1
|
Momose-Sato Y, Sato K. Prenatal exposure to nicotine disrupts synaptic network formation by inhibiting spontaneous correlated wave activity. IBRO Rep 2020; 9:14-23. [PMID: 32642591 PMCID: PMC7334560 DOI: 10.1016/j.ibror.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 11/28/2022] Open
Abstract
Correlated spontaneous activity propagating over a wide region of the central nervous system is expressed during a specific period of embryonic development. We previously demonstrated using an optical imaging technique with a voltage-sensitive dye that this wave-like activity, which we referred to as the depolarization wave, is fundamentally involved in the early process of synaptic network formation. We found that the in ovo application of bicuculline/strychnine or d-tubocurarine, which blocked the neurotransmitters mediating the wave, significantly reduced functional synaptic expression in the brainstem sensory nucleus. This result, particularly for d-tubocurarine, an antagonist of nicotinic acetylcholine receptors, suggested that prenatal nicotine exposure associated with maternal smoking affects the development of neural circuit formation by interfering with the correlated wave. In the present study, we tested this hypothesis by examining the effects of nicotine on the correlated activity and assessing the chronic action of nicotine in ovo on functional synaptic expression along the vagal sensory pathway. In ovo observations of chick embryo behavior and electrical recording using in vitro preparations showed that the application of nicotine transiently increased embryonic movements and electrical bursts associated with the wave, but subsequently inhibited these activities, suggesting that the dominant action of the drug was to inhibit the wave. Optical imaging with the voltage-sensitive dye showed that the chronic exposure to nicotine in ovo markedly reduced functional synaptic expression in the higher-order sensory nucleus of the vagus nerve, the parabrachial nucleus. The results suggest that prenatal nicotine exposure disrupts the initial formation of the neural circuitry by inhibiting correlated spontaneous wave activity.
Collapse
Key Words
- APV, DL-2-amino-5-phosphonovaleric acid
- CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione
- E, embryonic day (days of incubation in avians and days of pregnancy in mammals)
- EPSP, excitatory postsynaptic potential
- GABA, γ-aminobutyric acid
- In ovo
- NMDA, N-methyl-D-aspartate
- NTS, nucleus of the tractus solitarius
- Nicotine
- Optical recording
- PBN, parabrachial nucleus
- Spontaneous activity
- Synaptic network formation
- Voltage-sensitive dye
- nAChR, nicotinic acetylcholine receptor
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, 236-8501, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women’s University, Inagi-shi, Tokyo, 206-8511, Japan
| |
Collapse
|
2
|
Momose-Sato Y, Sato K. Developmental roles of the spontaneous depolarization wave in synaptic network formation in the embryonic brainstem. Neuroscience 2017; 365:33-47. [PMID: 28951326 DOI: 10.1016/j.neuroscience.2017.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023]
Abstract
One of the earliest activities expressed within the developing central nervous system is a widely propagating wave-like activity, which we referred to as the depolarization wave. Despite considerable consensus concerning the global features of the activity, its physiological role is yet to be clarified. The depolarization wave is expressed during a specific period of functional synaptogenesis, and this developmental profile has led to the hypothesis that the wave plays some roles in synaptic network organization. In the present study, we tested this hypothesis by inhibiting the depolarization wave in ovo and examining its effects on the development of functional synapses in vagus nerve-related brainstem nuclei of the chick embryo. Chronic inhibition of the depolarization wave had no significant effect on the developmental time course, amplitude, and spatial distribution of monosynaptic excitatory postsynaptic potentials in the first-order nuclei of the vagal sensory pathway (the nucleus of the tractus solitarius (NTS) and the contralateral non-NTS region), but reduced polysynaptic responses in the higher-order nucleus (the parabrachial nucleus). These results suggest that the depolarization wave plays an important role in the initial process of functional synaptic expression in the brainstem, especially in the higher-order nucleus of the cranial sensory pathway.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan.
