1
|
Ojiakor O, Rylett R. Modulation of sodium-coupled choline transporter CHT function in health and disease. Neurochem Int 2020; 140:104810. [DOI: 10.1016/j.neuint.2020.104810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
|
2
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Banerjee M, Arutyunov D, Brandwein D, Janetzki-Flatt C, Kolski H, Hume S, Leonard NJ, Watt J, Lacson A, Baradi M, Leslie EM, Cordat E, Caluseriu O. The novel p.Ser263Phe mutation in the human high-affinity choline transporter 1 (CHT1/SLC5A7) causes a lethal form of fetal akinesia syndrome. Hum Mutat 2019; 40:1676-1683. [PMID: 31299140 DOI: 10.1002/humu.23828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/04/2019] [Accepted: 05/27/2019] [Indexed: 11/07/2022]
Abstract
A subset of a larger and heterogeneous class of disorders, the congenital myasthenic syndromes (CMS) are caused by pathogenic variants in genes encoding proteins that support the integrity and function of the neuromuscular junction (NMJ). A central component of the NMJ is the sodium-dependent high-affinity choline transporter 1 (CHT1), a solute carrier protein (gene symbol SLC5A7), responsible for the reuptake of choline into nerve termini has recently been implicated as one of several autosomal recessive causes of CMS. We report the identification and functional characterization of a novel pathogenic variant in SLC5A7, c.788C>T (p.Ser263Phe) in an El Salvadorian family with a lethal form of a congenital myasthenic syndrome characterized by fetal akinesia. This study expands the clinical phenotype and insight into a form of fetal akinesia related to CHT1 defects and proposes a genotype-phenotype correlation for the lethal form of SLC5A7-related disorder with potential implications for genetic counseling.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Denis Arutyunov
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Brandwein
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hanna Kolski
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Stacey Hume
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Norma Jean Leonard
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - James Watt
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Atilano Lacson
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Monica Baradi
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Elaine M Leslie
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Wang H, Salter CG, Refai O, Hardy H, Barwick KES, Akpulat U, Kvarnung M, Chioza BA, Harlalka G, Taylan F, Sejersen T, Wright J, Zimmerman HH, Karakaya M, Stüve B, Weis J, Schara U, Russell MA, Abdul-Rahman OA, Chilton J, Blakely RD, Baple EL, Cirak S, Crosby AH. Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization. Brain 2017; 140:2838-2850. [PMID: 29088354 DOI: 10.1093/brain/awx249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/05/2017] [Indexed: 11/12/2022] Open
Abstract
The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection.
Collapse
Affiliation(s)
- Haicui Wang
- University Hospital Cologne, Department of Pediatrics, Kerpener Str. 62, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Claire G Salter
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.,Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Osama Refai
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Holly Hardy
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Katy E S Barwick
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Ugur Akpulat
- University Hospital Cologne, Department of Pediatrics, Kerpener Str. 62, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany.,Kastamonu University, 37150 Kastamonu, Turkey
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Barry A Chioza
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Gaurav Harlalka
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, 17121 Stockholm, Sweden
| | - Thomas Sejersen
- Science for Life Laboratory, Karolinska Institutet Science Park, 17121 Stockholm, Sweden.,Department of Women's and Children's Health, Division of Pediatric Neurology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Jane Wright
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Holly H Zimmerman
- Division of Medical Genetics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Mert Karakaya
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Burkhardt Stüve
- Children's Hospital Social Pediatric Center, 50735 Cologne, Germany
| | - Joachim Weis
- Institute of Neuropathology and Jülich Aachen Research Alliance (JARA) Brain Translational Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Ulrike Schara
- University Children's Hospital Essen, Essen, Germany
| | - Mark A Russell
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Omar A Abdul-Rahman
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - John Chilton
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Sebahattin Cirak
- University Hospital Cologne, Department of Pediatrics, Kerpener Str. 62, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
5
|
Ma Z, Xia W, Liu F, Ma J, Sun S, Zhang J, Jiang N, Wang X, Hu J, Ma D. SLC44A4 mutation causes autosomal dominant hereditary postlingual non-syndromic mid-frequency hearing loss. Hum Mol Genet 2017; 26:383-394. [PMID: 28013291 DOI: 10.1093/hmg/ddw394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/11/2016] [Indexed: 01/28/2023] Open
Abstract
Clinical, genetic, and functional investigations were performed to identify the causative mutation in a distinctive Chinese family with postlingual non-syndromic mid-frequency sensorineural hearing loss. Whole-exome sequencing revealed SLC44A4, which encodes the choline transport protein, as the pathogenic gene in this family. In the zebrafish model, downregulation of slc44a4 using morpholinos led to significant abnormalities in the zebrafish inner ear and lateral line neuromasts and contributed, to some extent, to disabilities in hearing and balance. SH-SY5Y cells transfected with SLC44A4 showed higher choline uptake and acetylcholine release than that of cells transfected with mutant SLC44A4. We concluded that mutation of SLC44A4 may cause defects in the Choline- acetylcholine system, which is crucial to the efferent innervation of hair cells in the olivocochlear bundle for the maintenance of physiological function of outer hair cells and the protection of hair cells from acoustic injury, leading to hearing loss.
