to use the term “CR cell” for the class of neurons that express Reln in the MZ/layer I in both prenatal, developing and adult cerebral cortex.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, University of California at Davis Sacramento, CA, USA ; Medical Pathology and Laboratory Medicine, University of California at Davis Sacramento, CA, USA ; MIND Institute, University of California at Davis Sacramento, CA, USA
| | - Stephen C Noctor
- MIND Institute, University of California at Davis Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California at Davis Sacramento, CA, USA
| |
Collapse
|
21
|
Kirischuk S, Luhmann HJ, Kilb W. Cajal-Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience 2014; 275:33-46. [PMID: 24931764 DOI: 10.1016/j.neuroscience.2014.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023]
Abstract
Cajal-Retzius cells (CRc) represent a mostly transient neuronal cell type localized in the uppermost layer of the developing neocortex. The observation that CRc are a major source of the extracellular matrix protein reelin, which is essential for the laminar development of the cerebral cortex, attracted the interest in this unique cell type. In this review we will (i) describe the morphological and molecular properties of neocortical CRc, with a special emphasize on the question which markers can be used to identify CRc, (ii) summarize reports that identified the different developmental origins of CRc, (iii) discuss the fate of CRc, including recent evidence for apoptotic cell death and a possible persistence of some CRc, (iv) provide a detailed description of the electrical membrane properties and transmitter receptors of CRc, and (v) address the role of CRc in early neuronal circuits and cortical development. Finally, we speculate whether CRc may provide a link between early network activity and the structural maturation of neocortical circuits.
Collapse
Affiliation(s)
- S Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - H J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - W Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
22
|
Pérez-Martínez FJ, Luque-Río A, Sakakibara A, Hattori M, Miyata T, Luque JM. Reelin-dependent ApoER2 downregulation uncouples newborn neurons from progenitor cells. Biol Open 2012; 1:1258-63. [PMID: 23259060 PMCID: PMC3522887 DOI: 10.1242/bio.20122816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022] Open
Abstract
Reelin and its receptor machinery are well known to be required for the migration and positioning of neocortical projection neurons. More recently, reelin has been shown both necessary and sufficient to determine the rate of neocortical neurogenesis. The molecular links underlying its seemingly distinct proliferative and post-proliferative functions remain unknown. Here we reveal an enriched expression of functional reelin receptors, largely of Apolipoprotein E Receptor 2 (ApoER2), in radial glia basal processes and intermediate progenitor cells during mid/late cortical development. In vivo, ApoER2 overexpression inhibits neuronal migration. In contrast, precluding excessive levels of ApoER2 in reelin-deficient cortices, by either ApoER2 knock-down or the transgenic expression of reelin in neural progenitor cells, improves neuronal migration and positioning. Our study provides groundwork for the highly orchestrated clearance of neocortical neurons from their birth site, suggesting that a reelin-dependent ApoER2 downregulation mechanism uncouples newborn neurons from progenitor cells, thereby enabling neurons to migrate.
Collapse
Affiliation(s)
- F Javier Pérez-Martínez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Campus de San Juan , E-03550 San Juan de Alicante, Alicante , Spain
| | | | | | | | | | | |
Collapse
|
23
|
Cosgrove KE, Maccaferri G. mGlu1α-dependent recruitment of excitatory GABAergic input to neocortical Cajal-Retzius cells. Neuropharmacology 2012; 63:486-93. [PMID: 22579657 DOI: 10.1016/j.neuropharm.2012.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/16/2022]
Abstract
Cajal-Retzius cells are thought to play an important role for cortical development, and receive primarily spontaneous GABAergic input mediated by GABA(A) receptors. However, neither the effects of synaptically-released GABA on their excitability nor the cellular source(s) of spontaneous GABAergic currents have been yet determined. By directly recording electrophysiological responses from identified Cajal-Retzius cells of the CXCR4-EGFP mouse, we show that GABAergic input can trigger supra-threshold responses, and that the pharmacological activation of mGlu1α receptors with the group I agonist DHPG powerfully increases the frequency of spontaneous GABAergic currents. These effects appeared mediated by a network mechanism, because responses to DHPG were completely prevented both by surgical disconnection of layer I from lower layers and by exposure of slices to TTX. We propose that the cellular source underlying the observed effect of DHPG are layer I-targeting Martinotti-like interneurons, which we show express functional group I mGluRs and respond to DHPG with supra-threshold depolarization already at early developmental stages. In conclusion, our work suggests that conditions of enhanced glutamate release may be critical at early developmental stages for the recruitment of an mGlu1α-dependent micro-circuit, which then leads to the activation of Cajal-Retzius cells.
