1
|
Negrete-Díaz JV, Shumilov K, Real MÁ, Medina-Luque J, Valderrama-Carvajal A, Flores G, Rodríguez-Moreno A, Rivera A. Pharmacological activation of dopamine D 4 receptor modulates morphine-induced changes in the expression of GAD 65/67 and GABA B receptors in the basal ganglia. Neuropharmacology 2019; 152:22-29. [PMID: 30682345 DOI: 10.1016/j.neuropharm.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 11/27/2022]
Abstract
Dopamine D4 receptor (D4R) stimulation, in a putative D4R/μ opioid heteroreceptor (MOR) complex, counteracts the molecular, cellular and behavioural actions of morphine which are associated with morphine addiction, without any effect on its analgesic properties. In the present work, we have evaluated the role of D4R in modulating the effects of a continuous treatment with morphine on the GABAergic system in the basal ganglia. It has been demonstrated that the co-administration of a D4R agonist together with morphine leads to a restoration of GABA signaling by preventing drug-induced changes in GAD65/67 expression in the caudate putamen, globus palidus and substantia nigra. Results from GABABR1 and GABABR2 expression suggest a role of D4R in modulation of the GABAB heteroreceptor complexes along the basal ganglia, especially in the functional divisions of the caudate putamen. These results provide a new proof of the functional interaction between D4R and MOR and we postulate this putative heteroreceptor complex as a key target for the development of a new strategy to prevent the addictive effects of morphine in the treatment of pain. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- José Vicente Negrete-Díaz
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Guanajuato, Mexico (permanent address)
| | - Kirill Shumilov
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - M Ángeles Real
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - José Medina-Luque
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; German Center for Neurodegenerative Diseases (DZNE) Munich, German (permanent address)
| | | | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain.
| |
Collapse
|
2
|
Psychostimulant drug effects on glutamate, Glx, and creatine in the anterior cingulate cortex and subjective response in healthy humans. Neuropsychopharmacology 2018; 43:1498-1509. [PMID: 29511334 PMCID: PMC5983539 DOI: 10.1038/s41386-018-0027-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022]
Abstract
Prescription psychostimulants produce rapid changes in mood, energy, and attention. These drugs are widely used and abused. However, their effects in human neocortex on glutamate and glutamine (pooled as Glx), and key neurometabolites such as N-acetylaspartate (tNAA), creatine (tCr), choline (Cho), and myo-inositol (Ins) are poorly understood. Changes in these compounds could inform the mechanism of action of psychostimulant drugs and their abuse potential in humans. We investigated the acute impact of two FDA-approved psychostimulant drugs on neurometabolites using magnetic resonance spectroscopy (1H MRS). Single clinically relevant doses of d-amphetamine (AMP, 20 mg oral), methamphetamine (MA, 20 mg oral; Desoxyn®), or placebo were administered to healthy participants (n = 26) on three separate test days in a placebo-controlled, double-blinded, within-subjects crossover design. Each participant experienced all three conditions and thus served as his/her own control. 1H MRS was conducted in the dorsal anterior cingulate cortex (dACC), an integrative neocortical hub, during the peak period of drug responses (140-150 m post ingestion). D-amphetamine increased the level of Glu (p = .0001), Glx (p = .003), and tCr (p = .0067) in the dACC. Methamphetamine increased Glu in females, producing a significant crossover interaction pattern with gender (p = .02). Drug effects on Glu, tCr, and Glx were positively correlated with subjective drug responses, predicting both the duration of AMP liking (Glu: r = +.49, p = .02; tCr: r = +.41, p = .047) and the magnitude of peak drug high to MA (Glu: r = +.52, p = .016; Glx: r = +.42, p = .049). Neither drug affected the levels of tNAA, Cho, or Ins after correction for multiple comparisons. We conclude that d-amphetamine increased the concentration of glutamate, Glx, and tCr in the dACC in male and female volunteers 21/2 hours after drug consumption. There was evidence that methamphetamine differentially affects dACC Glu levels in women and men. These findings provide the first experimental evidence that specific psychostimulants increase the level of glutamatergic compounds in the human brain, and that glutamatergic changes predict the extent and magnitude of subjective responses to psychostimulants.
