1
|
Uno T, Takano K, Nakamura K. Dissecting the Causal Role of Early Inferior Frontal Activation in Reading. J Neurosci 2025; 45:e0194242024. [PMID: 39542729 PMCID: PMC11713856 DOI: 10.1523/jneurosci.0194-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cognitive models of reading assume that speech production occurs after visual and phonological processing of written words. This traditional view is at odds with more recent magnetoencephalography studies showing that the left posterior inferior frontal cortex (pIFC) classically associated with spoken production responds to print at 100-150 ms after word-onset, almost simultaneously with posterior brain regions for visual and phonological processing. Yet the theoretical significance of this fast neural response remains open to date. We used transcranial magnetic stimulation (TMS) to investigate how the left pIFC contributes to the early stage of reading. In Experiment 1, 23 adult participants (14 females) performed three different tasks about written words (oral reading, semantic judgment, and perceptual judgment) while single-pulse TMS was delivered to the left pIFC, fusiform gyrus or supramarginal gyrus at different time points (50-200 ms after word-onset). A robust double dissociation was found between tasks and stimulation sites-oral reading, but not other control tasks, was disrupted only when TMS was delivered to pIFC at 100 ms. This task-specific impact of pIFC stimulation was further corroborated in Experiment 2, which revealed another double dissociation between oral reading and picture naming. These results demonstrate that the left pIFC specifically and causally mediates rapid computation of speech motor codes at the earliest stage of reading and suggest that this fast sublexical neural pathway for pronunciation, although seemingly dormant, is fully functioning in literate adults. Our results further suggest that these left-hemisphere systems for reading overall act faster than known previously.
Collapse
Affiliation(s)
- Tomoki Uno
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Kouji Takano
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Kimihiro Nakamura
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| |
Collapse
|
2
|
Davis AD, Scott MW, Pond AK, Hurst AJ, Yousef T, Kraeutner SN. Transformation but not generation of motor images is disrupted following stimulation over the left inferior parietal lobe. Neuropsychologia 2024; 204:109013. [PMID: 39401545 DOI: 10.1016/j.neuropsychologia.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Motor imagery (MI) involves the generation, maintenance, and transformation of motor images; yet, the neural underpinnings of each stage are not well understood. Here, we investigated the role of the left inferior parietal lobe (IPL) in the stages of MI. Healthy participants (N = 20) engaged in a MI task (making judgments about hands presented on a screen; hand laterality judgment task) over two days. Past literature demonstrates the mental rotation of hands in this task involves implicit MI (i.e., where MI occurs spontaneously in the absence of explicit instructions). During the task, active (Day A; 120% resting motor threshold) or sham (Day B; placebo) neuronavigated transcranial magnetic stimulation (TMS) was applied to the left IPL (location determined from past neuroimaging work) on 50% of trials at 250, 500, or 750ms post-stimulus onset, corresponding to different stages of MI. A/B days were randomized across participants. Linear mixed effects (LME) modelling conducted on reaction time and accuracy revealed that longer reaction times were observed when TMS was delivered at 750ms after trial onset, and more greatly for active vs. sham stimulation. This effect was exacerbated for palm-vs. back-view stimuli and for left vs. right hands. Accuracy overall was decreased for active vs. sham stimulation, and to a greater extent for palm-vs. back-view stimuli. Findings suggest that the left IPL is involved in image transformation. Overall this work informs on the neural underpinnings of the stages of MI.
Collapse
Affiliation(s)
- Alisha D Davis
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Matthew W Scott
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - AnnaMae K Pond
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Austin J Hurst
- Laboratory for Brain Recovery and Function, School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | - Tareq Yousef
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Sarah N Kraeutner
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Zhou JH, Huang BK, Wang D, Ning BL, Liang XS, Li CH, Wang ZJ, Deng Y, Huang XC, Zhang DL, Fu WB. Subregions of the fusiform gyrus are differentially involved in the attentional mechanism supporting visual mental imagery in depression. Brain Imaging Behav 2024; 18:961-978. [PMID: 38717573 DOI: 10.1007/s11682-024-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Impaired visual mental imagery is an important symptom of depression and has gradually become an intervention target for cognitive behavioral therapy. METHODS Our study involved a total of 25 healthy controls (HC) and 23 individuals with moderate depressive symptoms (MD). This study explored the attentional mechanism supporting visual mental imagery impairments in depression using the Vividness of Visual Imagery Questionnaire (VVIQ), attentional network test (ANT), and resting-state functional magnetic resonance imaging (rs-fMRI). The intrinsic activity of attention-related regions relative to those supporting visual mental imagery was identified in depression patients. In addition, a meta-analysis was used to describe the cognitive function related to this intrinsic activity. RESULTS The global correlation (GCOR) of the right anterior fusiform gyrus (FG) was decreased in depression patients. Attention-related areas were concentrated in the right posterior FG; the anterior and posterior functional connectivity (FC) of the FG was decreased in depression patients. Graph theoretic analysis showed that the degree of the right anterior FG was decreased, the degree of the anterior insula was increased, and the negative connection between these two regions was strengthened in depression patients. In addition, the degree of the right anterior FG, the FC between the subregions of the right FG, and the FC between the right anterior FG and insula were correlated with VVIQ scores; however, this correlation was not significant in depression patients. The meta-analysis suggested that the changes in the anterior FG in depressed patients may stem from difficulties of semantic memory retrieval. CONCLUSION The changed intrinsic activity of subregions of the FG relative to the semantic memory retrieval may be associated with visual mental imagery impairments in depression.
Collapse
Affiliation(s)
- Jun-He Zhou
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
| | - Bin-Kun Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
| | - Di Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
| | - Bai-Le Ning
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
| | - Xue-Song Liang
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
| | - Chang-Hong Li
- College of Teacher Education, Guangdong University of Education, Guangzhou, China
| | - Zeng-Jian Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China
| | - Ying Deng
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
| | - Xi-Chang Huang
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China
| | - De-Long Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China.
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, NO.55, Zhong Shan Road West, Guangzhou, China.
| | - Wen-Bin Fu
- The Second Affiliated hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, NO.111, Dade Road, Guangzhou, Guangdong Province, China.
