1
|
Fekete Z, Weisz F, Karlócai MR, Veres JM, Andrási T, Hájos N. Synaptic communication within the microcircuits of pyramidal neurons and basket cells in the mouse prefrontal cortex. J Physiol 2024. [PMID: 39418315 DOI: 10.1113/jp286284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Basket cells are inhibitory interneurons in cortical structures with the potential to efficiently control the activity of their postsynaptic partners. Although their contribution to higher order cognitive functions associated with the medial prefrontal cortex (mPFC) relies on the characteristics of their synaptic connections, the way that they are embedded into local circuits is still not fully uncovered. Here, we determined the synaptic properties of excitatory and inhibitory connections between pyramidal neurons (PNs), cholecystokinin-containing basket cells (CCKBCs) and parvalbumin-containing basket cells (PVBCs) in the mouse mPFC. By performing paired recordings, we revealed that PVBCs receive larger unitary excitatory postsynaptic currents from PNs with shorter latency and faster kinetic properties compared to events evoked in CCKBCs. Also, unitary inhibitory postsynaptic currents in PNs were more reliably evoked by PVBCs than by CCKBCs, yet the former connections showed profound short-term depression. Moreover, we demonstrated that CCKBCs and PVBCs in the mPFC are connected with each other. Because alterations in PVBC function have been linked to neurological and psychiatric conditions such as Alzheimer's disease and schizophrenia and CCKBC vulnerability might play a role in mood disorders, a deeper understanding of the general features of basket cell synapses could serve as a reference point for future investigations with therapeutic objectives. KEY POINTS: Cholecystokinin- (CCKBCs) and parvalbumin-expressing basket cells (PVBCs) have distinct passive and active membrane properties. Pyramidal neurons give rise to larger unitary excitatory postsynaptic currents in PVBCs compared to events in CCKBCs. Unitary inhibitory postsynaptic currents in pyramidal neurons are more reliably evoked by PVBCs than by CCKBCs. Basket cells form chemical synapses and gap junctions with their own cell type. The two basket cell types are connected with each other.
Collapse
Affiliation(s)
- Zsuzsanna Fekete
- Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Filippo Weisz
- Institute of Experimental Medicine, Budapest, Hungary
| | | | - Judit M Veres
- Institute of Experimental Medicine, Budapest, Hungary
| | - Tibor Andrási
- Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Indiana, USA
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Indiana, USA
| |
Collapse
|
2
|
Lenizky MW, Meehan SK. The effects of verbal and spatial working memory on short- and long-latency sensorimotor circuits in the motor cortex. PLoS One 2024; 19:e0302989. [PMID: 38753604 PMCID: PMC11098330 DOI: 10.1371/journal.pone.0302989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Multiple sensorimotor loops converge in the motor cortex to create an adaptable system capable of context-specific sensorimotor control. Afferent inhibition provides a non-invasive tool to investigate the substrates by which procedural and cognitive control processes interact to shape motor corticospinal projections. Varying the transcranial magnetic stimulation properties during afferent inhibition can probe specific sensorimotor circuits that contribute to short- and long-latency periods of inhibition in response to the peripheral stimulation. The current study used short- (SAI) and long-latency (LAI) afferent inhibition to probe the influence of verbal and spatial working memory load on the specific sensorimotor circuits recruited by posterior-anterior (PA) and anterior-posterior (AP) TMS-induced current. Participants completed two sessions where SAI and LAI were assessed during the short-term maintenance of two- or six-item sets of letters (verbal) or stimulus locations (spatial). The only difference between the sessions was the direction of the induced current. PA SAI decreased as the verbal working memory load increased. In contrast, AP SAI was not modulated by verbal working memory load. Visuospatial working memory load did not affect PA or AP SAI. Neither PA LAI nor AP LAI were sensitive to verbal or spatial working memory load. The dissociation of short-latency PA and AP sensorimotor circuits and short- and long-latency PA sensorimotor circuits with increasing verbal working memory load support multiple convergent sensorimotor loops that provide distinct functional information to facilitate context-specific supraspinal control.
Collapse
Affiliation(s)
- Markus W. Lenizky
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Sean K. Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Nagy-Pál P, Veres JM, Fekete Z, Karlócai MR, Weisz F, Barabás B, Reéb Z, Hájos N. Structural Organization of Perisomatic Inhibition in the Mouse Medial Prefrontal Cortex. J Neurosci 2023; 43:6972-6987. [PMID: 37640552 PMCID: PMC10586541 DOI: 10.1523/jneurosci.0432-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis of in vitro labeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENT Inhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.