Collapse
|
3
|
Tzanoulinou S, Riccio O, de Boer MW, Sandi C. Peripubertal stress-induced behavioral changes are associated with altered expression of genes involved in excitation and inhibition in the amygdala. Transl Psychiatry 2014; 4:e410. [PMID: 25004390 PMCID: PMC4119221 DOI: 10.1038/tp.2014.54] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/30/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023] Open
Abstract
Early-life stress is a critical risk factor for developing psychopathological alterations later in life. This early adverse environment has been modeled in rats by exposure to stress during the peripubertal period-that is, corresponding to childhood and puberty-and has been shown to lead to increased emotionality, decreased sociability and pathological aggression. The amygdala, particularly its central nucleus (CeA), is hyperactivated in this model, consistent with evidence implicating this nucleus in the regulation of social and aggressive behaviors. Here, we investigated potential changes in the gene expression of molecular markers of excitatory and inhibitory neurotransmission in the CeA. We found that peripubertal stress led to an increase in the expression of mRNA encoding NR1 (the obligatory subunit of the N-methyl D-aspartate (NMDA) receptor) but to a reduction in the level of mRNA encoding glutamic acid decarboxylase 67 (GAD67), an enzyme that is critically involved in the activity-dependent synthesis of GABA, and to an increase in the vesicular glutamate transporter 1 (VGLUT1)/vesicular GABA transporter (VGAT) ratio in the CeA. These molecular alterations were present in addition to increased novelty reactivity, sociability deficits and increased aggression. Our results also showed that the full extent of the peripubertal protocol was required for the observed behavioral and neurobiological effects because exposure during only the childhood/prepubertal period (Juvenile Stress) or the male pubertal period (Puberty Stress) was insufficient to elicit the same effects. These findings highlight peripuberty as a period in which stress can lead to long-term programming of the genes involved in excitatory and inhibitory neurotransmission in the CeA.
Collapse
Affiliation(s)
- S Tzanoulinou
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - O Riccio
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - M W de Boer
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Station 15—ABB 115, Lausanne CH-1015, Switzerland. E-mail:
| |
Collapse
|
4
|
Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation? Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:189-96. [PMID: 23906988 DOI: 10.1016/j.pnpbp.2013.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
Glutamate decarboxylases (GAD67/65; GAD1/GAD2) are crucially involved in gamma-aminobutyric acid (GABA) synthesis and thus were repeatedly suggested to play an important role in the pathogenesis of anxiety disorders. In the present study, DNA methylation patterns in the GAD1 and GAD2 promoter and GAD1 intron 2 regions were investigated for association with panic disorder, with particular attention to possible effects of environmental factors. Sixty-five patients with panic disorder (f=44, m=21) and 65 matched healthy controls were analyzed for DNA methylation status at 38 GAD1 promoter/intron2 and 10 GAD2 promoter CpG sites via direct sequencing of sodium bisulfate treated DNA extracted from blood cells. Recent positive and negative life events were ascertained. Patients and controls were genotyped for GAD1 rs3762556, rs3791878 and rs3762555, all of which are located in the analyzed promoter region. Patients with panic disorder exhibited significantly lower average GAD1 methylation than healthy controls (p<0.001), particularly at three CpG sites in the promoter as well as in intron 2. The occurrence of negative life events was correlated with relatively decreased average methylation mainly in the female subsample (p=0.01). GAD1 SNP rs3762555 conferred a significantly lower methylation at three GAD1 intron 2 CpG sites (p<0.001). No differential methylation was observed in the GAD2 gene. The present pilot data suggest a potentially compensatory role of GAD1 gene hypomethylation in panic disorder possibly mediating the influence of negative life events and depending on genetic variation. Future studies are warranted to replicate the present finding in independent samples, preferably in a longitudinal design.