Collapse
Affiliation(s)
- Zhaoxin Ma
- Department of Otorhinolaryngology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People's Republic of China
| | - Wenjun Xia
- Institute of Biomedical Science, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fei Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Jiongjiong Hu
- Department of Otorhinolaryngology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People's Republic of China
| | - Duan Ma
- Institute of Biomedical Science, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and.,Children's Hospital, Fudan University, 200032, People's Republic of China
| |
Collapse
|
6
|
Hemicholinium-3 sensitive choline transport in human T lymphocytes: Evidence for use as a proxy for brain choline transporter (CHT) capacity. Neurochem Int 2017; 108:410-416. [PMID: 28577989 DOI: 10.1016/j.neuint.2017.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease.
Collapse
|
7
|
Erickson JD. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole. J Neurochem 2017; 142:29-40. [PMID: 28423185 DOI: 10.1111/jnc.14046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/17/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022]
Abstract
Glutamine (Gln) is considered the preferred precursor for the neurotransmitter pool of glutamate (Glu), the major excitatory transmitter in the mammalian CNS. Here, an activity-regulated, high-affinity Gln transport system is described in developing and mature neuron-enriched hippocampal cultures that is potently inhibited by riluzole (IC50 1.3 ± 0.5 μM), an anti-glutamatergic drug, and is blocked by low concentrations of 2-(methylamino)isobutyrate (MeAIB), a system A transport inhibitor. K+ -stimulated MeAIB transport displays an affinity (Km ) for MeAIB of 37 ± 1.2 μM, saturates at ~ 200 μM, is dependent on extracellular Ca2+ , and is blocked by inhibition of voltage-gated Ca2+ channels. Spontaneous MeAIB transport is also dependent on extracellullar Ca2+ and voltage-gated calcium channels, but is also blocked by the Na+ channel blocker tetrodotoxin, by Glu receptor antagonists, and by GABA indicating its dependence on intact neural circuits driven by endogenous glutamatergic activity. The transport of MeAIB itself does not rely on Ca2+ , but on Na+ ions, and is pH sensitive. Activity-regulated, riluzole-sensitive spontaneous and K+ -stimulated transport is minimal at 7-8 days in vitro, coordinately induced during the next 2 weeks and is maximally expressed by days in vitro > 20; the known period for maturation of the Glu/Gln cycle and regulated pre-synaptic Glu release. Competition analyses with various amino acids indicate that Gln is the most likely physiological substrate. Activity-regulated Gln/MeAIB transport is not observed in astrocytes. The functional identification of activity-regulated, high-affinity, riluzole-sensitive Gln/MeAIB transport in hippocampal neurons may have important ramifications in the neurobiology of activity-stimulated pre-synaptic Glu release, the Glu/Gln cycle between astrocytes and neurons, and neuronal Glu-induced excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.13805.