- Innovative research team of acupuncture for depression and related disorders, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| |
Collapse
|
4
|
Zhang Y, Song B, Zhao X, Jin Z, Zhang J, Li L. Meta-analysis of experimental factors influencing single-pulse TMS effects on the early visual cortex. Front Neurosci 2024; 18:1351399. [PMID: 38894939 PMCID: PMC11185874 DOI: 10.3389/fnins.2024.1351399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Background Single-pulse transcranial magnetic stimulation (spTMS) applied to the Early Visual Cortex (EVC) has demonstrated the ability to suppress the perception on visual targets, akin to the effect of visual masking. However, the reported spTMS suppression effects across various studies have displayed inconsistency. Objective We aim to test if the heterogeneity of the spTMS effects can be attributable to variations in experimental factors. Methods We conducted a meta-analysis using data collected from the PubMed and Web of Science databases spanning from 1995 to March 2024. The meta-analysis encompassed a total of 40 independent experiments drawn from 33 original articles. Results The findings unveiled an overall significant spTMS suppression effect on visual perception. Nevertheless, there existed substantial heterogeneity among the experiments. Univariate analysis elucidated that the spTMS effects could be significantly influenced by TMS intensity, visual angle of the stimulus, coil type, and TMS stimulators from different manufacturers. Reliable spTMS suppression effects were observed within the time windows of -80 to 0 ms and 50 to 150 ms. Multivariate linear regression analyses, which included SOA, TMS intensity, visual angle of the stimulus, and coil type, identified SOA as the key factor influencing the spTMS effects. Within the 50 to 150 ms time window, optimal SOAs were identified as 112 ms and 98 ms for objective and subjective performance, respectively. Collectively, multiple experimental factors accounted for 22.9% (r = 0.3353) and 39.9% (r = 0.3724) of the variance in objective and subjective performance, respectively. Comparing univariate and multivariate analyses, it was evident that experimental factors had different impacts on objective performance and subjective performance. Conclusion The present study provided quantitative recommendations for future experiments involving the spTMS effects on visual targets, offering guidance on how to configure experimental factors to achieve the optimal masking effect.
Collapse
Affiliation(s)
| | | | | | | | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Grassi PR, Bannert MM, Bartels A. The causal involvement of the visual cortex in visual working memory remains uncertain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231884. [PMID: 39092143 PMCID: PMC11293800 DOI: 10.1098/rsos.231884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 08/04/2024]
Abstract
The role of the early visual cortex in visual working memory (VWM) is a matter of current debate. Neuroimaging studies have consistently shown that visual areas encode the content of working memory, while transcranial magnetic stimulation (TMS) studies have presented incongruent results. Thus, we lack conclusive evidence supporting the causal role of early visual areas in VWM. In a recent registered report, Phylactou et al. (Phylactou P, Shimi A, Konstantinou N 2023 R. Soc. Open Sci. 10, 230321 (doi:10.1098/rsos.230321)) sought to tackle this controversy via two well-powered TMS experiments, designed to correct possible methodological issues of previous attempts identified in a preceding systematic review and meta-analysis (Phylactou P, Traikapi A, Papadatou-Pastou M, Konstantinou N 2022 Psychon. Bull. Rev. 29, 1594-1624 (doi:10.3758/s13423-022-02107-y)). However, a key part of their critique and experimental design was based on a misunderstanding of the visual system. They disregarded two important anatomical facts, namely that early visual areas of each hemisphere represent the contralateral visual hemifield, and that each hemisphere receives equally strong input from each eye-both leading to confounded conditions and artefactual effects in their studies. Here, we explain the correct anatomy, describe why their experiments failed to address current issues in the literature and perform a thorough reanalysis of their TMS data revealing important null results. We conclude that the causal role of the visual cortex in VWM remains uncertain.
Collapse
Affiliation(s)
- Pablo Rodrigo Grassi
- Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Centre for Integrative Neuroscience, Tübingen, Germany
- Department for High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Michael M. Bannert
- Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Centre for Integrative Neuroscience, Tübingen, Germany
- Department for High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andreas Bartels
- Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Centre for Integrative Neuroscience, Tübingen, Germany
- Department for High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
6
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
7
|
Phylactou P, Shimi A, Konstantinou N. Causal evidence for the role of the sensory visual cortex in visual short-term memory maintenance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230321. [PMID: 37090966 PMCID: PMC10113812 DOI: 10.1098/rsos.230321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The role of the sensory visual cortex during visual short-term memory (VSTM) remains controversial. This controversy is possibly due to methodological issues in previous attempts to investigate the effects of transcranial magnetic stimulation (TMS) on VSTM. The aim of this study was to use TMS, while covering previous methodological deficits. Sixty-four young adults were recruited to participate in two experiments (Experiment 1: n = 36; Experiment 2: n = 28) using a VSTM orientation change-detection task under TMS. Monocular vision was ensured using red-blue goggles combined with red-blue stimuli. Double-pulse TMS was delivered at different times (Experiment 1: 0, 200 or 1000 ms; Experiment 2: 200, 1000 ms) during a 2 s maintenance phase, on one side of the occipital hemisphere. In Experiment 2, a sham TMS condition was introduced. Decreased detection sensitivity (d') in the ipsilateral occipital hemisphere to visual hemifield, and in the real TMS (compared with sham TMS) condition indicated inhibitory TMS effects, and thus, a causal involvement of the sensory visual cortex during early (200 ms) and late (1000 ms) maintenance in VSTM. These findings are aligned with sensory recruitment, which proposes that both perceptual and memory processes rely upon the same neural substrates in the sensory visual cortex. The methods used in this study were preregistered and had received in-principle acceptance on 6 June 2022 (Stage 1 protocol can be found in: https://doi.org/10.17605/OSF.IO/EMPDT).
Collapse
Affiliation(s)
- Phivos Phylactou
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus
| | - Andria Shimi
- Department of Psychology, Faculty of Social Sciences and Education, University of Cyprus, CY-1678 Nicosia, Cyprus
| | - Nikos Konstantinou
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus
| |
Collapse
|
8
|
Oletto CM, Contemori G, Bertamini M, Battaglini L. The Role of Foveal Cortex in Discriminating Peripheral Stimuli: The Sketchpad Hypothesis. NEUROSCI 2023; 4:9-17. [PMID: 39484295 PMCID: PMC11523757 DOI: 10.3390/neurosci4010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 11/03/2024] Open
Abstract
Foveal (central) and peripheral vision are strongly interconnected to provide an integrated experience of the world around us. Recently, it has been suggested that there is a feedback mechanism that links foveal and peripheral vision. This peripheral-to-foveal feedback differs from other feedback mechanisms in that during visual processing a novel representation of a stimulus is formed in a different cortical region than that of the feedforward representation. The functional role of foveal feedback is not yet completely understood, but some evidence from neuroimaging studies suggests a link with peripheral shape processing. Behavioural and transcranial magnetic stimulation studies show impairment in peripheral shape discrimination when the foveal retinotopic cortex is disrupted post stimulus presentation. This review aims to link these findings to the visual sketchpad hypothesis. According to this hypothesis, foveal retinotopic cortex stores task-relevant information to aid identification of peripherally presented objects. We discuss how the characteristics of foveal feedback support this hypothesis and rule out other possible explanations. We also discuss the possibility that the foveal feedback may be independent of the sensory modality of the stimulation.