Collapse
|
5
|
Bañuelos C, LaSarge CL, McQuail JA, Hartman JJ, Gilbert RJ, Ormerod BK, Bizon JL. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: relationship with spatial impairment. Neurobiol Aging 2013; 34:845-62. [PMID: 22817834 PMCID: PMC3632262 DOI: 10.1016/j.neurobiolaging.2012.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/15/2012] [Accepted: 06/21/2012] [Indexed: 01/31/2023]
Abstract
Both cholinergic and GABAergic projections from the rostral basal forebrain contribute to hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in codistributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase [ChAT] immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 [GAD67] immunopositive) neurons, and total (neuronal nuclei [NeuN] immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline.
Collapse
Affiliation(s)
- Cristina Bañuelos
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Polymorphisms in the glutamate decarboxylase 1 gene associated with heroin dependence. Biochem Biophys Res Commun 2012; 422:91-6. [DOI: 10.1016/j.bbrc.2012.04.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 04/21/2012] [Indexed: 02/07/2023]
|
7
|
De Luca MA, Bimpisidis Z, Bassareo V, Di Chiara G. Influence of morphine sensitization on the responsiveness of mesolimbic and mesocortical dopamine transmission to appetitive and aversive gustatory stimuli. Psychopharmacology (Berl) 2011; 216:345-53. [PMID: 21340470 DOI: 10.1007/s00213-011-2220-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Repeated treatment with morphine has been shown to sensitize rats to its stimulant effects on motor activity and mesolimbic dopamine (DA) transmission. OBJECTIVES The aim of this study is to investigate if morphine sensitization is associated to changes in the behavioral reactions to appetitive and aversive taste stimuli and in the response of in vivo DA transmission in the nucleus accumbens (NAc) shell and core and medial prefrontal cortex (PFCX) to the same stimuli. METHODS Rats were administered twice a day for three consecutive days with increasing doses of morphine [10, 20, and 40 mg/kg, subcutaneously (sc)] or with saline. After 15 days of withdrawal, rats were infused intraorally with either an appetitive (sweet chocolate, 1 ml) or an aversive solution (quinine HCl 5 × 10(-4) M, 1 ml). The behavioral taste reactions were recorded during microdialysis of DA in the NAc shell and core and PFCX. RESULTS Opiate sensitization did not affect behavioral reactions to intraoral chocolate or quinine. In rats naive to the taste stimuli, morphine sensitization was associated to potentiation of stimulatory DA response to appetitive and aversive taste stimuli in the NAc core. Morphine sensitization reciprocally affected habituation of DA responsiveness after one trial exposure to appetitive and aversive taste stimuli (abolition it in the shell, induction in the PFCX). No habituation of DA responsiveness to taste was observed in the NAc core in controls as well as in morphine-sensitized rats. CONCLUSIONS These results suggest that opiate sensitization is associated to differential adaptive changes of the responsiveness of DA transmission to taste stimuli in DA terminal areas.
Collapse
|
8
|
Tasan RO, Bukovac A, Peterschmitt YN, Sartori SB, Landgraf R, Singewald N, Sperk G. Altered GABA transmission in a mouse model of increased trait anxiety. Neuroscience 2011; 183:71-80. [PMID: 21458543 PMCID: PMC3092983 DOI: 10.1016/j.neuroscience.2011.03.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 12/21/2022]
Abstract
Anxiety disorders are the most prevalent central nervous system diseases imposing a high social burden to our society. Emotional processing is particularly controlled by GABA-ergic transmission in the amygdala. Using in situ hybridization and immunohistochemistry we now investigated changes in the expression of GABA synthesizing enzymes (GAD65 and GAD67), GABAA (α1–5, β1–3, γ1–2) and GABAB receptor subunits (GBBR1, GBBR2) in amygdaloid nuclei of high anxiety-related behavior (HAB) mice in comparison to mice selected for normal anxiety-related behavior (NAB). Levels of GAD65 and GAD67 mRNAs and protein, as well as those of GABA were increased in the amygdala of HAB mice. Relative to NAB controls, mRNA expression of the GABAA receptor subunits β1, β2 and γ2 was specifically increased in the basolateral amygdala of HAB mice while transcription of α5 and γ1 subunits was reduced in the central and medial amygdala. On the protein level, increases in β2 and γ2 subunit immunoreactivities were evident in the basolateral amygdala of HAB mice. No change in GABAB receptor expression was observed. These findings point towards an imbalanced GABA-ergic neurotransmission in the amygdala of HAB mice. On the other hand, FosB, a marker for neuronal activity, was increased in principal neurons of the basolateral amygdala in HAB mice, reflecting activation of excitatory neurons, possibly as a consequence of reduced GABA-ergic tonic inhibition through α5 and γ1 containing receptors. Ultimately these mechanisms may lead to the compensatory activation of GABA transmission, as indicated by the increased expression of GAD65/67 in HAB mice.