Collapse
Affiliation(s)
- Jeffrey D Erickson
- Neuroscience Center of Excellence, School of Medicine, Lousiania State University Health New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Choudhary P, Armstrong EJ, Jorgensen CC, Piotrowski M, Barthmes M, Torella R, Johnston SE, Maruyama Y, Janiszewski JS, Storer RI, Skerratt SE, Benn CL. Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter. Front Mol Neurosci 2017; 10:40. [PMID: 28289374 PMCID: PMC5326799 DOI: 10.3389/fnmol.2017.00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/03/2017] [Indexed: 01/09/2023] Open
Abstract
Cholinergic hypofunction is associated with decreased attention and cognitive deficits in the central nervous system in addition to compromised motor function. Consequently, stimulation of cholinergic neurotransmission is a rational therapeutic approach for the potential treatment of a variety of neurological conditions. High affinity choline uptake (HACU) into acetylcholine (ACh)-synthesizing neurons is critically mediated by the sodium- and pH-dependent high-affinity choline transporter (CHT, encoded by the SLC5A7 gene). This transporter is comparatively well-characterized but otherwise unexplored as a potential drug target. We therefore sought to identify small molecules that would enable testing of the hypothesis that positive modulation of CHT mediated transport would enhance activity-dependent cholinergic signaling. We utilized existing and novel screening techniques for their ability to reveal both positive and negative modulation of CHT using literature tools. A screening campaign was initiated with a bespoke compound library comprising both the Pfizer Chemogenomic Library (CGL) of 2,753 molecules designed specifically to help enable the elucidation of new mechanisms in phenotypic screens and 887 compounds from a virtual screening campaign to select molecules with field-based similarities to reported negative and positive allosteric modulators. We identified a number of previously unknown active and structurally distinct molecules that could be used as tools to further explore CHT biology or as a starting point for further medicinal chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuya Maruyama
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd. Nagano, Japan
| | | | - R Ian Storer
- Pfizer, Worldwide Medicinal Chemistry Cambridge, UK
| | | | | |
Collapse
|
9
|
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol 2016; 14:101-15. [PMID: 26813123 PMCID: PMC4787279 DOI: 10.2174/1570159x13666150716165726] [Citation(s) in RCA: 930] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Acetylcholine (ACh) has a crucial role in the peripheral and central nervous
systems. The enzyme choline acetyltransferase (ChAT) is responsible for
synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular
acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic
vesicles. Following depolarization, ACh undergoes exocytosis reaching the
synaptic cleft, where it can bind its receptors, including muscarinic and
nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by
the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is
recycled into the presynaptic nerve terminal by the high-affinity choline
transporter (CHT1). Cholinergic neurons located in the basal forebrain,
including the neurons that form the nucleus basalis of Meynert, are severely
lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia
affecting 25 million people worldwide. The hallmarks of the disease are the
accumulation of neurofibrillary tangles and amyloid plaques. However, there is
no real correlation between levels of cortical plaques and AD-related cognitive
impairment. Nevertheless, synaptic loss is the principal correlate of disease
progression and loss of cholinergic neurons contributes to memory and attention
deficits. Thus, drugs that act on the cholinergic system represent a promising
option to treat AD patients.
Collapse
Affiliation(s)
| | | | | | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Ennis EA, Blakely RD. Choline on the Move: Perspectives on the Molecular Physiology and Pharmacology of the Presynaptic Choline Transporter. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:175-213. [PMID: 27288078 DOI: 10.1016/bs.apha.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetic, biochemical, physiological, and pharmacological approaches have advanced our understanding of cholinergic biology for over 100 years. High-affinity choline uptake (HACU) was one of the last features of cholinergic signaling to be defined at a molecular level, achieved through the cloning of the choline transporter (CHT, SLC5A7). In retrospect, the molecular era of CHT studies initiated with the identification of hemicholinium-3 (HC-3), a potent, competitive CHT antagonist, though it would take another 30 years before HC-3, in radiolabeled form, was used by Joseph Coyle's laboratory to identify and monitor the dynamics of CHT proteins. Though HC-3 studies provided important insights into CHT distribution and regulation, another 15 years would pass before the structure of CHT genes and proteins were identified, a full decade after the cloning of most other neurotransmitter-associated transporters. The availability of CHT gene and protein probes propelled the development of cell and animal models as well as efforts to gain insights into how human CHT gene variation affects the risk for brain and neuromuscular disorders. Most recently, our group has pursued a broadening of CHT pharmacology, elucidating novel chemical structures that may serve to advance cholinergic diagnostics and medication development. Here we provide a short review of the transformation that has occurred in HACU research and how such advances may promote the development of novel therapeutics.