Collapse
Affiliation(s)
| | | | | | - Luca Battaglini
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
9
|
Yue Q, Martin RC. Phonological Working Memory Representations in the Left Inferior Parietal Lobe in the Face of Distraction and Neural Stimulation. Front Hum Neurosci 2022; 16:890483. [PMID: 35814962 PMCID: PMC9259857 DOI: 10.3389/fnhum.2022.890483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neural basis of phonological working memory (WM) was investigated through an examination of the effects of irrelevant speech distractors and disruptive neural stimulation from transcranial magnetic stimulation (TMS). Embedded processes models argue that the same regions involved in speech perception are used to support phonological WM whereas buffer models assume that a region separate from speech perception regions is used to support WM. Thus, according to the embedded processes approach but not the buffer approach, irrelevant speech and TMS to the speech perception region should disrupt the decoding of phonological WM representations. According to the buffer account, decoding of WM items should be possible in the buffer region despite distraction and should be disrupted with TMS to this region. Experiment 1 used fMRI and representational similarity analyses (RSA) with a delayed recognition memory paradigm using nonword stimuli. Results showed that decoding of memory items in the speech perception regions (superior temporal gyrus, STG) was possible in the absence of distractors. However, the decoding evidence in the left STG was susceptible to interference from distractors presented during the delay period whereas decoding in the proposed buffer region (supramarginal gyrus, SMG) persisted. Experiment 2 examined the causal roles of the speech processing region and the buffer region in phonological WM performance using TMS. TMS to the SMG during the early delay period caused a disruption in recognition performance for the memory nonwords, whereas stimulations at the STG and an occipital control region did not affect WM performance. Taken together, results from the two experiments are consistent with predictions of a buffer model of phonological WM, pointing to a critical role of the left SMG in maintaining phonological representations.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychological Sciences, Rice University, Houston, TX, United States
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Qiuhai Yue Randi C. Martin
| | - Randi C. Martin
- Department of Psychological Sciences, Rice University, Houston, TX, United States
- *Correspondence: Qiuhai Yue Randi C. Martin
| |
Collapse
|
10
|
Sensory recruitment in visual short-term memory: A systematic review and meta-analysis of sensory visual cortex interference using transcranial magnetic stimulation. Psychon Bull Rev 2022; 29:1594-1624. [PMID: 35606595 DOI: 10.3758/s13423-022-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Sensory visual areas are involved in encoding information in visual short-term memory (VSTM). Yet it remains unclear whether sensory visual cortex is a necessary component of the brain network for maintenance of information in VSTM. Here, we aimed to systematically review studies that have investigated the role of the sensory visual cortex in VSTM using transcranial magnetic stimulation (TMS) and to quantitatively explore these effects using meta-analyses. Fourteen studies were identified and reviewed. Eight studies provided sufficient data for meta-analysis. Two meta-analyses, one regarding the VSTM encoding phase (17 effect sizes) and one regarding the VSTM maintenance phase (15 effect sizes), two meta-regressions (32 effect sizes in each), and one exploratory meta-analysis were conducted. Our results indicate that the sensory visual cortex is similarly involved in both the encoding and maintenance VSTM phase. We suggest that some cases where evidence did not show significant TMS effects was due to low memory or perceptual task demands. Overall, these findings support the idea that sensory visual areas are part of the brain network responsible for successfully maintaining information in VSTM.
Collapse
|
11
|
State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci 2022; 23:459-475. [PMID: 35577959 DOI: 10.1038/s41583-022-00598-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
Invasive and non-invasive brain stimulation methods are widely used in neuroscience to establish causal relationships between distinct brain regions and the sensory, cognitive and motor functions they subserve. When combined with concurrent brain imaging, such stimulation methods can reveal patterns of neuronal activity responsible for regulating simple and complex behaviours at the level of local circuits and across widespread networks. Understanding how fluctuations in physiological states and task demands might influence the effects of brain stimulation on neural activity and behaviour is at the heart of how we use these tools to understand cognition. Here we review the concept of such 'state-dependent' changes in brain activity in response to neural stimulation, and consider examples from research on altered states of consciousness (for example, sleep and anaesthesia) and from task-based manipulations of selective attention and working memory. We relate relevant findings from non-invasive methods used in humans to those obtained from direct electrical and optogenetic stimulation of neuronal ensembles in animal models. Given the widespread use of brain stimulation as a research tool in the laboratory and as a means of augmenting or restoring brain function, consideration of the influence of changing physiological and cognitive states is crucial for increasing the reliability of these interventions.
Collapse
|
12
|
Disrupting Short-Term Memory Maintenance in Premotor Cortex Affects Serial Dependence in Visuomotor Integration. J Neurosci 2021; 41:9392-9402. [PMID: 34607968 DOI: 10.1523/jneurosci.0380-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
Human behavior is biased by past experience. For example, when intercepting a moving target, the speed of previous targets will bias responses in future trials. Neural mechanisms underlying this so-called serial dependence are still under debate. Here, we tested the hypothesis that the previous trial leaves a neural trace in brain regions associated with encoding task-relevant information in visual and/or motor regions. We reasoned that injecting noise by means of transcranial magnetic stimulation (TMS) over premotor and visual areas would degrade such memory traces and hence reduce serial dependence. To test this hypothesis, we applied bursts of TMS pulses to right visual motion processing region hV5/MT+ and to left dorsal premotor cortex (PMd) during intertrial intervals of a coincident timing task performed by twenty healthy human participants (15 female). Without TMS, participants presented a bias toward the speed of the previous trial when intercepting moving targets. TMS over PMd decreased serial dependence in comparison to the control Vertex stimulation, whereas TMS applied over hV5/MT+ did not. In addition, TMS seems to have specifically affected the memory trace that leads to serial dependence, as we found no evidence that participants' behavior worsened after applying TMS. These results provide causal evidence that an implicit short-term memory mechanism in premotor cortex keeps information from one trial to the next, and that this information is blended with current trial information so that it biases behavior in a visuomotor integration task with moving objects.SIGNIFICANCE STATEMENT Human perception and action are biased by the recent past. The origin of such serial bias is still not fully understood, but a few components seem to be fundamental for its emergence: the brain needs to keep previous trial information in short-term memory and blend it with incoming information. Here, we present evidence that a premotor area has a potential role in storing previous trial information in short-term memory in a visuomotor task and that this information is responsible for biasing ongoing behavior. These results corroborate the perspective that areas associated with processing information of a stimulus or task also participate in maintaining that information in short-term memory even when this information is no longer relevant for current behavior.