Collapse
Affiliation(s)
- R O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
9
|
Cocaine reverses the changes in GABAA subunits and in glutamic acid decarboxylase isoenzymes mRNA expression induced by neonatal 6-hydroxydopamine. Behav Pharmacol 2010; 21:343-52. [PMID: 20581658 DOI: 10.1097/fbp.0b013e32833b33af] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Attention-deficit/hyperactivity disorder is related to altered functions in the dopaminergic and GABAergic pathways of cortical and subcortical brain areas The hyperactivity of attention-deficit/hyperactivity disorder is commonly modelled in rats after neonatal lesion with 6-hydroxydopamine (6-OHDA), and amphetamines are effective in reducing hyperactivity in this animal model. Our objectives were to evaluate whether cocaine reverses the motor hyperactivity of 6-OHDA-lesioned rats and to verify cocaine effects in altered mRNA expression of alpha2, alpha4, beta1 and beta2-GABAA subunits and GAD isoenzymes in the prefrontal cortex, hippocampus and striatum of 6-OHDA-lesioned rats. On PND4, 6-OHDA-lesioned or sham rats received 6-OHDA (100 microg intracisternal) or vehicle. Cocaine solution (0.1 mg/ml/day) was offered when adult for 23 days, using the two-bottle choice procedure. The subjects were evaluated in an open-field on the last day of cocaine treatment. 6-OHDA-lesioned rats showed increased locomotion and this hyperactivity was reversed during cocaine self-administration. 6-OHDA lesion caused an increase in the mRNA expression of GABAA subunits in specific brain areas and GAD isoenzymes in the hippocampus and striatum. Increased GAD65 and decreased GAD67 mRNA expression were also shown in the prefrontal cortex. Cocaine self-administration attenuated the effects of 6-OHDA lesions on the mRNA expression of alpha2-GABAA and beta2-GABAA subunits in the prefrontal cortex, reversed the mRNA expression of alpha2-GABAA subunits in the striatum and of alpha4-GABAA subunits in the prefrontal cortex and in the hippocampus, and reversed the mRNA expression of GAD65 and GAD67 in the brain areas studied. Our findings suggest that cocaine reverses some mRNA changes of GABAA subunits and GAD isoenzymes in reward circuits and the behavioural hyperactivity caused by 6-OHDA lesion.
Collapse
|
10
|
Souza MF, Toniazo VM, Frazzon APG, Barros HMT. Influence of progesterone on GAD65 and GAD67 mRNA expression in the dorsolateral striatum and prefrontal cortex of female rats repeatedly treated with cocaine. Braz J Med Biol Res 2010; 42:1068-75. [PMID: 19855903 DOI: 10.1590/s0100-879x2009001100011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022] Open
Abstract
Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the effects of repeated cocaine administration on the isoenzymes of glutamic acid decarboxylase (GAD(65) and GAD(67)) mRNA in brain areas involved in the addiction circuitry. Ovariectomized, intact and progesterone replacement-treated female rats received saline or cocaine (30 mg/kg, ip) acutely or repeatedly. GAD isoenzyme mRNA levels were determined in the dorsolateral striatum (dSTR) and prefrontal cortex (PFC) by RT-PCR, showing that repeated, but not acute, cocaine decreased GADs/beta-actin mRNA ratio in the dSTR irrespective of the hormonal condition (GAD(65): P < 0.001; and GAD(67): P = 0.004). In the PFC, repeated cocaine decreased GAD(65) and increased GAD(67) mRNA ratio (P < 0.05). Progesterone replacement decreased both GAD isoenzymes mRNA ratio after acute cocaine in the PFC (P < 0.001) and repeated cocaine treatment reversed this decrease (P < 0.001). These results suggest that cocaine does not immediately affect GAD mRNA expression, while repeated cocaine decreases both GAD(65) and GAD(67) mRNA in the dSTR of female rats, independently of their hormonal conditions. In the PFC, repeated cocaine increases the expression of GAD isoenzymes, which were decreased due to progesterone replacement.