Collapse
Affiliation(s)
- E A Ennis
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - R D Blakely
- Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
11
|
Iwamoto H, Calcutt MW, Blakely RD. Differential impact of genetically modulated choline transporter expression on the release of endogenous versus newly synthesized acetylcholine. Neurochem Int 2016; 98:138-45. [PMID: 27013347 DOI: 10.1016/j.neuint.2016.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/12/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
The efficient import of choline into cholinergic nerve terminals by the presynaptic, high-affinity choline transporter (CHT, SLC5A7) dictates the capacity for acetylcholine (ACh) synthesis and release. Tissue levels of ACh are significantly reduced in mice heterozygous for a loss of function mutation in Slc5a7 (HET, CHT(+/-)), but significantly elevated in overexpressing, Slc5a7 BAC-transgenic mice (BAC). Since the readily-releasable pool of ACh is thought to constitute a small fraction of the total ACh pool, these genotype-dependent changes raised the question as to whether CHT expression or activity might preferentially influence the size of reserve pool ACh vesicles. In the current study, we approached this question by evaluating CHT genotype effects on the release of ACh from suprafused mouse forebrain slices. We treated slices from HET, BAC or wildtype (WT) controls with elevated K(+) and monitored release of both newly synthesized and storage pools of ACh. Newly synthesized ACh produced following uptake of [(3)H]choline was quantified by scintillation spectrometry whereas release of endogenous ACh storage pools was quantified by an HPLC-MS approach, from the same samples. Whereas endogenous ACh release scaled with CHT gene dosage, preloaded [(3)H]ACh release displayed no significant genotype dependence. Our findings suggest that CHT protein levels preferentially impact the capacity for ACh release afforded by mobilization of reserve pool vesicles.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
12
|
Insulin Regulates the Activity of the High-Affinity Choline Transporter CHT. PLoS One 2015; 10:e0132934. [PMID: 26161852 PMCID: PMC4498808 DOI: 10.1371/journal.pone.0132934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/21/2015] [Indexed: 12/22/2022] Open
Abstract
Studies in humans and animal models show that neuronal insulin resistance increases the risk of developing Alzheimer’s Disease (AD), and that insulin treatment may promote memory function. Cholinergic neurons play a critical role in cognitive and attentional processing and their dysfunction early in AD pathology may promote the progression of AD pathology. Synthesis and release of the neurotransmitter acetylcholine (ACh) is closely linked to the activity of the high-affinity choline transporter protein (CHT), but the impact of insulin receptor signaling and neuronal insulin resistance on these aspects of cholinergic function are unknown. In this study, we used differentiated SH-SY5Y cells stably-expressing CHT proteins to study the effect of insulin signaling on CHT activity and function. We find that choline uptake activity measured after acute addition of 20 nM insulin is significantly lower in cells that were grown for 24 h in media containing insulin compared to cells grown in the absence of insulin. This coincides with loss of ability to increase phospho-Protein Kinase B (PKB)/Akt levels in response to acute insulin stimulation in the chronic insulin-treated cells. Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3-kinase) in cells significantly lowers phospho-PKB/Akt levels and decreases choline uptake activity. We show total internal reflection microscopy (TIRF) imaging of the dynamic movement of CHT proteins in live cells in response to depolarization and drug treatments. These data show that acute exposure of depolarized cells to insulin is coupled to transiently increased levels of CHT proteins at the cell surface, and that this is attenuated by chronic insulin exposure. Moreover, prolonged inhibition of PI3-kinase results in enhanced levels of CHT proteins at the cell surface by decreasing their rate of internalization.
Collapse
|
13
|
Dettmer J, Ursache R, Campilho A, Miyashima S, Belevich I, O'Regan S, Mullendore DL, Yadav SR, Lanz C, Beverina L, Papagni A, Schneeberger K, Weigel D, Stierhof YD, Moritz T, Knoblauch M, Jokitalo E, Helariutta Y. CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nat Commun 2014; 5:4276. [PMID: 25008948 DOI: 10.1038/ncomms5276] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 06/02/2014] [Indexed: 11/09/2022] Open
Abstract
Phloem, a plant tissue responsible for long-distance molecular transport, harbours specific junctions, sieve areas, between the conducting cells. To date, little is known about the molecular framework related to the biogenesis of these sieve areas. Here we identify mutations at the CHER1/AtCTL1 locus of Arabidopsis thaliana. The mutations cause several phenotypic abnormalities, including reduced pore density and altered pore structure in the sieve areas associated with impaired phloem function. CHER1 encodes a member of a poorly characterized choline transporter-like protein family in plants and animals. We show that CHER1 facilitates choline transport, localizes to the trans-Golgi network, and during cytokinesis is associated with the phragmoplast. Consistent with its function in the elaboration of the sieve areas, CHER1 has a sustained, polar localization in the forming sieve plates. Our results indicate that the regulation of choline levels is crucial for phloem development and conductivity in plants.