Collapse
Affiliation(s)
- Kathleen E Cosgrove
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
24
|
Marchionni I, Beaumont M, Maccaferri G. The chemokine CXCL12 and the HIV-1 envelope protein gp120 regulate spontaneous activity of Cajal-Retzius cells in opposite directions. J Physiol 2012; 590:3185-202. [PMID: 22473778 DOI: 10.1113/jphysiol.2011.224873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Activation of the CXC chemokine receptor 4 (CXCR4) in Cajal–Retzius cells by CXC chemokine ligand 12 (CXCL12) is important for controlling their excitability. CXCR4 is also a co-receptor for the glycoprotein 120 (gp120) of the envelope of the human immunodeficiency virus type 1 (HIV-1), and binding of gp120 to CXCR4 may produce pathological effects. In order to study CXCR4-dependent modulation of membrane excitability, we recorded in cell-attached configuration spontaneous action currents from hippocampal stratum lacunosum-moleculare Cajal–Retzius cells of the CXCR4-EGFP mouse. CXCL12 (50 nM) powerfully inhibited firing independently of synaptic transmission, suggesting that CXCR4 regulates an intrinsic conductance. This effect was prevented by conditioning slices with BAPTA-AM (200 μM), and by blockers of the BK calcium-dependent potassium channels (TEA (1 mM), paxilline (10 μM) and iberiotoxin (100 nM)). In contrast, exposure to gp120 (pico- to nanomolar range, alone or in combination with soluble cluster of differentiation 4 (CD4)), enhanced spontaneous firing frequency. This effect was prevented by the CXCR4 antagonist AMD3100 (1 μM) and was absent in EGFP-negative stratum lacunosum-moleculare interneurons. Increased excitability was prevented by treating slices with BAPTA-AM or bumetanide, suggesting that gp120 activates a mechanism that is both calcium- and chloride-dependent. In conclusion, our results demonstrate that CXCL12 and gp120 modulate the excitability of Cajal–Retzius cells in opposite directions. We propose that CXCL12 and gp120 either generate calcium responses of different strength or activate distinct pools of intracellular calcium, leading to agonist-specific responses, mediated by BK channels in the case of CXCL12, and by a chloride-dependent mechanism in the case of gp120.
Collapse
Affiliation(s)
- Ivan Marchionni
- Northwestern University, Department of Physiology, Feinberg School of Medicine, 303 E Chicago Ave, Tarry Blg Rm 5-707, Chicago, IL 60611, USA
| | | | | |
Collapse
|
25
|
Puelles L. Pallio-pallial tangential migrations and growth signaling: new scenario for cortical evolution? BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:108-27. [PMID: 21701143 DOI: 10.1159/000327905] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Observations accruing in recent years imply that the areal patterning and size dimensioning of the mammalian neocortex are influenced by diverse sets of tangentially migrating glutamatergic neurons that invade the cortical plate and, in so doing, modify the properties of the neopallial proliferative compartments. This developmental scenario sheds new light upon the old issue of how the mammalian neocortex evolved its more complex structure from nonmammalian antecedent forms. In reviewing these novelties, I first point out the topological position of the neopallial island as a central component of the pallium in all gnathostomes, surrounded by a ring of prospective allocortical pallial regions and a more distant set of peripheral neighboring forebrain areas. Early patterning arises from the periphery via passive planar signaling. This process probably establishes the pallium field and its basic island plus allocortical ring organization, as well as a rough prepatterning of some regional subareas. Afterwards, patterning and modulated growth are also actively influenced by the convergence of separate streams of tangentially migrating subpial cells (partly peripheral and partly allocortical in origin) which collectively form the Cajal-Retzius neuronal population in layer I. Effects of these cells include the inside-out stratification of the cortical plate and they may also contribute to the evolutionary emergence of the 6-layered neocortical structure. The most recent addition to our knowledge of pallio-pallial migrations is the existence of a subsequent deep tangential migration of ventropallial cells into the neopallial primordium, whose signaling influence upon local progenitors magnifies the cortex population by 20%. These glutamatergic cells dispersedly invade the entire cortex but largely die postnatally. The crucial implications of these data for comparative thinking on mammalian neocortex evolution and interpretation of potential homologs in sauropsids are explored. Finally, a new conjecture regarding a possible role of the hitherto disregarded lateral pallium is advanced.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.