Collapse
|
13
|
Svaldi DO, Goñi J, Abbas K, Amico E, Clark DG, Muralidharan C, Dzemidzic M, West JD, Risacher SL, Saykin AJ, Apostolova LG. Optimizing differential identifiability improves connectome predictive modeling of cognitive deficits from functional connectivity in Alzheimer's disease. Hum Brain Mapp 2021; 42:3500-3516. [PMID: 33949732 PMCID: PMC8249900 DOI: 10.1002/hbm.25448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Functional connectivity, as estimated using resting state functional MRI, has shown potential in bridging the gap between pathophysiology and cognition. However, clinical use of functional connectivity biomarkers is impeded by unreliable estimates of individual functional connectomes and lack of generalizability of models predicting cognitive outcomes from connectivity. To address these issues, we combine the frameworks of connectome predictive modeling and differential identifiability. Using the combined framework, we show that enhancing the individual fingerprint of resting state functional connectomes leads to robust identification of functional networks associated to cognitive outcomes and also improves prediction of cognitive outcomes from functional connectomes. Using a comprehensive spectrum of cognitive outcomes associated to Alzheimer's disease (AD), we identify and characterize functional networks associated to specific cognitive deficits exhibited in AD. This combined framework is an important step in making individual level predictions of cognition from resting state functional connectomes and in understanding the relationship between cognition and connectivity.
Collapse
Affiliation(s)
| | - Joaquín Goñi
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Kausar Abbas
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
| | - Enrico Amico
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
| | - David G. Clark
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | - John D. West
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | | |
Collapse
|
14
|
Xu Y. Towards a better understanding of information storage in visual working memory. VISUAL COGNITION 2021; 29:437-445. [PMID: 35496937 PMCID: PMC9053365 DOI: 10.1080/13506285.2021.1946230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Chota and Van der Stigchel (this issue), Iamshchinina, Christophel, Gayet, and Rademaker (this issue), Lorenc and Sreenivasa (this issue), and Teng and Postle (this issue) each present a commentary regarding Xu (2020) where I conclude that sensory regions are nonessential for the storage of information in visual working memory (VWM). They argue instead that sensory regions are critical to VWM storage. Here I briefly reiterate some of the key evidence against this account, some of which has not been accounted by the four commentaries. I also provide a detailed reanalysis of why the main evidence supporting this account may be problematic. Collectively, existence evidence from human neuroimaging and TMS studies and that from monkey neurophysiology studies does not provide strong support for the sensory storage account of VWM. To form an accurate understanding of the distinctive role each brain region may play in perception and VWM as well as how they may interact to collectively support a VWM task, it is important that we properly survey and evaluate all the available evidence.
Collapse
|
15
|
Chota S, Van der Stigchel S. Dynamic and flexible transformation and reallocation of visual working memory representations. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.1891168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Samson Chota
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Stefan Van der Stigchel
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Abstract
Recent work has highlighted the role of early visual areas in visual working memory (VWM) storage and put forward a sensory storage account of VWM. Using a distractor interference paradigm, however, we previolsy showed that the contribution of early visual areas to VWM storage may not be essential. Instead, higher cortical regions such as the posterior parietal cortex may play a more significant role in VWM storage. This is consistent with reviews of other available behavioral, neuroimaging and neurophysiology results. Recently, a number of studies brought forward new evidence regarding this debate. Here I review these new pieces of evidence in detail and show that there is still no strong and definitive evidence supporting an essential role of the early visual areas in VWM storage. Instead, converging evidence suggests that early visual areas may contribute to the decision stage of a VWM task by facilitating target and probe comparison. Aside from further clarifying this debate, it is also important to note that whether or not VWM storage uses a sensory code depends on how it is defined, and that behavioral interactions between VWM and perception tasks do not necessarily support the involvement of sensory regions in VWM storage.
Collapse
|
17
|
Bashir S, Al-Hussain F, Hamza A, Shareefi GF, Abualait T, Yoo WK. Role of Single Low Pulse Intensity of Transcranial Magnetic Stimulation Over the Frontal Cortex for Cognitive Function. Front Hum Neurosci 2020; 14:205. [PMID: 32719592 PMCID: PMC7350777 DOI: 10.3389/fnhum.2020.00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background: The principal aim of this study was to measure the effect of online single-pulse transcranial magnetic stimulation (TMS) over the right dorsolateral prefrontal cortex (DLPFC) on cognition via the Cambridge Neuropsychological Test Automated Battery (CANTAB) in healthy individuals. Methods: In a single-blind, sham-controlled study, we assessed both 50% and 60% of the resting motor threshold (RMT) over the right DLPFC in healthy right-handed (n = 42) adults using cognitive function, such as attention and memory, as a measure via CANTAB. Results: We observed an improvement in the cognitive function level during the use of online low intensities of 50% and 60% RMT active stimulation of the DLPFC compared to the sham stimulation. Conclusions: The results showed that low-intensity TMS can indeed effectively modulate cognitive function in DLPFC. Future research is, however, necessary to investigate the potential effects of low-intensity TMS on different brain areas to increase confidence in the observed results.
Collapse
Affiliation(s)
- Shahid Bashir
- Department of Neurophysiology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Fawaz Al-Hussain
- Department of Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali Hamza
- Department of Electrical Engineering, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Ghadah Faisal Shareefi
- Department of Neurophysiology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Division of Neuroscience Center, Hallym University Sacred Heart Hospital, Anyang, South Korea
| |
Collapse
|
18
|
What came out of visual memory: Inferences from decay of difference-thresholds. Atten Percept Psychophys 2020; 82:2963-2984. [DOI: 10.3758/s13414-020-02032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Pfeifer G, Ward J, Sigala N. Reduced Visual and Frontal Cortex Activation During Visual Working Memory in Grapheme-Color Synaesthetes Relative to Young and Older Adults. Front Syst Neurosci 2019; 13:29. [PMID: 31354440 PMCID: PMC6635562 DOI: 10.3389/fnsys.2019.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
The sensory recruitment model envisages visual working memory (VWM) as an emergent property that is encoded and maintained in sensory (visual) regions. The model implies that enhanced sensory-perceptual functions, as in synaesthesia, entail a dedicated VWM-system, showing reduced visual cortex activity as a result of neural specificity. By contrast, sensory-perceptual decline, as in old age, is expected to show enhanced visual cortex activity as a result of neural broadening. To test this model, young grapheme-color synaesthetes, older adults and young controls engaged in a delayed pair-associative retrieval and a delayed matching-to-sample task, consisting of achromatic fractal stimuli that do not induce synaesthesia. While a previous analysis of this dataset (Pfeifer et al., 2016) has focused on cued retrieval and recognition of pair-associates (i.e., long-term memory), the current study focuses on visual working memory and considers, for the first time, the crucial delay period in which no visual stimuli are present, but working memory processes are engaged. Participants were trained to criterion and demonstrated comparable behavioral performance on VWM tasks. Whole-brain and region-of-interest-analyses revealed significantly lower activity in synaesthetes’ middle frontal gyrus and visual regions (cuneus, inferior temporal cortex), respectively, suggesting greater neural efficiency relative to young and older adults in both tasks. The results support the sensory recruitment model and can explain age and individual WM-differences based on neural specificity in visual cortex.