Collapse
Affiliation(s)
- Jan Dettmer
- 1] Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany [2]
| | - Robertas Ursache
- 1] Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki FIN-00014, Finland [2]
| | - Ana Campilho
- 1] Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto 4150-180, Portugal [2]
| | - Shunsuke Miyashima
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki FIN-00014, Finland
| | - Ilya Belevich
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki FIN-00014, Finland
| | - Seana O'Regan
- Neurophotonics Laboratory, CNRS/Université Paris Descartes, 45, rue des Saints-Pères, 75270 Paris, France
| | - Daniel Leroy Mullendore
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | - Shri Ram Yadav
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki FIN-00014, Finland
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - Luca Beverina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Antonio Papagni
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Korbinian Schneeberger
- Max Planck Institute for Plant Breeding Research, Department for Plant Developmental Biology, 50829 Cologne, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - York-Dieter Stierhof
- ZMBP, Mikroskopie, Universität Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | - Eija Jokitalo
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki FIN-00014, Finland
| | - Ykä Helariutta
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
14
|
Cuddy LK, Winick-Ng W, Rylett RJ. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts. J Neurochem 2013; 128:725-40. [PMID: 24127780 DOI: 10.1111/jnc.12490] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis.
Collapse
Affiliation(s)
- Leah K Cuddy
- Molecular Brain Research Group, Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
15
|
Paolone G, Mallory CS, Cherian AK, Miller TR, Blakely RD, Sarter M. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits. Neuropharmacology 2013; 75:274-85. [PMID: 23958450 DOI: 10.1016/j.neuropharm.2013.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023]
Abstract
Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders.
Collapse
Affiliation(s)
- Giovanna Paolone
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI 48103
| | - Caitlin S Mallory
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI 48103
| | - Ajeesh Koshy Cherian
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI 48103
| | - Thomas R Miller
- Neuroscience Discovery, AbbVie Inc., North Chicago, IL 60064
| | - Randy D Blakely
- Departments of Pharmacology and Psychiatry, Vanderbilt University, Nashville, TN 37232-8548
| | - Martin Sarter
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI 48103
| |
Collapse
|
16
|
Abstract
Acetylcholine, the first chemical to be identified as a neurotransmitter, is packed in synaptic vesicles by the activity of VAChT (vesicular acetylcholine transporter). A decrease in VAChT expression has been reported in a number of diseases, and this has consequences for the amount of acetylcholine loaded in synaptic vesicles as well as for neurotransmitter release. Several genetically modified mice targeting the VAChT gene have been generated, providing novel models to understand how changes in VAChT affect transmitter release. A surprising finding is that most cholinergic neurons in the brain also can express a second type of vesicular neurotransmitter transporter that allows these neurons to secrete two distinct neurotransmitters. Thus a given neuron can use two neurotransmitters to regulate different physiological functions. In addition, recent data indicate that non-neuronal cells can also express the machinery used to synthesize and release acetylcholine. Some of these cells rely on VAChT to secrete acetylcholine with potential physiological consequences in the periphery. Hence novel functions for the oldest neurotransmitter known are emerging with the potential to provide new targets for the treatment of several pathological conditions.
Collapse
|
17
|
Peroxynitrite donor SIN-1 alters high-affinity choline transporter activity by modifying its intracellular trafficking. J Neurosci 2012; 32:5573-84. [PMID: 22514319 DOI: 10.1523/jneurosci.5235-11.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sodium-coupled, high-affinity choline transporters (CHTs) are inhibited by 3-morpholinosydnonimine (SIN-1) [peroxynitrite (ONOO⁻) donor]; ONOO⁻ can be produced from nitric oxide and reactive oxygen species during neurodegeneration. SIN-1 rapidly increases CHT internalization from the cell surface, and this correlates with decreased choline uptake. This study addresses mechanisms by which SIN-1 inhibits CHT function in human neuronal SH-SY5Y cells. Thus, mutant L531A-CHT, which does not constitutively internalize into cells by a clathrin-mediated process, is resistant to SIN-1 effects. This suggests that CHT inhibition is not due to oxidative-nitrosative inactivation of the protein and that decreased levels of cell surface CHT in SIN-1-treated cells is related to alterations in its trafficking and subcellular disposition. Dominant-negative proteins AP180C and dynamin-K44A, which interfere with clathrin-mediated and dynamin-dependent endocytosis, respectively, attenuate CHT inhibition by SIN-1. CHT in both vehicle- and SIN-1-treated cells colocalizes with Rab7, Rab9, and Lamp-1 in late endosomes and lysosomes to a similar extent. Lysosome inhibitors increase choline uptake, suggesting that CHT proteins are normally degraded by lysosomes, and this is not altered by oxidative stress. Unexpectedly, inhibitors of proteasomes, but not lysosomes, attenuate SIN-1-mediated inhibition of choline uptake, indicating that proteasomal degradation plays a role in regulating CHT disposition in SIN-1-treated cells. SIN-1 treatment also enhances CHT ubiquitination. Thus, CHT inhibition in SIN-1-treated cells is mediated by proteasomal degradation, which differs from inhibitory mechanisms for some neurotransmitter transporters under similar conditions. Increased oxidative-nitrosative stress in the microenvironment of cholinergic nerve terminals would diminish cholinergic transmission by reducing choline availability for ACh synthesis.