| |
Collapse
|
26
|
Ohmomo H, Ehara A, Yoshida S, Shutoh F, Ueda SI, Hisano S. Temporally distinct expression of vesicular glutamate transporters 1 and 2 during embryonic development of the rat olfactory system. Neurosci Res 2011; 70:376-82. [PMID: 21609737 DOI: 10.1016/j.neures.2011.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
To study the development of glutamatergic neurons during the main olfactory bulb morphogenesis in rats, we examined the expression of vesicular glutamate transporters 1 (VGLUT1) and 2 (VGLUT2). On VGLUT1, expressions of mRNA and immunoreactivity were first detected in the mitral cell layer on embryonic day (E) 17.5 and E18.5, respectively, and persisted in the E20.5 olfactory bulb. Much earlier (on E12.5) than VGLUT1, expressions of VGLUT2 mRNA and/or immunoreactivity were found in the olfactory epithelium, migratory cells and telencephalon. On E14.5, the mRNA expression was also observed in the prospective bulbar region and vomeronasal organ, while immunoreactivity existed in migratory cells and growing fibers. Some fibers were observed in the deep telencephalic wall. From E16.5 onward, mRNA expression became gradually detectable in cells of the mitral cell layer with development. On E17.5, immunoreactivity was first found in fibers of the developing olfactory bulb and in some immature mitral cells from E18.5 to E20.5. The present study clarifies the expression of VGLUT2 precedent to VGLUT1 during olfactory bulb morphogenesis, suggesting differential contribution of the two VGLUT subtypes to glutamate-mediated embryonic events.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing cortical plate, mostly to layer 4. Thus SPns form one of the first functional cortical circuits and are required to relay early oscillatory activity into the developing cortical plate. Pathophysiological impairment or removal of SPns profoundly affects functional cortical development. SPn removal in visual cortex prevents the maturation of thalamocortical synapses, the maturation of inhibition in layer 4, the development of orientation selective responses and the formation of ocular dominance columns. SPn removal also alters ocular dominance plasticity during the critical period. Therefore, SPns are a key regulator of cortical development and plasticity. SPns are vulnerable to injury during prenatal stages and might provide a crucial link between brain injury in development and later cognitive malfunction.
Collapse
Affiliation(s)
- Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
28
|
Abstract
Although the rigorous anatomical definition of the microcircuitry of the brain is essential for understanding its functions, the modulation of the physiological properties of neurons and synapses may confer an additional level of complexity. Here, I review two examples of neuromodulation within a specific microcircuit of the hippocampus, i.e. the local network of stratum lacunosum-moleculare. In particular, I will examine the actions of two different types of neuromodulators on the excitability and electrical coupling of two specific classes of cells. First, I will review the effects of noradrenaline on GABAergic networks. Particular emphasis will be placed on neurogliaform cells. Then, I will describe the chemokinergic modulation of spontaneous firing of Cajal-Retzius cells, mediated by the chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 α (CXCL12/SDF-1) via the CXC chemokine receptor 4 (CXCR4). The complexities created by these diverse types of modulations for network activity, together with their potential implications for stratum lacunosum-moleculare processing of information in vivo, will be also presented and briefly discussed.