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo 206-8511, Japan
| |
Collapse
|
3
|
Sato K, Momose-Sato Y. Functiogenesis of the embryonic central nervous system revealed by optical recording with a voltage-sensitive dye. J Physiol Sci 2017; 67:107-119. [PMID: 27623687 PMCID: PMC10717437 DOI: 10.1007/s12576-016-0482-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Clarification of the functiogenesis of the embryonic central nervous system (CNS) has long been problematic, because conventional electrophysiological techniques have several limitations. First, early embryonic neurons are small and fragile, and the application of microelectrodes is challenging. Second, the simultaneous monitoring of electrical activity from multiple sites is limited, and as a consequence, spatiotemporal response patterns of neural networks cannot be assessed. We have applied multiple-site optical recording with a voltage-sensitive dye to the embryonic CNS and paved a new way to analyze the functiogenesis of the CNS. In this review, we discuss key points of optical recording in the embryonic CNS and introduce recent progress in optical investigations on the embryonic CNS with special emphasis on the development of the chick olfactory system. The studies clearly demonstrate the usefulness of voltage-sensitive dye recording as a powerful tool for elucidating the functional organization of the vertebrate embryonic CNS.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women's University Faculty of Human Health, 238 Sakahama, Inagi-shi, Tokyo, 206-8511, Japan.
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Yokohama, 236-8501, Japan
| |
Collapse
|
4
|
Momose-Sato Y, Sato K. Development of Spontaneous Activity in the Avian Hindbrain. Front Neural Circuits 2016; 10:63. [PMID: 27570506 PMCID: PMC4981603 DOI: 10.3389/fncir.2016.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity in the developing central nervous system occurs before the brain responds to external sensory inputs, and appears in the hindbrain and spinal cord as rhythmic electrical discharges of cranial and spinal nerves. This spontaneous activity recruits a large population of neurons and propagates like a wave over a wide region of the central nervous system. Here, we review spontaneous activity in the chick hindbrain by focusing on this large-scale synchronized activity. Asynchronous activity that is expressed earlier than the above mentioned synchronized activity and activity originating in midline serotonergic neurons are also briefly mentioned.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University Yokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University Tokyo, Japan
| |
Collapse
|
5
|
Vincen-Brown MA, Revill AL, Pilarski JQ. Activity-dependent plasticity in the isolated embryonic avian brainstem following manipulations of rhythmic spontaneous neural activity. Respir Physiol Neurobiol 2016; 229:24-33. [PMID: 27025229 DOI: 10.1016/j.resp.2016.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/20/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
When rhythmic spontaneous neural activity (rSNA) first appears in the embryonic chick brainstem and cranial nerve motor axons it is principally driven by nicotinic neurotransmission (NT). At this early age, the nicotinic acetylcholine receptor (nAChR) agonist nicotine is known to critically disrupt rSNA at low concentrations (0.1-0.5μM), which are levels that mimic the blood plasma levels of a fetus following maternal cigarette smoking. Thus, we quantified the effect of persistent exposure to exogenous nicotine on rSNA using an in vitro developmental model. We found that rSNA was eliminated by continuous bath application of exogenous nicotine, but rSNA recovered activity within 6-12h despite the persistent activation and desensitization of nAChRs. During the recovery period rSNA was critically driven by chloride-mediated membrane depolarization instead of nicotinic NT. To test whether this observed compensation was unique to the antagonism of nicotinic NT or whether the loss of spiking behavior also played a role, we eliminated rSNA by lowering overall excitatory drive with a low [K(+)]o superfusate. In this context, rSNA again recovered, although the recovery time was much quicker, and exhibited a lower frequency, higher duration, and an increase in the number of bursts per episode when compared to control embryos. Importantly, we show that the main compensatory response to lower overall excitatory drive, similar to nicotinergic block, is a result of potentiated chloride mediated membrane depolarization. These results support increasing evidence that early neural circuits sense spiking behavior to maintain primordial bioelectric rhythms. Understanding the nature of developmental plasticity in the nervous system, especially versions that preserve rhythmic behaviors following clinically meaningful environmental stimuli, both normal and pathological, will require similar studies to determine the consequences of feedback compensation at more mature chronological ages.
Collapse
Affiliation(s)
| | - Ann L Revill
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Jason Q Pilarski
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United states; Department of Dental Sciences, Idaho State University, Pocatello, ID, United states.
| |
Collapse
|
6
|
Dongmei L, Zhiwei W, Qi Z, Fuyi C, Yujuan S, Xiaodong L. Drinking water toxicity study of the environmental contaminant––Bromate. Regul Toxicol Pharmacol 2015; 73:802-10. [DOI: 10.1016/j.yrtph.2015.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
7
|
Dai XX, Duan X, Cui XS, Kim NH, Xiong B, Sun SC. Melamine Induces Oxidative Stress in Mouse Ovary. PLoS One 2015; 10:e0142564. [PMID: 26545251 PMCID: PMC4636161 DOI: 10.1371/journal.pone.0142564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/25/2015] [Indexed: 12/31/2022] Open
Abstract
Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.