Collapse
|
18
|
Abreu BJ, Leite LF, Oliveira DL, Amaral E. Synaptic vesicle cycling is not impaired in a glutamatergic and a cholinergic synapse that exhibit deficits in acidification and filling. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present work was to investigate synaptic vesicle trafficking when vesicles exhibit alterations in filling and acidification in two different synapses: a cholinergic frog neuromuscular junction and a glutamatergic ribbon-type nerve terminal in the retina. These synapses display remarkable structural and functional differences, and the mechanisms regulating synaptic vesicle cycling might also differ between them. The lipophilic styryl dye FM1-43 was used to monitor vesicle trafficking. Both preparations were exposed to pharmacological agents that collapse ΔpH (NH4Cl and methylamine) or the whole ΔµH+ (bafilomycin), a necessary situation to provide the driving force for neurotransmitter accumulation into synaptic vesicles. The results showed that FM1-43 loading and unloading in neuromuscular junctions did not differ statistically between control and experimental conditions (P > 0.05). Also, FM1-43 labeling in bipolar cell terminals proved highly similar under all conditions tested. Despite remarkable differences in both experimental models, the present findings show that acidification and filling are not required for normal vesicle trafficking in either synapse.
Collapse
|
19
|
Abstract
Cholinergic neurons are endowed with a high-affinity choline uptake system for efficient synthesis of acetylcholine at the presynaptic terminals. The high-affinity choline transporter CHT1 is responsible for choline uptake, the rate-limiting step in acetylcholine synthesis. However, endogenous physiological factors that affect CHT1 expression or function and consequently regulate the acetylcholine synthesis rate are essentially unknown. Here we demonstrate that extracellular substrate decreases the cell-surface expression of CHT1 in rat brain synaptosomes, primary cultures from the basal forebrain, and mammalian cell lines transfected with CHT1. Extracellular choline rapidly decreases cell-surface CHT1 expression by accelerating its internalization, a process that is mediated by a dynamin-dependent endocytosis pathway in HEK293 cells. Specific inhibitor hemicholinium-3 decreases the constitutive internalization rate and thereby increases cell-surface CHT1 expression. We also demonstrate that the constitutive internalization of CHT1 depends on extracellular pH in cultured cells. Our results collectively suggest that the internalization of CHT1 is induced by extracellular substrate, providing a novel feedback mechanism for the regulation of acetylcholine synthesis at the cholinergic presynaptic terminals.
Collapse
|
20
|
Yamada T, Inazu M, Tajima H, Matsumiya T. Functional expression of choline transporter-like protein 1 (CTL1) in human neuroblastoma cells and its link to acetylcholine synthesis. Neurochem Int 2010; 58:354-65. [PMID: 21185344 DOI: 10.1016/j.neuint.2010.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 01/11/2023]
Abstract
We examined the molecular and functional characterization of choline uptake into human neuroblastoma cell lines (SH-SY5Y: non-cholinergic and LA-N-2: cholinergic neuroblastoma), and the association between choline transport and acetylcholine (ACh) synthesis in these cells. Choline uptake was saturable and mediated by a single transport system. Removal of Na(+) from the uptake buffer strongly enhanced choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium. The increase in choline uptake under Na(+)-free conditions was inhibited by a Na(+)/H(+) exchanger (NHE) inhibitor. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), NHE1 and NHE5 mRNA are mainly expressed. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. ChAT mRNA was expressed at a much higher level in LA-N-2 cells than in SH-SY5Y cells. The conversion of choline to ACh was confirmed in both cells, and was enhanced in Na(+)-free conditions. These findings suggest that CTL1 is functionally expressed in both SH-SY5Y and LA-N-2 cells and is responsible for choline uptake that relies on a directed H(+) gradient as a driving force, and this transport functions in co-operation with NHE1 and NHE5. Furthermore, choline uptake through CTL1 is associated with ACh synthesis in cholinergic neuroblastoma cells.