Collapse
Affiliation(s)
- Gianmaria Maccaferri
- Department of Physiology, Feinberg School of Medicine, Northwestern University Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Marchionni I, Takács VT, Nunzi MG, Mugnaini E, Miller RJ, Maccaferri G. Distinctive properties of CXC chemokine receptor 4-expressing Cajal-Retzius cells versus GABAergic interneurons of the postnatal hippocampus. J Physiol 2010; 588:2859-78. [PMID: 20547684 DOI: 10.1113/jphysiol.2010.190868] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The CXC chemokine receptor 4 (CXCR4) for the chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 alpha (CXCL12/SDF-1 alpha) is highly expressed in the postnatal CA1 stratum lacunosum-moleculare. However, both the network events triggered by SDF-1 alpha in this microcircuit and the cellular targets of this chemokine remain virtually unexplored. Here, we have studied SDF-1 alpha-mediated neuromodulation of the stratum lacunosum-moleculare by directly comparing the properties of CXCR4-expressing Cajal-Retzius cells vs. CXCR4-non-expressing interneurons, and by recording the electrophysiological effects caused by application of SDF-1 alpha on either cell type. We demonstrate that SDF-1 alpha dramatically reduces spontaneous firing in Cajal-Retzius cells via hyerpolarization, and that cessation of firing is prevented by the CXCR4-specific antagonist AMD3100. In contrast, no effects on the excitability of interneurons of the same layer were observed following exposure to the chemokine. We also provide evidence that, despite the expression of functional glutamate receptors, Cajal-Retzius cells are integrated in the synaptic network of the stratum lacunosum-moleculare via excitatory GABAergic input. Furthermore, we show that the axons of Cajal-Retzius cells target specifically the stratum lacunosum-moleculare and the dentate gyrus, but lack postsynaptic specializations opposite to their axonal varicosities. These results, taken together with our observation that SDF-1 alpha reduces evoked field responses at the entorhinal cortex-CA1 synapse, suggest that Cajal-Retzius cells produce a diffuse output that may impact information processing of stratum lacunosum-moleculare. We propose that pathological alterations of local levels of SDF-1 alpha or CXCR4 expression may affect the functions of an important hippocampal microcircuit.
Collapse
Affiliation(s)
- Ivan Marchionni
- Dept. of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sava B, Dávid C, Teissier A, Pierani A, Staiger J, Luhmann H, Kilb W. Electrophysiological and morphological properties of Cajal–Retzius cells with different ontogenetic origins. Neuroscience 2010; 167:724-34. [DOI: 10.1016/j.neuroscience.2010.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/21/2010] [Accepted: 02/18/2010] [Indexed: 11/17/2022]
|
31
|
Abstract
In the postnatal forebrain, the extracellular matrix protein reelin is expressed and secreted by subsets of GABAergic neurons, whereas in the cerebellum reelin is detected in glutamatergic cells of the granule cell layer. Thus, various regions of the postnatal brain present different patterns of reelin expression, whose significance remains unknown. We combined immunocytochemical and pharmacological approaches to characterize the phenotypic and temporal profiles of reelin expression in dissociated cultures of cerebellar granule neurons. A single type of reelin immunoreactivity, identified by a punctate labelling, was present in the somata of the majority of neurons. This immunoreactivity was observed throughout maturation and was exclusively present in glutamatergic neurons expressing the vesicular glutamate transporter 1. Neurons containing the reelin receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr) represented about 80% of cerebellar neurons. The vast majority of reelin-positive neurons coexpressed Apoer2, suggesting that reelin immunoreactivity resulted in part from receptor-bound reelin. Inhibition of protein synthesis with cycloheximide completely abolished reelin immunoreactivity. In contrast, blocking protein secretion with brefeldin A did not affect the proportion of punctate neurons but revealed a subpopulation of neurons characterized by a solid reelin staining. These data show for the first time that a homogeneous population of glutamatergic neurons can synthesize and secrete reelin in cerebellar granule cells in vitro.