Collapse
Affiliation(s)
- Gaby Pfeifer
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, United Kingdom.,Leeds School of Social Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton, United Kingdom.,Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - Natasha Sigala
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, United Kingdom.,Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
20
|
Hilbert S, McAssey M, Bühner M, Schwaferts P, Gruber M, Goerigk S, Taylor PCJ. Right hemisphere occipital rTMS impairs working memory in visualizers but not in verbalizers. Sci Rep 2019; 9:6307. [PMID: 31004125 PMCID: PMC6474855 DOI: 10.1038/s41598-019-42733-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/04/2019] [Indexed: 01/26/2023] Open
Abstract
Distinguishing between verbal and visual working memory processes is complicated by the fact that the strategy used is hard to control or even assess. Many stimuli used in working memory tasks can be processed via verbal or visual coding, such as the digits in the digit span backwards task (DSB). The present study used repetitive transcranial magnetic stimulation (rTMS) to examine the use of visual processing strategies in the DSB. A total of 47 German university students took part in the study, 23 spontaneously using a verbal processing strategy and 24 using a visual strategy. After rTMS to the right occipital cortex, visualizers showed a significantly stronger mean performance decrease compared to verbalizers. The results indicate that the visual cortex is more critical for visualizers compared to verbalizers in the DSB task. Furthermore, the favored processing modality seems to be determined by the preference for a cognitive strategy rather than the presentation modality, and people are aware of the applied strategy. These findings provide insight into inter-individual differences in working memory processing and yield important implications for laboratory studies as well as clinical practice: the stimulus does not necessarily determine the processing and the participant can be aware of that.
Collapse
Affiliation(s)
- Sven Hilbert
- Faculty of Psychology, Educational Science, and Sport Science, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Michaela McAssey
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience, Research Training Group 2175, Ludwig-Maximilians-University, Leopoldstraße 13, 80802, München, Germany
| | - Markus Bühner
- Department of Psychology, Psychological Methods and Assessment, LMU Munich, Leopoldstraße 13, 80802, München, Germany
| | - Patrick Schwaferts
- Institute of Statistics, Methodological Foundations of Statistics and its Applications, Ludwigstraße 33, 80539, München, Germany
| | - Monika Gruber
- Department of Psychology, Psychological Methods and Assessment, LMU Munich, Leopoldstraße 13, 80802, München, Germany
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Nußbaumstraße 7, 80336, Munich, Germany
- Hochschule Fresenius, University of Applied Sciences, Infanteriestraße 11A, 80797, Munich, Germany
| | - Paul Christopher John Taylor
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
21
|
Bryzgalov DV, Kuznetsova IL, Rogaev EI. Enhancement of Declarative Memory: From Genetic Regulation to Non-invasive Stimulation. BIOCHEMISTRY (MOSCOW) 2018; 83:1124-1138. [PMID: 30472951 DOI: 10.1134/s0006297918090146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of memory enhancement is extremely important in intellectual activity areas and therapy of different types of dementia, including Alzheimer's disease (AD). The attempts to solve this problem have come from different research fields. In the first part of our review, we describe the results of targeting certain genes involved in memory-associated molecular pathways. The second part of the review is focused on the deep stimulation of brain structures that can slow down memory loss in AD. The third part describes the results of the use of non-invasive brain stimulation techniques for memory modulation, consolidation, and retrieval in healthy people and animal models. Integration of data from different research fields is essential for the development of efficient strategies for memory enhancement.
Collapse
Affiliation(s)
- D V Bryzgalov
- Memory, Oscillations, Brain States (MOBS) Team, Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, Paris, France.
| | - I L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - E I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia. .,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia
| |
Collapse
|
22
|
Widhalm ML, Rose NS. How can transcranial magnetic stimulation be used to causally manipulate memory representations in the human brain? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 10:e1469. [DOI: 10.1002/wcs.1469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/21/2018] [Accepted: 05/14/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Morgan L. Widhalm
- Department of Psychology University of Notre Dame Notre Dame Indiana
| | - Nathan S. Rose
- Department of Psychology University of Notre Dame Notre Dame Indiana
| |
Collapse
|
23
|
TMS applied to V1 can facilitate reasoning. Exp Brain Res 2018; 236:2277-2286. [PMID: 29858917 DOI: 10.1007/s00221-018-5296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
Abstract
Visual mental imagery is the subjective experience of seeing objects or events in front of the 'inner eye', although they are not actually present. Previous research indicates that (1) visual images help to remember what has been experienced in the past or when objects need to be inspected or manipulated, and (2) visual images are correlated with neural activity in early visual cortices, demonstrating a possible overlap between visual imagery and visual perception. However, recent research revealed that visual imagery can also disrupt cognitive processes and impede thinking. In this transcranial magnetic stimulation (TMS) experiment, participants had to solve relational reasoning problems that varied in their imageability (easy or difficult to visualize as a mental image). While solving the problems, eight 10 Hz pulses were either applied to primary visual cortex (V1) or a control site (Vertex). Our findings suggest a causal link between mental imagery, primary visual cortex, and reasoning with visual problems. Moreover, participants exhibited much lower error rates when TMS was applied to V1. We conclude that the disruption of visual images in primary visual cortex can facilitate reasoning.
Collapse
|
24
|
Pinto M, Fattorini E, Lasaponara S, D'Onofrio M, Fortunato G, Doricchi F. Visualising numerals: An ERPs study with the attentional SNARC task. Cortex 2018; 101:1-15. [DOI: 10.1016/j.cortex.2017.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
25
|
Xu Y. Reevaluating the Sensory Account of Visual Working Memory Storage. Trends Cogn Sci 2017; 21:794-815. [PMID: 28774684 DOI: 10.1016/j.tics.2017.06.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/14/2022]
Abstract
Recent human fMRI pattern-decoding studies have highlighted the involvement of sensory areas in visual working memory (VWM) tasks and argue for a sensory account of VWM storage. In this review, evidence is examined from human behavior, fMRI decoding, and transcranial magnetic stimulation (TMS) studies, as well as from monkey neurophysiology studies. Contrary to the prevalent view, the available evidence provides little support for the sensory account of VWM storage. Instead, when the ability to resist distraction and the existence of top-down feedback are taken into account, VWM-related activities in sensory areas seem to reflect feedback signals indicative of VWM storage elsewhere in the brain. Collectively, the evidence shows that prefrontal and parietal regions, rather than sensory areas, play more significant roles in VWM storage.