Collapse
Affiliation(s)
- Xiao-Xin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, 361–763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, 361–763, Korea
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|
8
|
Momose-Sato Y, Sato K, Kamino K. Monitoring Population Membrane Potential Signals During Development of the Vertebrate Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:213-42. [DOI: 10.1007/978-3-319-17641-3_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Momose-Sato Y, Sato K. Maintenance of the large-scale depolarization wave in the embryonic chick brain against deprivation of the rhythm generator. Neuroscience 2014; 266:186-96. [PMID: 24568731 DOI: 10.1016/j.neuroscience.2014.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 11/24/2022]
Abstract
Widely correlated spontaneous activity in the developing nervous system is transiently expressed and is considered to play a fundamental role in neural circuit formation. The depolarization wave, which spreads over a long distance along the neuraxis, maximally extending to the lumbosacral cord and forebrain, is an example of this spontaneous activity. Although the depolarization wave is typically initiated in the spinal cord in intact preparations, spontaneous discharges have also been detected in the isolated brainstem. Although this suggests that the brainstem has the ability to generate spontaneous activity, but is paced by a caudal rhythm generator of higher excitability, a number of questions remains. Does brainstem activity simply appear as a passive consequence, or does any active change occur in the brainstem network to compensate for this activity? If the latter is the case, does this compensation occur equally at different developmental stages? Where is the new rhythm generator in the isolated brainstem? To answer these questions, we optically analyzed spatio-temporal patterns of activity detected from the chick brainstem before and after transection at the obex. The results revealed that the depolarization wave was homeostatically maintained, which was characterized by an increase in excitability and/or the number of neurons recruited to the wave. The wave was more easily maintained in younger embryos. Furthermore, we demonstrated that the ability of brainstem neurons to perform such an active compensation was not lost even at the stage when the depolarization wave was no longer observed in the intact brainstem.
Collapse
Affiliation(s)
- Y Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan.
| | - K Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo 206-8511, Japan.
| |
Collapse
|
10
|
Yin RH, Wang XZ, Bai WL, Wu CD, Yin RL, Li C, Liu J, Liu BS, He JB. The reproductive toxicity of melamine in the absence and presence of cyanuric acid in male mice. Res Vet Sci 2013; 94:618-27. [DOI: 10.1016/j.rvsc.2012.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 10/18/2012] [Accepted: 11/21/2012] [Indexed: 11/17/2022]
|
11
|
Corner MA. From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro "model" systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system. Brain Sci 2013; 3:800-20. [PMID: 24961426 PMCID: PMC4061857 DOI: 10.3390/brainsci3020800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, 1071-TC, The Netherlands.
| |
Collapse
|
12
|
Momose-Sato Y, Sato K. Large-scale synchronized activity in the embryonic brainstem and spinal cord. Front Cell Neurosci 2013; 7:36. [PMID: 23596392 PMCID: PMC3625830 DOI: 10.3389/fncel.2013.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/20/2013] [Indexed: 01/09/2023] Open
Abstract
In the developing central nervous system, spontaneous activity appears well before the brain responds to external sensory inputs. One of the earliest activities is observed in the hindbrain and spinal cord, which is detected as rhythmic electrical discharges of cranial and spinal motoneurons or oscillations of Ca(2+)- and voltage-related optical signals. Shortly after the initial expression, the spontaneous activity appearing in the hindbrain and spinal cord exhibits a large-scale correlated wave that propagates over a wide region of the central nervous system, maximally extending to the lumbosacral cord and to the forebrain. In this review, we describe several aspects of this synchronized activity by focusing on the basic properties, development, origin, propagation pattern, pharmacological characteristics, and possible mechanisms underlying the generation of the activity. These profiles differ from those of the respiratory and locomotion pattern generators observed in the mature brainstem and spinal cord, suggesting that the wave is primordial activity that appears during a specific period of embryonic development and plays some important roles in the development of the central nervous system.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin UniversityYokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's UniversityTokyo, Japan
| |
Collapse
|
13
|