Collapse
|
32
|
Campo CG, Sinagra M, Verrier D, Manzoni OJ, Chavis P. Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis. PLoS One 2009; 4:e5505. [PMID: 19430527 PMCID: PMC2675077 DOI: 10.1371/journal.pone.0005505] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 04/06/2009] [Indexed: 12/26/2022] Open
Abstract
Background Reelin is a large secreted protein of the extracellular matrix that has been proposed to participate to the etiology of schizophrenia. During development, reelin is crucial for the correct cytoarchitecture of laminated brain structures and is produced by a subset of neurons named Cajal-Retzius. After birth, most of these cells degenerate and reelin expression persists in postnatal and adult brain. The phenotype of neurons that bind secreted reelin and whether the continuous secretion of reelin is required for physiological functions at postnatal stages remain unknown. Methodology/Principal Findings Combining immunocytochemical and pharmacological approaches, we first report that two distinct patterns of reelin expression are present in cultured hippocampal neurons. We show that in hippocampal cultures, reelin is secreted by GABAergic neurons displaying an intense reelin immunoreactivity (IR). We demonstrate that secreted reelin binds to receptors of the lipoprotein family on neurons with a punctate reelin IR. Secondly, using calcium imaging techniques, we examined the physiological consequences of reelin secretion blockade. Blocking protein secretion rapidly and reversibly changes the subunit composition of N-methyl-D-aspartate glutamate receptors (NMDARs) to a predominance of NR2B-containing NMDARs. Addition of recombinant or endogenously secreted reelin rescues the effects of protein secretion blockade and reverts the fraction of NR2B-containing NMDARs to control levels. Therefore, the continuous secretion of reelin is necessary to control the subunit composition of NMDARs in hippocampal neurons. Conclusions/Significance Our data show that the heterogeneity of reelin immunoreactivity correlates with distinct functional populations: neurons synthesizing and secreting reelin and/or neurons binding reelin. Furthermore, we show that continuous reelin secretion is a strict requirement to maintain the composition of NMDARs. We propose that reelin is a trans-neuronal messenger secreted by GABAergic neurons that regulates NMDARs homeostasis in postnatal hippocampus. Defects in reelin secretion could play a major role in the development of neuropsychiatric disorders, particularly those associated with deregulation of NMDARs such as schizophrenia.
Collapse
Affiliation(s)
- Cecilia Gonzalez Campo
- INSERM U862, Neurocentre Magendie, Pathophysiology of Synaptic Plasticity, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Mélanie Sinagra
- INSERM U862, Neurocentre Magendie, Pathophysiology of Synaptic Plasticity, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Danièle Verrier
- INSERM U862, Neurocentre Magendie, Pathophysiology of Synaptic Plasticity, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Olivier J. Manzoni
- INSERM U862, Neurocentre Magendie, Pathophysiology of Synaptic Plasticity, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Pascale Chavis
- INSERM U862, Neurocentre Magendie, Pathophysiology of Synaptic Plasticity, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
33
|
Ayoub AE, Kostovic I. New horizons for the subplate zone and its pioneering neurons. Cereb Cortex 2009; 19:1705-7. [PMID: 19293397 DOI: 10.1093/cercor/bhp025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transitional neuronal layers are a hallmark of the prenatal and neonatal brain yet their contribution to the development of higher functions is not clear. Evidence accumulated over the last 3 decades shows that early connectivity and functional activity start in a transitional layer called the subplate zone (SPZ). The SPZ is host to a heterogeneous population of neurons and its evolutionary complexity peaked in the human brain. In this issue of Cerebral Cortex, three reports (Hoerder-Suabedissen et al., 2008; McKellar and Shatz, 2008; Moore et al., 2008) present new data and evidence in three species (mouse, rat, human) as to the function of the SPZ, to the heterogeneity of its cellular composition, and to the genetic basis of its development.
Collapse
Affiliation(s)
- Albert E Ayoub
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
34
|
Ohmomo H, Ina A, Yoshida S, Shutoh F, Ueda S, Hisano S. Postnatal changes in expression of vesicular glutamate transporters in the main olfactory bulb of the rat. Neuroscience 2009; 160:419-26. [PMID: 19264112 DOI: 10.1016/j.neuroscience.2009.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 11/28/2022]
Abstract
Olfactory information is initially processed through intricate synaptic interactions between glutamatergic projection neurons and GABAergic interneurons in the olfactory bulb. Although bulbar neurons and networks have been reported to develop even postnatally, much is yet unknown about the glutamatergic neuron development. To address this issue, we studied the postnatal ontogeny of vesicular glutamate transporters (VGLUT1 and VGLUT2) in the main olfactory bulb of rats, using in situ hybridization, immunohistochemistry, and their combination. In situ hybridization data showed that VGLUT1 mRNA is intensely expressed in differentiating mitral cells and smaller cells of the mitral cell layer (MCL) on postnatal day 1 (P1), and also at lower levels in small- and medium-sized cells, presumably tufted cell populations, of the external plexiform layer (EPL) from P5 onward. VGLUT2 mRNA was expressed in many MCL cell populations on P1, also in small- and medium-sized cells of the EPL at almost the same level as MCL cells between P5 and P7, and became apparently less intense in the MCL than in the EPL from P10 onward. The expression, unlike VGLUT1 mRNA, was also found in small-sized cells of the interglomerular region. In partial agreement with these data, immunohistochemical analyses demonstrated that subsets of mitral and EPL cells are stained for VGLUT1 or VGLUT2, with the former cells coexpressing both subtypes until P5. Moreover, a combined fluorescence in situ hybridization-immunohistochemical dual labeling of the P10 bulb revealed that neither VGLUT1 nor VGLUT2 mRNA is expressed in GABAergic or dopaminergic periglomerular cells, implying their expression in other periglomerular cell subclasses, external tufted cells and/or short-axon cells. Thus, the present study suggests that early in the postnatal development distinct glutamatergic bulbar neurons of rats express spatiotemporally either or both of the two VGLUT subtypes as a specific vesicular transport system, specifically contributing to glutamate-mediated neurobiological events.