Collapse
Affiliation(s)
- Tomoko Yamada
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | |
Collapse
|
21
|
Matsuo A, Bellier JP, Nishimura M, Yasuhara O, Saito N, Kimura H. Nuclear choline acetyltransferase activates transcription of a high-affinity choline transporter. J Biol Chem 2010; 286:5836-45. [PMID: 21163949 DOI: 10.1074/jbc.m110.147611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter (VACHT) as candidate genes, which function together with ChAT in acetylcholine production. Using SH-SY5Y human neuroblastoma cells stably expressing wild-type human ChAT, we found that overexpressed ChAT enhanced transcription of the CHT1 gene but not the VACHT gene. In contrast, nuclear localization signal disrupted, and catalytically inactive mutant ChATs could not induce, CHT1 expression. Additionally, ChAT did not alter CHT1 expression in non-neuronal HEK293 cells. Our results suggest that ChAT activates the transcription of selected target genes in neuronal cells. Both enzymatic activity and nuclear translocation of ChAT are required for its transcriptional enhancement.
Collapse
Affiliation(s)
- Akinori Matsuo
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
English BA, Appalsamy M, Diedrich A, Ruggiero AM, Lund D, Wright J, Keller NR, Louderback KM, Robertson D, Blakely RD. Tachycardia, reduced vagal capacity, and age-dependent ventricular dysfunction arising from diminished expression of the presynaptic choline transporter. Am J Physiol Heart Circ Physiol 2010; 299:H799-810. [PMID: 20601463 DOI: 10.1152/ajpheart.00170.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT(-/-)) mice exhibit early postnatal lethality, CHT heterozygous (CHT(+/-)) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT(+/-) mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT(+/-) mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT(+/-) mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease.
Collapse
Affiliation(s)
- Brett A English
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Black SAG, Ribeiro FM, Ferguson SSG, Rylett RJ. Rapid, transient effects of the protein kinase C activator phorbol 12-myristate 13-acetate on activity and trafficking of the rat high-affinity choline transporter. Neuroscience 2010; 167:765-73. [PMID: 20167259 DOI: 10.1016/j.neuroscience.2010.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/05/2010] [Accepted: 02/11/2010] [Indexed: 11/24/2022]
Abstract
Cholinergic neurons rely on the sodium-dependent choline transporter CHT to provide choline for synthesis of acetylcholine. CHT cycles between cell surface and subcellular organelles, but little is known about regulation of this trafficking. We hypothesized that activation of protein kinase C with phorbol ester modulates choline uptake by altering the rate of CHT internalization from or delivery to the plasma membrane. Using SH-SY5Y cells that stably express rat CHT, we found that exposure of cells to phorbol ester for 2 or 5 min significantly increased choline uptake, whereas longer treatment had no effect. Kinetic analysis revealed that 5 min phorbol ester treatment significantly enhanced V(max) of choline uptake, but had no effect on K(m) for solute binding. Cell-surface biotinylation assays showed that plasma membrane levels of CHT protein were enhanced following 5 min phorbol ester treatment; this was blocked by protein kinase C inhibitor bisindolylmaleimide-I. Moreover, CHT internalization was decreased and delivery of CHT to plasma membrane was increased by phorbol ester. Our results suggest that treatment of neural cells with the protein kinase C activator phorbol ester rapidly and transiently increases cell surface CHT levels and this corresponds with enhanced choline uptake activity which may play an important role in replenishing acetylcholine stores following its release by depolarization.
Collapse
Affiliation(s)
- S A G Black
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington's disease. J Neurosci 2010; 30:316-24. [PMID: 20053912 DOI: 10.1523/jneurosci.4974-09.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (Htt). Group I metabotropic glutamate receptors (mGluRs) are coupled to G(alphaq) and play an important role in neuronal survival. We have previously demonstrated that mGluRs interact with Htt. Here we used striatal neuronal primary cultures and acute striatal slices to demonstrate that mGluR-mediated signaling pathways are altered in a presymptomatic mouse model of HD (Hdh(Q111/Q111)), as compared to those of control mice (Hdh(Q20/Q20)). mGluR1/5-mediated inositol phosphate (InsP) formation is desensitized in striatal slices from Hdh(Q111/Q111) mice and this desensitization is PKC-mediated. Despite of decreased InsP formation, (S)-3,5-dihydroxylphenylglycine (DHPG)-mediated Ca(2+) release is higher in Hdh(Q111/Q111) than in Hdh(Q20/Q20) neurons. Furthermore, mGluR1/5-stimulated AKT and extracellular signal-regulated kinase (ERK) activation is altered in Hdh(Q111/Q111) mice. Basal AKT activation is higher in Hdh(Q111/Q111) neurons and this increase is mGluR5 dependent. Moreover, mGluR5 activation leads to higher levels of ERK activation in Hdh(Q111/Q111) than in Hdh(Q20/Q20) striatum. PKC inhibition not only brings Hdh(Q111/Q111) DHPG-stimulated InsP formation to Hdh(Q20/Q20) levels, but also causes an increase in neuronal cell death in Hdh(Q111/Q111) neurons. However, PKC inhibition does not modify neuronal cell death in Hdh(Q20/Q20) neurons, suggesting that PKC-mediated desensitization of mGluR1/5 in Hdh(Q111/Q111) mice might be protective in HD. Together, these data indicate that group I mGluR-mediated signaling pathways are altered in HD and that these cell signaling adaptations could be important for striatal neurons survival.