Momose-Sato Y, Nakamori T, Sato K. Pharmacological mechanisms underlying switching from the large-scale depolarization wave to segregated activity in the mouse central nervous system. Eur J Neurosci 2012; 35:1242-52. [PMID: 22512255 DOI: 10.1111/j.1460-9568.2012.08040.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During the early development of the nervous system, synchronized activity is observed in a variety of structures, and is considered to play a fundamental role in neural development. One of the most striking examples of such activity is the depolarization wave reported in chick and rat embryos. In the accompanying paper (Momose-Sato et al., 2012), we have demonstrated that a depolarization wave is also present in the mouse embryo by showing large-scale optical waves, which spread remarkably over the central nervous system, including the spinal cord, hindbrain, cerebellum, midbrain, and forebrain. In the present study, we examined the pharmacological nature of the mouse depolarization wave and its developmental changes. We show here that two types of switching in pharmacological characteristics occur during development. One is that the depolarization wave is strongly dependent on nicotinic acetylcholine receptors during the early developmental stage [embryonic day (E)11-12], but is dominated by glutamate at the later stage (E13 onwards). The second is that γ-aminobutyric acid (GABA), which acts as an excitatory mediator of the depolarization wave during the early phase, becomes an inhibitory modulator by E14. These changes seemed to occur earlier in the hindbrain than in the spinal cord. Furthermore, we show that the second switch causes the loss of synchronization over the network, resulting in the disappearance of the depolarization wave and segregation of the activity into discrete regions of the medulla and spinal cord. We suggest that pharmacological switching is a possible mechanism underlying replacement of the primordial correlated network by a mature neuronal circuit.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin University, 1-50-1 Mutsuura-Higashi, Kanazawa-ku, Yokohama, 236-8503, Japan.
| | | | | |
Collapse
|
14
|
Momose-Sato Y, Nakamori T, Sato K. Spontaneous depolarization wave in the mouse embryo: origin and large-scale propagation over the CNS identified with voltage-sensitive dye imaging. Eur J Neurosci 2012; 35:1230-41. [PMID: 22339904 DOI: 10.1111/j.1460-9568.2012.07997.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage-sensitive dye, we have revealed previously that this correlated activity is a widely propagating wave of neural depolarization, which we termed the depolarization wave. We have observed in the chick and rat embryos that the activity spread over an extensive region of the CNS, including the spinal cord, hindbrain, cerebellum, midbrain and forebrain. One important consideration is whether a depolarization wave with similar characteristics occurs in other species, especially in different mammals. Here, we provide evidence for the existence of the depolarization wave in the mouse embryo by showing that the widely propagating wave appeared independently of the localized spontaneous activity detected previously with Ca(2+) imaging. Furthermore, we mapped the origin of the depolarization wave and revealed that the wave generator moved from the rostral spinal cord to the caudal cord as development proceeded, and was later replaced with mature rhythmogenerators. The present study, together with an accompanying paper that describes pharmacological properties of the mouse depolarization wave, shows that a synchronized wave with common characteristics is expressed in different species, suggesting fundamental roles in neural development.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin University, Yokohama 236-8503, Japan.
| | | | | |
Collapse
|
15
|
Zhang QX, Yang GY, Li JT, Li WX, Zhang B, Zhu W. Melamine induces sperm DNA damage and abnormality, but not genetic toxicity. Regul Toxicol Pharmacol 2011; 60:144-50. [DOI: 10.1016/j.yrtph.2011.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/23/2011] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
|
16
|
Searching for audiovisual correspondence in multiple speaker scenarios. Exp Brain Res 2011; 213:175-83. [DOI: 10.1007/s00221-011-2624-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
17
|
Meillerais A, Champagnat J, Morin-Surun M. Extracellular calcium induces quiescence of the low-frequency embryonic motor rhythm in the mouse isolated brainstem. J Neurosci Res 2010; 88:3555-65. [DOI: 10.1002/jnr.22518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/16/2010] [Accepted: 08/20/2010] [Indexed: 11/11/2022]
|
18
|
In vivo activation of channelrhodopsin-2 reveals that normal patterns of spontaneous activity are required for motoneuron guidance and maintenance of guidance molecules. J Neurosci 2010; 30:10575-85. [PMID: 20686000 DOI: 10.1523/jneurosci.2773-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spontaneous, highly rhythmic episodes of propagating bursting activity are present early during the development of chick and mouse spinal cords. Acetylcholine, and GABA and glycine, which are both excitatory at this stage, provide the excitatory drive. It was previously shown that a moderate decrease in the frequency of bursting activity, caused by in ovo application of the GABA(A) receptor blocker, picrotoxin, resulted in motoneurons making dorsal-ventral (D-V) pathfinding errors in the limb and in the altered expression of guidance molecules associated with this decision. To distinguish whether the pathfinding errors were caused by perturbation of the normal frequency of bursting activity or interference with GABA(A) receptor signaling, chick embryos were chronically treated in ovo with picrotoxin to block GABA(A) receptors, while light activation by channelrhodopsin-2 was used to restore bursting activity to the control frequency. The restoration of normal patterns of neural activity in the presence of picrotoxin prevented the D-V pathfinding errors in the limb and maintained the normal expression levels of EphA4, EphB1, and polysialic acid on neural cell adhesion molecule, three molecules previously shown to be necessary for this pathfinding choice. These observations demonstrate that developing spinal motor circuits are highly sensitive to the precise frequency and pattern of spontaneous activity, and that any drugs that alter this activity could result in developmental defects.
