1
|
Beh A, McGraw PV, Webb BS, Schluppeck D. Linking Multi-Modal MRI to Clinical Measures of Visual Field Loss After Stroke. Front Neurosci 2022; 15:737215. [PMID: 35069094 PMCID: PMC8766758 DOI: 10.3389/fnins.2021.737215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Loss of vision across large parts of the visual field is a common and devastating complication of cerebral strokes. In the clinic, this loss is quantified by measuring the sensitivity threshold across the field of vision using static perimetry. These methods rely on the ability of the patient to report the presence of lights in particular locations. While perimetry provides important information about the intactness of the visual field, the approach has some shortcomings. For example, it cannot distinguish where in the visual pathway the key processing deficit is located. In contrast, brain imaging can provide important information about anatomy, connectivity, and function of the visual pathway following stroke. In particular, functional magnetic resonance imaging (fMRI) and analysis of population receptive fields (pRF) can reveal mismatches between clinical perimetry and maps of cortical areas that still respond to visual stimuli after stroke. Here, we demonstrate how information from different brain imaging modalities-visual field maps derived from fMRI, lesion definitions from anatomical scans, and white matter tracts from diffusion weighted MRI data-provides a more complete picture of vision loss. For any given location in the visual field, the combination of anatomical and functional information can help identify whether vision loss is due to absence of gray matter tissue or likely due to white matter disconnection from other cortical areas. We present a combined imaging acquisition and visual stimulus protocol, together with a description of the analysis methodology, and apply it to datasets from four stroke survivors with homonymous field loss (two with hemianopia, two with quadrantanopia). For researchers trying to understand recovery of vision after stroke and clinicians seeking to stratify patients into different treatment pathways, this approach combines multiple, convergent sources of data to characterize the extent of the stroke damage. We show that such an approach gives a more comprehensive measure of residual visual capacity-in two particular respects: which locations in the visual field should be targeted and what kind of visual attributes are most suited for rehabilitation.
Collapse
Affiliation(s)
| | | | | | - Denis Schluppeck
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
2
|
Luo J, Chen Z, Lu Y, Spillmann L, Andolina IM, Wang W. The Serpentine Illusion: A Visual Motion Illusion Induced by Phase-Shifted Line Gratings. Front Neurosci 2020; 14:612153. [PMID: 33424543 PMCID: PMC7793819 DOI: 10.3389/fnins.2020.612153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
In a pattern of horizontal lines containing ± 45° zigzagging phase-shifted strips, vivid illusory motion is perceived when the pattern is translated up or down at a moderate speed. Two forms of illusory motion are seen: [i] a motion "racing" along the diagonal interface between the strips and [ii] lateral (sideways) motion of the strip sections. We found the relative salience of these two illusory motions to be strongly influenced by the vertical spacing and length of the line gratings, and the period length of the zigzag strips. Both illusory motions are abolished when the abutting strips are interleaved, separated by a gap or when a real line is superimposed at the interface. Illusory motion is also severely weakened when equiluminant colored grating lines are used. Illusory motion perception is fully restored at < 20% luminance contrast. Using adaptation, we find that line-ends alone are insufficient for illusory motion perception, and that both physical carrier motion and line orientation are required. We finally test a classical spatiotemporal energy model of V1 cells that exhibit direction tuning changes that are consistent with the direction of illusory motion. Taking this data together, we constructed a new visual illusion and surmise its origin to interactions of spatial and temporal energy of the lines and line-ends preferentially driving the magnocellular pathway.
Collapse
Affiliation(s)
- Junxiang Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Zheyuan Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yiliang Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ian Max Andolina
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Wei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cohen D, Goddard E, Mullen KT. Reevaluating hMT+ and hV4 functional specialization for motion and static contrast using fMRI-guided repetitive transcranial magnetic stimulation. J Vis 2019; 19:11. [PMID: 30916726 DOI: 10.1167/19.3.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although visual areas hMT+ and hV4 are considered to have segregated functions for the processing of motion and form within dorsal and ventral streams, respectively, more recent evidence favors some functional overlap. Here we use fMRI-guided online repetitive transcranial magnetic stimulation (rTMS) to test two associated hypotheses: that area hV4 is causally involved in the perception of motion and hMT+ in the perception of static form. We use variations of a common global stimulus to test two dynamic motion-based tasks and two static form-based tasks in ipsilateral and contralateral visual fields. We find that rTMS to both hMT+ and hV4 significantly impairs direction discrimination and causes a perceptual slowing of motion, implicating hV4 in motion perception. Stimulation of hMT+ impairs motion in both visual fields, implying that disruption to one hMT+ disrupts the other with both needed for optimal performance. For the second hypothesis, we find the novel result that hV4 stimulation markedly reduces perceived contrast of a static stimulus. hMT+ stimulation also produces an effect, implicating it in static contrast perception. Our findings are the first to show that rTMS of hV4 can produce a large perceptual effect and, taken together, suggest a less rigid functional segregation between hMT+ and hV4 than previously thought.