Collapse
Affiliation(s)
- M F Souza
- Laboratório de Psicofarmacologia, Departamento de Farmacologia e Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | | | | | | |
Collapse
|
11
|
Glass MJ. The role of functional postsynaptic NMDA receptors in the central nucleus of the amygdala in opioid dependence. VITAMINS AND HORMONES 2010; 82:145-66. [PMID: 20472137 DOI: 10.1016/s0083-6729(10)82008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of ionotropic N-methyl-D-aspartate (NMDA)-type glutamate receptors in limbic system nuclei, such as the central nucleus of the amygdala (CeA), plays an essential role in autonomic, behavioral, and affective processes that are profoundly impacted by exposure to opioids. However, the heterogeneous ultrastructural distribution of the NMDA receptor, its complex pharmacology, and the paucity of genetic models have hampered the development of linkages between functional amygdala NMDA receptors and opioid dependence. To overcome these shortcomings, high-resolution imaging and molecular pharmacology were used to (1) Identify the ultrastructural localization of the essential NMDA-NR1 receptor (NR1) subunit and its relationship to the mu-opioid receptor (microOR), the major cellular target of abused opioids like morphine, in the CeA and (2) Determine the effect of CeA NR1 deletion on the physical, and particularly, psychological aspects of opioid dependence. Combined immunogold and immuoperoxidase electron microscopic analysis showed that NR1 was prominently expressed in postsynaptic (i.e., somata, dendrites) locations of CeA neurons, where they were also frequently colocalized with the microOR. A spatial-temporal deletion of NR1 in postsynaptic sites of CeA neurons was produced by local microinjection of a neurotropic recombinant adeno-associated virus (rAAV), expressing the green fluorescent protein (GFP) reporter and Cre recombinase (rAAV-GFP-Cre), in adult "floxed" NR1 (fNR1) mice. Mice with deletion of NR1 in the CeA showed no obvious impairments in sensory, motor, or nociceptive function. In addition, when administered chronic morphine, these mice also displayed an acute physical withdrawal syndrome precipitated by naloxone. However, opioid-dependent CeA NR1 knockout mice failed to exhibit a conditioned place aversion induced by naloxone-precipitated withdrawal. These results indicate that postsynaptic NMDA receptor activity in central amygdala neurons is required for the expression of a learned affective behavior associated with opioid withdrawal. The neurogenetic dissociation of physical and psychological properties of opioid dependence demonstrates the value of combined ultrastructural analysis and molecular pharmacology in clarifying the neurobiological mechanisms subserving opioid-mediated plasticity.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, USA
| |
Collapse
|
12
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
13
|
Kuntz-Melcavage KL, Freeman WM, Vrana KE. CNS genes implicated in relapse. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2008; 2:1-12. [PMID: 25922574 PMCID: PMC4395042 DOI: 10.4137/sart.s1042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Drug abuse is a condition that impacts not only the individual drug user, but society as a whole. Although prevention of initial drug use is the most effective way to prevent addiction, avoiding relapse is a crucial component of drug addiction recovery. Recent studies suggest that there is a set of genes whose expression is robustly and stably altered following drug use and ensuing abstinence. Such stable changes in gene expression correlate with ultrastructural changes in brain as well as alterations in behavior. As persistent molecular changes, these genes may provide targets for the development of therapeutics. Developing a list of well-characterized candidate genes and examining the effect of manipulating these genes will contribute to the ultimate goal of developing effective treatments to prevent relapse to drug use.
Collapse
Affiliation(s)
- Kara L Kuntz-Melcavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, R130, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Willard M Freeman
- Department of Pharmacology, Pennsylvania State University College of Medicine, R130, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Kent E Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, R130, 500 University Drive, Hershey, PA 17033, U.S.A
| |
Collapse
|