Collapse
|
19
|
Characterization of rhythmic Ca2+ transients in early embryonic chick motoneurons: Ca2+ sources and effects of altered activation of transmitter receptors. J Neurosci 2009; 29:15232-44. [PMID: 19955376 DOI: 10.1523/jneurosci.3809-09.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the nervous system, spontaneous Ca(2+) transients play important roles in many developmental processes. We previously found that altering the frequency of electrically recorded rhythmic spontaneous bursting episodes in embryonic chick spinal cords differentially perturbed the two main pathfinding decisions made by motoneurons, dorsal-ventral and pool-specific, depending on the sign of the frequency alteration. Here, we characterized the Ca(2+) transients associated with these bursts and showed that at early stages while motoneurons are still migrating and extending axons to the base of the limb bud, they display spontaneous, highly rhythmic, and synchronized Ca(2+) transients. Some precursor cells in the ependymal layer displayed similar transients. T-type Ca(2+) channels and a persistent Na(+) current were essential to initiate spontaneous bursts and associated transients. However, subsequent propagation of activity throughout the cord resulted from network-driven chemical transmission mediated presynaptically by Ca(2+) entry through N-type Ca(2+) channels and postsynaptically by acetylcholine acting on nicotinic receptors. The increased [Ca(2+)](i) during transients depended primarily on L-type and T-type channels with a modest contribution from TRP (transient receptor potential) channels and ryanodine-sensitive internal stores. Significantly, the drugs used previously to produce pathfinding errors altered transient frequency but not duration or amplitude. These observations imply that different transient frequencies may differentially modulate motoneuron pathfinding. However, the duration of the Ca(2+) transients differed significantly between pools, potentially enabling additional distinct pool-specific downstream signaling. Many early events in spinal motor circuit formation are thus potentially sensitive to the rhythmic Ca(2+) transients we have characterized and to any drugs that perturb them.
Collapse
|
20
|
Hughes SM, Easton CR, Bosma MM. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain. Dev Neurobiol 2009; 69:477-90. [PMID: 19263418 DOI: 10.1002/dneu.20712] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spontaneous activity regulates many aspects of central nervous system development. We demonstrate that in the embryonic chick hindbrain, spontaneous activity is expressed between embryonic days (E) 6-9. Over this period the frequency of activity decreases significantly, although the events maintain a consistent rhythm on the timescale of minutes. At E6, the activity is pharmacologically dependent on serotonin, nACh, GABA(A), and glycine input, but not on muscarinic, glutamatergic, or GABA(B) receptor activation. It also depends on gap junctions, t-type calcium channels and TTX-sensitive ion channels. In intact spinal cord-hindbrain preparations, E6 spontaneous events originate in the spinal cord and propagate into lateral hindbrain tissue; midline activity follows the appearance of lateral activity. However, the spinal cord is not required for hindbrain activity. There are two invariant points of origin of activity along the midline, both within the caudal group of serotonin-expressing cell bodies; one point is caudal to the nV exit point while the other is caudal to the nVII exit point. Additional caudal midline points of origin are seen in a minority of cases. Using immunohistochemistry, we show robust differentiation of the serotonergic raphe near the midline at E6, and extensive fiber tracts expressing GAD65/67 and the nAChR in lateral areas; this suggests that the medial activity is dependent on serotonergic neuron activation, while lateral activity requires other transmitters. Although there are differences between species, this activity is highly conserved between mouse and chick, suggesting that developmental event(s) within the hindbrain are dependent on expression of this spontaneous activity.
Collapse
Affiliation(s)
- Sean M Hughes
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | |
Collapse
|