Collapse
Affiliation(s)
- Daniel Cohen
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Erin Goddard
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Kathy T Mullen
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Sanda N, Cerliani L, Authié CN, Sabbah N, Sahel JA, Habas C, Safran AB, Thiebaut de Schotten M. Visual brain plasticity induced by central and peripheral visual field loss. Brain Struct Funct 2018; 223:3473-3485. [PMID: 29936553 PMCID: PMC6132657 DOI: 10.1007/s00429-018-1700-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.
Collapse
Affiliation(s)
- Nicolae Sanda
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, 75012, Paris, France.
- INSERM, U968, Institut de la Vision, 75012, Paris, France.
- CNRS, UMR 7210, Institut de la Vision, 75012, Paris, France.
- Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 75012, Paris, France.
- Department of Clinical Neurosciences, Geneva University Hospital and Geneva University School of Medicine, Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland.
| | - Leonardo Cerliani
- Frontlab, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM), Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, 75013, Paris, France
- Brain Connectivity and Behaviour Group, Sorbonne University, Paris, France
- Department of Psychiatry, Academic Medical Centre, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Colas N Authié
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, 75012, Paris, France
- INSERM, U968, Institut de la Vision, 75012, Paris, France
- CNRS, UMR 7210, Institut de la Vision, 75012, Paris, France
- Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 75012, Paris, France
| | - Norman Sabbah
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, 75012, Paris, France
- INSERM, U968, Institut de la Vision, 75012, Paris, France
- CNRS, UMR 7210, Institut de la Vision, 75012, Paris, France
- Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, 75012, Paris, France
- INSERM, U968, Institut de la Vision, 75012, Paris, France
- CNRS, UMR 7210, Institut de la Vision, 75012, Paris, France
- Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 75012, Paris, France
- Institute of Ophthalmology, University College of London, London, UK
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Department of Ophthalmology, School of Medicine, University of Pittsburg, Pittsburg, USA
| | - Christophe Habas
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, 75012, Paris, France
- INSERM, U968, Institut de la Vision, 75012, Paris, France
- CNRS, UMR 7210, Institut de la Vision, 75012, Paris, France
- Centre de Neuroimagerie, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, 75012, Paris, France
| | - Avinoam B Safran
- Sorbonne Universités, UPMC Université Paris 06, UMR S968, Institut de la Vision, 75012, Paris, France
- INSERM, U968, Institut de la Vision, 75012, Paris, France
- CNRS, UMR 7210, Institut de la Vision, 75012, Paris, France
- Centre d'investigation clinique, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 75012, Paris, France
- Department of Clinical Neurosciences, Geneva University Hospital and Geneva University School of Medicine, Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Michel Thiebaut de Schotten
- Frontlab, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM), Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, 75013, Paris, France
- Brain Connectivity and Behaviour Group, Sorbonne University, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Wang Z, Zeljic K, Jiang Q, Gu Y, Wang W, Wang Z. Dynamic Network Communication in the Human Functional Connectome Predicts Perceptual Variability in Visual Illusion. Cereb Cortex 2018; 28:48-62. [PMID: 29117288 DOI: 10.1093/cercor/bhw347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022] Open
Abstract
Ubiquitous variability between individuals in visual perception is difficult to standardize and has thus essentially been ignored. Here we construct a quantitative psychophysical measure of illusory rotary motion based on the Pinna-Brelstaff figure (PBF) in 73 healthy volunteers and investigate the neural circuit mechanisms underlying perceptual variation using functional magnetic resonance imaging (fMRI). We acquired fMRI data from a subset of 42 subjects during spontaneous and 3 stimulus conditions: expanding PBF, expanding modified-PBF (illusion-free) and expanding modified-PBF with physical rotation. Brain-wide graph analysis of stimulus-evoked functional connectivity patterns yielded a functionally segregated architecture containing 3 discrete hierarchical networks, commonly shared between rest and stimulation conditions. Strikingly, communication efficiency and strength between 2 networks predominantly located in visual areas robustly predicted individual perceptual differences solely in the illusory stimulus condition. These unprecedented findings demonstrate that stimulus-dependent, not spontaneous, dynamic functional integration between distributed brain networks contributes to perceptual variability in humans.