Collapse
Affiliation(s)
- Yaoda Xu
- Department of Psychology, Harvard University, 33 Kirkland Street, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Brogaard B, Gatzia DE. Unconscious Imagination and the Mental Imagery Debate. Front Psychol 2017; 8:799. [PMID: 28588527 PMCID: PMC5440590 DOI: 10.3389/fpsyg.2017.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa) indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn's model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience.
Collapse
Affiliation(s)
- Berit Brogaard
- The Brogaard Lab for Multisensory Research, University of Miami, MiamiFL, United States.,Department of Philosophy, University of OsloOslo, Norway
| | - Dimitria Electra Gatzia
- Department of Philosophy, University of Akron Wayne College, AkronOH, United States.,Centre for Philosophical Psychology, University of AntwerpAntwerp, Belgium
| |
Collapse
|
27
|
Rademaker RL, van de Ven VG, Tong F, Sack AT. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate. PLoS One 2017; 12:e0175230. [PMID: 28384347 PMCID: PMC5383271 DOI: 10.1371/journal.pone.0175230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 03/22/2017] [Indexed: 11/18/2022] Open
Abstract
Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.
Collapse
Affiliation(s)
- Rosanne L. Rademaker
- Psychology Department, University of California San Diego, San Diego, California, United States of America
- Cognitive Neuroscience Department, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | - Vincent G. van de Ven
- Cognitive Neuroscience Department, Maastricht University, Maastricht, The Netherlands
| | - Frank Tong
- Psychology Department, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Alexander T. Sack
- Cognitive Neuroscience Department, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
van Lamsweerde AE, Johnson JS. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation. J Cogn Neurosci 2017; 29:1226-1238. [PMID: 28253081 DOI: 10.1162/jocn_a_01113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.
Collapse
|
29
|
The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions. J Neurosci 2016; 36:1490-501. [PMID: 26843633 DOI: 10.1523/jneurosci.2999-15.2016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex.
Collapse
|
30
|
Bergmann J, Genç E, Kohler A, Singer W, Pearson J. Smaller Primary Visual Cortex Is Associated with Stronger, but Less Precise Mental Imagery. Cereb Cortex 2015; 26:3838-50. [DOI: 10.1093/cercor/bhv186] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
31
|
Jackson RL, Lambon Ralph MA, Pobric G. The Timing of Anterior Temporal Lobe Involvement in Semantic Processing. J Cogn Neurosci 2015; 27:1388-96. [DOI: 10.1162/jocn_a_00788] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Despite indications that regions within the anterior temporal lobe (ATL) might make a crucial contribution to pan-modal semantic representation, to date there have been no investigations of when during semantic processing the ATL plays a critical role. To test the timing of the ATL involvement in semantic processing, we studied the effect of double-pulse TMS on behavioral responses in semantic and difficulty-matched control tasks. Chronometric TMS was delivered over the left ATL (10 mm from the tip of the temporal pole along the middle temporal gyrus). During each trial, two pulses of TMS (40 msec apart) were delivered either at baseline (before stimulus presentation) or at one of the experimental time points 100, 250, 400, and 800 msec poststimulus onset. A significant disruption to performance was identified from 400 msec on the semantic task but not on the control assessment. Our results not only reinforce the key role of the left ATL in semantic representation but also indicate that its contribution is especially important around 400 msec poststimulus onset. Together, these facts suggest that the ATL may be one of the neural sources of the N400 ERP component.
Collapse
|
32
|
Ding H, Qin W, Liang M, Ming D, Wan B, Li Q, Yu C. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness. Brain 2015; 138:2750-65. [PMID: 26070981 DOI: 10.1093/brain/awv165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/18/2015] [Indexed: 11/13/2022] Open
Abstract
Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger causality analysis revealed that, compared to the hearing controls, the deaf subjects had an enhanced net causal flow from the frontal eye field to the superior temporal gyrus. These findings indicate that a top-down mechanism may better account for the cross-modal activation of auditory regions in early deaf subjects.See MacSweeney and Cardin (doi:10/1093/awv197) for a scientific commentary on this article.
Collapse
Affiliation(s)
- Hao Ding
- 1 Department of Biomedical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wen Qin
- 2 Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Meng Liang
- 3 School of Medical Imaging, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Dong Ming
- 1 Department of Biomedical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Baikun Wan
- 1 Department of Biomedical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qiang Li
- 4 Technical College for the Deaf, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Chunshui Yu
- 2 Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| |
Collapse
|
33
|
Phantom perception: voluntary and involuntary nonretinal vision. Trends Cogn Sci 2015; 19:278-84. [DOI: 10.1016/j.tics.2015.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 11/22/2022]
|
34
|
Scocchia L, Valsecchi M, Triesch J. Top-down influences on ambiguous perception: the role of stable and transient states of the observer. Front Hum Neurosci 2014; 8:979. [PMID: 25538601 PMCID: PMC4259127 DOI: 10.3389/fnhum.2014.00979] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/16/2014] [Indexed: 11/27/2022] Open
Abstract
The world as it appears to the viewer is the result of a complex process of inference performed by the brain. The validity of this apparently counter-intuitive assertion becomes evident whenever we face noisy, feeble or ambiguous visual stimulation: in these conditions, the state of the observer may play a decisive role in determining what is currently perceived. On this background, ambiguous perception and its amenability to top-down influences can be employed as an empirical paradigm to explore the principles of perception. Here we offer an overview of both classical and recent contributions on how stable and transient states of the observer can impact ambiguous perception. As to the influence of the stable states of the observer, we show that what is currently perceived can be influenced (1) by cognitive and affective aspects, such as meaning, prior knowledge, motivation, and emotional content and (2) by individual differences, such as gender, handedness, genetic inheritance, clinical conditions, and personality traits and by (3) learning and conditioning. As to the impact of transient states of the observer, we outline the effects of (4) attention and (5) voluntary control, which have attracted much empirical work along the history of ambiguous perception. In the huge literature on the topic we trace a difference between the observer's ability to control dominance (i.e., the maintenance of a specific percept in visual awareness) and reversal rate (i.e., the switching between two alternative percepts). Other transient states of the observer that have more recently drawn researchers' attention regard (6) the effects of imagery and visual working memory. (7) Furthermore, we describe the transient effects of prior history of perceptual dominance. (8) Finally, we address the currently available computational models of ambiguous perception and how they can take into account the crucial share played by the state of the observer in perceiving ambiguous displays.