Collapse
|
25
|
Ivy MT, Newkirk RF, Wang Y, Townsel JG. A novel choline cotransporter sequestration compartment in cholinergic neurons revealed by selective endosomal ablation. J Neurochem 2009; 112:1295-304. [PMID: 20015153 DOI: 10.1111/j.1471-4159.2009.06543.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sodium-dependent, high affinity choline transporter - choline cotransporter - (ChCoT, aka: cho-1, CHT1, CHT) undergoes constitutive and regulated trafficking between the plasma membrane and cytoplasmic compartments. The pathways and regulatory mechanisms of this trafficking are not well understood. We report herein studies involving selective endosomal ablation to further our understanding of the trafficking of the ChCoT. Selective ablation of early sorting and recycling endosomes resulted in a decrease of approximately 75% of [3H]choline uptake and approximately 70% of [3H]hemicholinium-3 binding. Western blot analysis showed that ablation produced a similar decrease in ChCoTs in the plasma membrane subcellular fraction. The time frame for this loss was approximately 2 h which has been shown to be the constitutive cycling time for ChCoTs in this tissue. Ablation appears to be dependent on the intracellular cycling of transferrin-conjugated horseradish peroxidase and the selective deposition of transferrin-conjugated horseradish peroxidase in early endosomes, both sorting and recycling. Ablated brain slices retained their capacity to recruit via regulated trafficking ChCoTs to the plasma membrane. This recruitment of ChCoTs suggests that the recruitable compartment is distinct from the early endosomes. It will be necessary to do further studies to identify the novel sequestration compartment supportive of the ChCoT regulated trafficking.
Collapse
Affiliation(s)
- Michael T Ivy
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | | | | | | |
Collapse
|
26
|
Ribeiro FM, Ferreira LT, Paquet M, Cregan T, Ding Q, Gros R, Ferguson SSG. Phosphorylation-independent regulation of metabotropic glutamate receptor 5 desensitization and internalization by G protein-coupled receptor kinase 2 in neurons. J Biol Chem 2009; 284:23444-53. [PMID: 19564331 DOI: 10.1074/jbc.m109.000778] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The uncoupling of metabotropic glutamate receptors (mGluRs) from heterotrimeric G proteins represents an essential feedback mechanism that protects neurons against receptor overstimulation that may ultimately result in damage. The desensitization of mGluR signaling is mediated by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). Unlike mGluR1, the attenuation of mGluR5 signaling in HEK 293 cells is reported to be mediated by a phosphorylation-dependent mechanism. However, the mechanisms regulating mGluR5 signaling and endocytosis in neurons have not been investigated. Here we show that a 2-fold overexpression of GRK2 leads to the attenuation of endogenous mGluR5-mediated inositol phosphate (InsP) formation in striatal neurons and siRNA knockdown of GRK2 expression leads to enhanced mGluR5-mediated InsP formation. Expression of a catalytically inactive GRK2-K220R mutant also effectively attenuates mGluR5 signaling, but the expression of a GRK2-D110A mutant devoid in Galpha(q/11) binding increases mGluR5 signaling in response to agonist stimulation. Taken together, these results indicate that the attenuation of mGluR5 responses in striatal neurons is phosphorylation-independent. In addition, we find that mGluR5 does not internalize in response to agonist treatment in striatal neuron, but is efficiently internalized in cortical neurons that have higher levels of endogenous GRK2 protein expression. When overexpressed in striatal neurons, GRK2 promotes agonist-stimulated mGluR5 internalization. Moreover, GRK2-mediated promotion of mGluR5 endocytosis does not require GRK2 catalytic activity. Thus, we provide evidence that GRK2 mediates phosphorylation-independent mGluR5 desensitization and internalization in neurons.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | |
Collapse
|