Collapse
Affiliation(s)
- Zhiwei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kristina Zeljic
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| | - Qinying Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| | - Yong Gu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| | - Wei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai200031, China
| |
Collapse
|
6
|
Strong SL, Silson EH, Gouws AD, Morland AB, McKeefry DJ. Differential processing of the direction and focus of expansion of optic flow stimuli in areas MST and V3A of the human visual cortex. J Neurophysiol 2017; 117:2209-2217. [PMID: 28298300 DOI: 10.1152/jn.00031.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 11/22/2022] Open
Abstract
Human neuropsychological and neuroimaging studies have raised the possibility that different attributes of optic flow stimuli, namely radial direction and the position of the focus of expansion (FOE), are processed within separate cortical areas. In the human brain, visual areas V5/MT+ and V3A have been proposed as integral to the analysis of these different attributes of optic flow stimuli. To establish direct causal relationships between neural activity in human (h)V5/MT+ and V3A and the perception of radial motion direction and FOE position, we used transcranial magnetic stimulation (TMS) to disrupt cortical activity in these areas while participants performed behavioral tasks dependent on these different aspects of optic flow stimuli. The cortical regions of interest were identified in seven human participants using standard functional MRI retinotopic mapping techniques and functional localizers. TMS to area V3A was found to disrupt FOE positional judgments but not radial direction discrimination, whereas the application of TMS to an anterior subdivision of hV5/MT+, MST/TO-2 produced the reverse effects, disrupting radial direction discrimination but eliciting no effect on the FOE positional judgment task. This double dissociation demonstrates that FOE position and radial direction of optic flow stimuli are signaled independently by neural activity in areas hV5/MT+ and V3A.NEW & NOTEWORTHY Optic flow constitutes a biologically relevant visual cue as we move through any environment. With the use of neuroimaging and brain-stimulation techniques, this study demonstrates that separate human brain areas are involved in the analysis of the direction of radial motion and the focus of expansion in optic flow. This dissociation reveals the existence of separate processing pathways for the analysis of different attributes of optic flow that are important for the guidance of self-locomotion and object avoidance.
Collapse
Affiliation(s)
- Samantha L Strong
- School of Optometry and Vision Science, University of Bradford, Bradford, West Yorkshire, United Kingdom.,York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Edward H Silson
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom.,Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland; and
| | - André D Gouws
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Antony B Morland
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom.,Centre for Neuroscience, Hull-York Medical School, University of York, York, United Kingdom
| | - Declan J McKeefry
- School of Optometry and Vision Science, University of Bradford, Bradford, West Yorkshire, United Kingdom;
| |
Collapse
|
7
|
Gilaie-Dotan S. Visual motion serves but is not under the purview of the dorsal pathway. Neuropsychologia 2016; 89:378-392. [PMID: 27444880 DOI: 10.1016/j.neuropsychologia.2016.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
Visual motion processing is often attributed to the dorsal visual pathway despite visual motion's involvement in almost all visual functions. Furthermore, some visual motion tasks critically depend on the structural integrity of regions outside the dorsal pathway. Here, based on numerous studies, I propose that visual motion signals are swiftly transmitted via multiple non-hierarchical routes to primary motion-dedicated processing regions (MT/V5 and MST) that are not part of the dorsal pathway, and then propagated to a multiplicity of brain areas according to task demands, reaching these regions earlier than the dorsal/ventral hierarchical flow. This not only places MT/V5 at the same or even earlier visual processing stage as that of V1, but can also elucidate many findings with implications to visual awareness. While the integrity of the non-hierarchical motion pathway is necessary for all visual motion perception, it is insufficient on its own, and the transfer of visual motion signals to additional brain areas is crucial to allow the different motion perception tasks (e.g. optic flow, visuo-vestibular balance, movement observation, dynamic form detection and perception, and even reading). I argue that this lateral visual motion pathway can be distinguished from the dorsal pathway not only based on faster response latencies and distinct anatomical connections, but also based on its full field representation. I also distinguish between this primary lateral visual motion pathway sensitive to all motion in the visual field, and a much less investigated optic flow sensitive medial processing pathway (from V1 to V6 and V6A) that appears to be part of the dorsal pathway. Multiple additional predictions are provided that allow testing this proposal and distinguishing between the visual pathways.