Collapse
Affiliation(s)
- Lisa Scocchia
- Milan Center for Neuroscience, Department of Psychology, University of Milano-BicoccaMilan, Italy
| | | | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| |
Collapse
|
35
|
Bajbouj M, Padberg F. A perfect match: noninvasive brain stimulation and psychotherapy. Eur Arch Psychiatry Clin Neurosci 2014; 264 Suppl 1:S27-33. [PMID: 25253645 DOI: 10.1007/s00406-014-0540-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/08/2014] [Indexed: 01/02/2023]
Abstract
One out of four patients with a psychiatric disorder does not tolerate or sufficiently respond to standard treatments, leading to impaired quality of life, significant morbidity and mortality, as well as high socioeconomic costs. There is increasing evidence that-apart from psychopharmacologic and psychotherapeutic interventions-targeted modulation of neural networks by brain stimulation techniques might serve as a third treatment modality. In the whole spectrum of treatment modalities, combined approaches are often used for difficult-to-treat patients. They may be superior strategies compared to monotherapy and could possible also include brain stimulation interventions. However, systematic research is lacking for the latter issue. Particularly, noninvasive brain stimulation (NIBS), e.g., transcranial direct current stimulation (tDCS) can be easily combined with psychotherapy approaches. Here, we introduce NIBS techniques for priming and augmenting psychotherapy, review preliminary data and propose a future research strategy. Interestingly, this strategy parallels the promising development in neurology and neurorehabilitation where tDCS is currently combined with functional training tasks to enhance motor or cognitive performance.
Collapse
Affiliation(s)
- Malek Bajbouj
- Department of Psychiatry, Center for Affective Sciences (CAS), Charité and Freie Universität Berlin, Campus Benjamin Franklin (CBF), Eschenallee 3, 14050, Berlin, Germany,
| | | |
Collapse
|
36
|
Bergmann J, Genç E, Kohler A, Singer W, Pearson J. Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory. Cereb Cortex 2014; 26:43-50. [PMID: 25100854 DOI: 10.1093/cercor/bhu168] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Johanna Bergmann
- School of Psychology, University of New South Wales, 2052 Sydney, Australia
- Department of Neurophysiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt am Main, Germany
- Brain Imaging Center Frankfurt, 60528 Frankfurt am Main, Germany
| | - Erhan Genç
- Department of Neurophysiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt am Main, Germany
- Brain Imaging Center Frankfurt, 60528 Frankfurt am Main, Germany
- Institute of Psychology, Biopsychology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Axel Kohler
- Department of Neurophysiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt am Main, Germany
- Brain Imaging Center Frankfurt, 60528 Frankfurt am Main, Germany
- Institute of Cognitive Science, University of Osnabrück, 49076 Osnabrück, Germany
| | - Wolf Singer
- Department of Neurophysiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt am Main, Germany
- Brain Imaging Center Frankfurt, 60528 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Goethe University, 60438 Frankfurt am Main, Germany
- Ernst Strüngmann Institute in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Joel Pearson
- School of Psychology, University of New South Wales, 2052 Sydney, Australia
| |
Collapse
|
37
|
Lückmann HC, Jacobs HI, Sack AT. The cross-functional role of frontoparietal regions in cognition: internal attention as the overarching mechanism. Prog Neurobiol 2014; 116:66-86. [DOI: 10.1016/j.pneurobio.2014.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|
38
|
Sreenivasan KK, Curtis CE, D'Esposito M. Revisiting the role of persistent neural activity during working memory. Trends Cogn Sci 2014; 18:82-9. [PMID: 24439529 DOI: 10.1016/j.tics.2013.12.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
What are the neural mechanisms underlying working memory (WM)? One influential theory posits that neurons in the lateral prefrontal cortex (lPFC) store WM information via persistent activity. In this review, we critically evaluate recent findings that together indicate that this model of WM needs revision. We argue that sensory cortex, not the lPFC, maintains high-fidelity representations of WM content. By contrast, the lPFC simultaneously maintains representations of multiple goal-related variables that serve to bias stimulus-specific activity in sensory regions. This work highlights multiple neural mechanisms supporting WM, including temporally dynamic population coding in addition to persistent activity. These new insights focus the question on understanding how the mechanisms that underlie WM are related, interact, and are coordinated in the lPFC and sensory cortex.
Collapse
Affiliation(s)
- Kartik K Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, 19 Washington Square North, New York, NY 10011, USA.
| | - Clayton E Curtis
- Department of Psychology, and Center for Neural Science, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, and Department of Psychology, University of California, Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
State-Dependent Transcranial Magnetic Stimulation (TMS) Protocols. TRANSCRANIAL MAGNETIC STIMULATION 2014. [DOI: 10.1007/978-1-4939-0879-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage 2013; 85 Pt 3:961-70. [PMID: 23770409 DOI: 10.1016/j.neuroimage.2013.06.007] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022] Open
Abstract
Here we review the usefulness of transcranial magnetic stimulation (TMS) in modulating cortical networks in ways that might produce performance enhancements in healthy human subjects. To date over sixty studies have reported significant improvements in speed and accuracy in a variety of tasks involving perceptual, motor, and executive processing. Two basic categories of enhancement mechanisms are suggested by this literature: direct modulation of a cortical region or network that leads to more efficient processing, and addition-by-subtraction, which is disruption of processing which competes or distracts from task performance. Potential applications of TMS cognitive enhancement, including research into cortical function, rehabilitation therapy in neurological and psychiatric illness, and accelerated skill acquisition in healthy individuals are discussed, as are methods of optimizing the magnitude and duration of TMS-induced performance enhancement, such as improvement of targeting through further integration of brain imaging with TMS. One technique, combining multiple sessions of TMS with concurrent TMS/task performance to induce Hebbian-like learning, appears to be promising for prolonging enhancement effects. While further refinements in the application of TMS to cognitive enhancement can still be made, and questions remain regarding the mechanisms underlying the observed effects, this appears to be a fruitful area of investigation that may shed light on the basic mechanisms of cognitive function and their therapeutic modulation.
Collapse
Affiliation(s)
- Bruce Luber
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, USA; Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | | |
Collapse
|
41
|
Saad E, Silvanto J. How visual short-term memory maintenance modulates the encoding of external input: evidence from concurrent visual adaptation and TMS. Neuroimage 2013; 72:243-51. [PMID: 23384521 DOI: 10.1016/j.neuroimage.2013.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/12/2013] [Accepted: 01/26/2013] [Indexed: 11/29/2022] Open
Abstract
The impact of memory representations on the encoding of visual input has been the subject of much debate. Here we investigated this issue by examining how visual short-term memory (VSTM) maintenance of orientation information modulates the strength of the tilt aftereffect (TAE) induced by a concurrent visual adapter. We reasoned that if VSTM maintenance facilitates visual processing of stimuli that match the VSTM content, then the magnitude of the TAE should be enhanced when the orientations of the memory item and the adapter are identical. In contrast, if VSTM content inhibits visual processing, then the TAE induced by the adapter should be reduced. Our results are consistent with the latter hypothesis, and a TMS study demonstrated that the reduction of the TAE by VSTM maintenance of orientation information occurs in the early visual cortex. VSTM maintenance of shape information also reduced the TAE magnitude, but to a smaller extent than maintenance of orientation information. A TMS experiment did not implicate the early visual cortex in this phenomenon. In summary, our results indicate that VSTM maintenance under these circumstances inhibits the encoding of concurrent visual input, and that this inhibition occurs at various levels of the visual cortex.