Collapse
Affiliation(s)
- H Ohmomo
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Nichols AJ, Carney LH, Olson EC. Comparison of slow and fast neocortical neuron migration using a new in vitro model. BMC Neurosci 2008; 9:50. [PMID: 18534012 PMCID: PMC2440755 DOI: 10.1186/1471-2202-9-50] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 06/05/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mutations, toxic insults and radiation exposure are known to slow or arrest the migration of cortical neurons, in most cases by unknown mechanisms. The movement of migrating neurons is saltatory, reflecting the intermittent movement of the nucleus (nucleokinesis) within the confines of the plasma membrane. Each nucleokinetic movement is analogous to a step. Thus, average migration speed could be reduced by lowering step frequency and/or step distance. RESULTS To assess the kinetic features of cortical neuron migration we developed a cell culture system that supports fiber-guided migration. In this system, the majority of fiber-apposed cells were neurons, expressed age-appropriate cortical-layer specific markers and migrated during a 30 min imaging period. Comparison of the slowest and fastest quartiles of cells revealed a 5-fold difference in average speed. The major determinant of average speed in slower cells (6-26 microm/hr) was step frequency, while step distance was the critical determinant of average speed in faster cells (>26 microm/hr). Surprisingly, step distance was largely determined by the average duration of the step, rather than the speed of nucleokinesis during the step, which differed by only 1.3-fold between the slowest and fastest quartiles. CONCLUSION Saltatory event frequency and duration, not nucleokinetic speed, are the major determinants of average migration speed in healthy neurons. Alteration of either saltatory event frequency or duration should be considered along with nucleokinetic abnormalities as possible contributors to pathological conditions.
Collapse
Affiliation(s)
- Anna J Nichols
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
36
|
Konno J, Yoshida S, Ina A, Ohmomo H, Shutoh F, Nogami H, Hisano S. Upregulated expression of neuropeptide Y in hypothalamic–pituitary system of rats by chronic dexamethasone administration. Neurosci Res 2008; 60:259-65. [DOI: 10.1016/j.neures.2007.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/30/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
37
|
Tachikawa K, Sasaki S, Maeda T, Nakajima K. Identification of molecules preferentially expressed beneath the marginal zone in the developing cerebral cortex. Neurosci Res 2007; 60:135-46. [PMID: 18055048 DOI: 10.1016/j.neures.2007.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/03/2007] [Accepted: 10/10/2007] [Indexed: 12/17/2022]
Abstract
During cerebral cortical development, the majority of excitatory neurons are born near the ventricle and migrate radially toward the marginal zone (MZ). Since the cells invariably stop migrating beneath the MZ, neurons are aligned in an "inside-out" manner in the cortical plate (CP); that is, the early-born and late-born neurons are ultimately positioned in the deep and superficial layers, respectively. Since dramatic morphological changes occur in cells beneath the MZ, several events critical for proper neuronal maturation and layer formation must take place. In this study, we screened for molecules strongly expressed beneath the MZ, and identified 28 genes that are preferentially expressed in the upper half of the mouse CP on both embryonic day (E) 16.5 and E18.5. Expression analyses in reeler and yotari mice, in which neurons terminate migration throughout the CP, suggested that these genes were indeed related to the events beneath the MZ rather than unrelatedly induced by the structures near the brain surface. Pathway analyses suggested calcium signaling to have an important role in cells beneath the MZ. The gene list presented here will be useful for clarifying the molecular mechanisms that control cortical development.
Collapse
Affiliation(s)
- Kashiko Tachikawa
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|