Collapse
Affiliation(s)
- Sharon Gilaie-Dotan
- UCL Institute of Cognitive Neuroscience, London WC1N 3AR, UK; Visual Science and Optometry, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
8
|
The Role of Human Brain Area hMT+ in the Perception of Global Motion Investigated With Repetitive Transcranial Magnetic Stimulation (rTMS). Brain Stimul 2015; 8:200-7. [DOI: 10.1016/j.brs.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 11/21/2022] Open
|
9
|
Gilaie-Dotan S, Saygin AP, Lorenzi LJ, Egan R, Rees G, Behrmann M. The role of human ventral visual cortex in motion perception. ACTA ACUST UNITED AC 2013; 136:2784-98. [PMID: 23983030 PMCID: PMC4017874 DOI: 10.1093/brain/awt214] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral 'form' (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion.
Collapse
|
10
|
Kujovic M, Zilles K, Malikovic A, Schleicher A, Mohlberg H, Rottschy C, Eickhoff SB, Amunts K. Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Funct 2013; 218:157-72. [PMID: 22354469 PMCID: PMC3535362 DOI: 10.1007/s00429-012-0390-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/31/2012] [Indexed: 11/06/2022]
Abstract
The dorsal visual stream consists of several functionally specialized areas, but most of their cytoarchitectonic correlates have not yet been identified in the human brain. The cortex adjacent to Brodmann area 18/V2 was therefore analyzed in serial sections of ten human post-mortem brains using morphometrical and multivariate statistical analyses for the definition of areal borders. Two previously unknown cytoarchitectonic areas (hOc3d, hOc4d) were detected. They occupy the medial and, to a smaller extent, lateral surface of the occipital lobe. The larger area, hOc3d, is located dorso-lateral to area V2 in the region of superior and transverse occipital, as well as parieto-occipital sulci. Area hOc4d was identified rostral to hOc3d; it differed from the latter by larger pyramidal cells in lower layer III, thinner layers V and VI, and a sharp cortex-white-matter borderline. The delineated areas were superimposed in the anatomical MNI space, and probabilistic maps were calculated. They show a relatively high intersubject variability in volume and position. Based on their location and neighborhood relationship, areas hOc3d and hOc4d are putative anatomical substrates of functionally defined areas V3d and V3a, a hypothesis that can now be tested by comparing probabilistic cytoarchitectonic maps and activation studies of the living human brain.
Collapse
Affiliation(s)
- Milenko Kujovic
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
| | - Aleksandar Malikovic
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Axel Schleicher
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
| | - Claudia Rottschy
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
| | - Simon B. Eickhoff
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Murd C, Einberg A, Bachmann T. Repetitive TMS over V5/MT shortens the duration of spatially localized motion aftereffect: The effects of pulse intensity and stimulation hemisphere. Vision Res 2012; 68:59-64. [DOI: 10.1016/j.visres.2012.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/30/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
|
12
|
Lee HA, Lee SH. Hierarchy of direction-tuned motion adaptation in human visual cortex. J Neurophysiol 2012; 107:2163-84. [PMID: 22219027 PMCID: PMC3331597 DOI: 10.1152/jn.00923.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/31/2011] [Indexed: 11/22/2022] Open
Abstract
Prolonged exposure to a single direction of motion alters perception of subsequent static or dynamic stimuli and induces substantial changes in behaviors of motion-sensitive neurons, but the origin of neural adaptation and neural correlates of perceptual consequences of motion adaptation in human brain remain unclear. Using functional magnetic resonance imaging, we measured motion adaptation tuning curves in a fine scale by probing changes in cortical activity after adaptation for a range of directions relative to the adapted direction. We found a clear dichotomy in tuning curve shape: cortical responses in early-tier visual areas reduced at around both the adapted and opposite direction, resulting in a bidirectional tuning curve, whereas response reduction in high-tier areas occurred only at around the adapted direction, resulting in a unidirectional tuning curve. We also found that the psychophysically measured adaptation tuning curves were unidirectional and best matched the cortical adaptation tuning curves in the middle temporal area (MT) and the medial superior temporal area (MST). Our findings are compatible with, but not limited to, an interpretation in which direct impacts of motion adaptation occur in both unidirectional and bidirectional units in early visual areas, but the perceptual consequences of motion adaptation are manifested in the population activity in MT and MST, which may inherit those direct impacts of adaptation from the directionally selective units.
Collapse
Affiliation(s)
- Hyun Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | | |
Collapse
|