Collapse
Affiliation(s)
- Elyana Saad
- Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University, Espoo, Finland
| | | |
Collapse
|
42
|
|
43
|
Abstract
Learning and memory functions are crucial in the interaction of an individual with the environment and involve the interplay of large, distributed brain networks. Recent advances in technologies to explore neurobiological correlates of neuropsychological paradigms have increased our knowledge about human learning and memory. In this chapter we first review and define memory and learning processes from a neuropsychological perspective. Then we provide some illustrations of how noninvasive brain stimulation can play a major role in the investigation of memory functions, as it can be used to identify cause-effect relationships and chronometric properties of neural processes underlying cognitive steps. In clinical medicine, transcranial magnetic stimulation may be used as a diagnostic tool to understand memory and learning deficits in various patient populations. Furthermore, noninvasive brain stimulation is also being applied to enhance cognitive functions, offering exciting translational therapeutic opportunities in neurology and psychiatry.
Collapse
Affiliation(s)
- Anna-Katharine Brem
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
44
|
van de Ven V, Sack AT. Transcranial magnetic stimulation of visual cortex in memory: Cortical state, interference and reactivation of visual content in memory. Behav Brain Res 2013; 236:67-77. [DOI: 10.1016/j.bbr.2012.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/01/2012] [Indexed: 12/27/2022]
|
45
|
Sack AT, Schuhmann T. Hemispheric Differences within the Fronto-Parietal Network Dynamics Underlying Spatial Imagery. Front Psychol 2012; 3:214. [PMID: 22754546 PMCID: PMC3385155 DOI: 10.3389/fpsyg.2012.00214] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/08/2012] [Indexed: 11/19/2022] Open
Abstract
Spatial imagery refers to the inspection and evaluation of spatial features (e.g., distance, relative position, configuration) and/or the spatial manipulation (e.g., rotation, shifting, reorienting) of mentally generated visual images. In the past few decades, psychophysical as well as functional brain imaging studies have indicated that any such processing of spatially coded information and/or manipulation based on mental images (i) is subject to similar behavioral demands and limitations as in the case of spatial processing based on real visual images, and (ii) consistently activates several nodes of widely distributed cortical networks in the brain. These nodes include areas within both, the dorsal fronto-parietal as well as ventral occipito-temporal visual processing pathway, representing the “what” versus “where” aspects of spatial imagery. We here describe evidence from functional brain imaging and brain interference studies indicating systematic hemispheric differences within the dorsal fronto-parietal networks during the execution of spatial imagery. Importantly, such hemispheric differences and functional lateralization principles are also found in the effective brain network connectivity within and across these networks, with a direction of information flow from anterior frontal/premotor regions to posterior parietal cortices. In an attempt to integrate these findings of hemispheric lateralization and fronto-to-parietal interactions, we argue that spatial imagery constitutes a multifaceted cognitive construct that can be segregated in several distinct mental sub processes, each associated with activity within specific lateralized fronto-parietal (sub) networks, forming the basis of the here proposed dynamic network model of spatial imagery.
Collapse
Affiliation(s)
- Alexander T Sack
- Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| | | |
Collapse
|
46
|
Hyvärinen L, Walthes R, Freitag C, Petz V. Profile of Visual Functioning as a Bridge between Education and Medicine in the Assessment of Impaired Vision. Strabismus 2012; 20:63-8. [DOI: 10.3109/09273972.2012.680235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Distinct causal mechanisms of attentional guidance by working memory and repetition priming in early visual cortex. J Neurosci 2012; 32:3447-52. [PMID: 22399767 DOI: 10.1523/jneurosci.6243-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human attention may be guided by representations held in working memory (WM) and also by priming from implicit memory. Neurophysiological data suggest that WM and priming may be associated with distinct neural mechanisms, but this prior evidence is only correlative. Furthermore, the role of the visual cortex in attention biases from memory remains unclear, because most previous studies conflated memory and selection processes. Here, we manipulated memory and attention in an orthogonal fashion and used an interventional approach to demonstrate the functional significance of WM and priming states in visual cortex for attentional biasing. Observers searched for a Landolt target that was preceded by a nonpredictive color cue that either had to be held in WM for a later recognition test or merely attended (priming counterpart). The application of transcranial magnetic stimulation (TMS) over the occipital cortex modulated the impact of memory on search. Critically, the direction of this modulation depended on the memory state. In the WM condition, the application of TMS on validly cued trials (when the cue surrounded the sought target) enhanced search accuracy relative to the invalid trials (when the cue surrounded a distracter); the opposite pattern was observed in the priming condition. That the effects of occipital TMS on selection were contingent on memory context demonstrates that WM and priming represent distinct states in the early visual cortex that play a causal role in memory-based guidance of attention.
Collapse
|
48
|
Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study. J Neurosci 2012; 32:4-11. [PMID: 22219265 DOI: 10.1523/jneurosci.3261-11.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.
Collapse
|
49
|
Koivisto M, Henriksson L, Revonsuo A, Railo H. Unconscious response priming by shape depends on geniculostriate visual projection. Eur J Neurosci 2012; 35:623-33. [DOI: 10.1111/j.1460-9568.2011.07973.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Event-related repetitive transcranial magnetic stimulation of posterior superior temporal sulcus improves the detection of threatening postural changes in human bodies. J Neurosci 2012; 31:17547-54. [PMID: 22131416 DOI: 10.1523/jneurosci.0697-11.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Perceiving others' emotions through their body movements and postures is crucial for successful social interaction. While imaging studies indicate that perceiving body emotions relies upon a wide network of subcortico-cortical neural regions, little is known on the causative role of different nodes of this network. We applied event-related repetitive transcranial magnetic stimulation (rTMS) over nonfacial, body- and action-related extrastriate (EBA), temporal (pSTS), and premotor (vPM) cortices to test their active contribution in perceiving changes between two successive images of either threatening or neutral human body or animal postures. While stimulation of EBA and vPM showed no selective effect on threatening stimuli with respect to neutral ones, rTMS over pSTS selectively impaired neutral posture detection and increased the accuracy in detecting changes of threatening human postures with respect to all other experimental conditions. No such effect was found for animal stimuli. These results support the notion that pSTS is crucially devoted to the detection of socially relevant information concerning others' actions, fostering the notion that amygdalo-temporo-cortical modulatory connections mediate perception of emotionally salient body postures.
Collapse
|