Collapse
Affiliation(s)
- Petra Nagy-Pál
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Judit M Veres
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Fekete
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Mária R Karlócai
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Filippo Weisz
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bence Barabás
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Reéb
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Norbert Hájos
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, Indiana 47405
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana 47405
| |
Collapse
|
4
|
Jung K, Chang M, Steinecke A, Burke B, Choi Y, Oisi Y, Fitzpatrick D, Taniguchi H, Kwon HB. An adaptive behavioral control motif mediated by cortical axo-axonic inhibition. Nat Neurosci 2023; 26:1379-1393. [PMID: 37474640 PMCID: PMC10400431 DOI: 10.1038/s41593-023-01380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
Genetically defined subgroups of inhibitory interneurons are thought to play distinct roles in learning, but heterogeneity within these subgroups has limited our understanding of the scope and nature of their specific contributions. Here we reveal that the chandelier cell (ChC), an interneuron type that specializes in inhibiting the axon-initial segment (AIS) of pyramidal neurons, establishes cortical microcircuits for organizing neural coding through selective axo-axonic synaptic plasticity. We found that organized motor control is mediated by enhanced population coding of direction-tuned premotor neurons, with tuning refined through suppression of irrelevant neuronal activity. ChCs contribute to learning-dependent refinements by providing selective inhibitory control over individual pyramidal neurons rather than global suppression. Quantitative analysis of structural plasticity across axo-axonic synapses revealed that ChCs redistributed inhibitory weights to individual pyramidal neurons during learning. These results demonstrate an adaptive logic of the inhibitory circuit motif responsible for organizing distributed neural representations. Thus, ChCs permit efficient cortical computation in a targeted cell-specific manner.
Collapse
Affiliation(s)
- Kanghoon Jung
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Minhyeok Chang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - André Steinecke
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Benjamin Burke
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Youngjin Choi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasuhiro Oisi
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Hiroki Taniguchi
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Department of Pathology, Chronic Brain Injury program, Ohio State University, Columbus, OH, USA
| | - Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
- Max Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
5
|
Jung K, Chang M, Steinecke A, Berke B, Choi Y, Oisi Y, Fitzpatrick D, Taniguchi H, Kwon HB. An adaptive behavioral control motif mediated by cortical axo-axonic inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.531767. [PMID: 36945592 PMCID: PMC10029003 DOI: 10.1101/2023.03.10.531767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Neural circuits are reorganized with specificity during learning. Genetically-defined subgroups of inhibitory interneurons are thought to play distinct roles in learning, but heterogeneity within these subgroups has limited our understanding of the scope and nature of their specific contributions to learning. Here we reveal that the chandelier cell (ChC), an interneuron type that specializes in inhibiting the axon-initial segment (AIS) of pyramidal neurons, establishes cortical microcircuits for organizing neural coding through selective axo-axonic synaptic plasticity. We find that organized motor control is mediated by enhanced population coding of direction-tuned premotor neurons, whose tuning is refined through suppression of irrelevant neuronal activity. ChCs are required for learning-dependent refinements via providing selective inhibitory control over pyramidal neurons rather than global suppression. Quantitative analysis on structural plasticity of axo-axonic synapses revealed that ChCs redistributed inhibitory weights to individual pyramidal neurons during learning. These results demonstrate an adaptive logic of the inhibitory circuit motif responsible for organizing distributed neural representations. Thus, ChCs permit efficient cortical computation in a target cell specific manner, which highlights the significance of interneuron diversity.
Collapse
Affiliation(s)
- Kanghoon Jung
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Current address: Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Minhyeok Chang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- equally contributed
| | - André Steinecke
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- equally contributed
| | - Benjamin Berke
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Youngjin Choi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yasuhiro Oisi
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - David Fitzpatrick
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Hiroki Taniguchi
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Department of Pathology, Chronic Brain Injury program, Ohio State University, Columbus, Ohio 43210, USA
| | - Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Max Planck Institute of Neurobiology, Martinsried 82152, Germany
| |
Collapse
|
6
|
Bhattacharya D, Bartley AF, Li Q, Dobrunz LE. Bicuculline restores frequency-dependent hippocampal I/E ratio and circuit function in PGC-1ɑ null mice. Neurosci Res 2022; 184:9-18. [PMID: 35842011 PMCID: PMC10865982 DOI: 10.1016/j.neures.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 10/31/2022]
Abstract
Altered inhibition/excitation (I/E) balance contributes to various brain disorders. Dysfunctional GABAergic interneurons enhance or reduce inhibition, resulting in I/E imbalances. Differences in short-term plasticity between excitation and inhibition cause frequency-dependence of the I/E ratio, which can be altered by GABAergic dysfunction. However, it is unknown whether I/E imbalances can be rescued pharmacologically using a single dose when the imbalance magnitude is frequency-dependent. Loss of PGC-1α (peroxisome proliferator activated receptor γ coactivator 1α) causes transcriptional dysregulation in hippocampal GABAergic interneurons. PGC-1α-/- slices have enhanced baseline inhibition onto CA1 pyramidal cells, causing increased I/E ratio and impaired circuit function. High frequency stimulation reduces the I/E ratio and recovers circuit function in PGC-1α-/- slices. Here we tested if using a low dose of bicuculline that can restore baseline I/E ratio can also rescue the frequency-dependent I/E imbalances in these mice. Remarkably, bicuculline did not reduce the I/E ratio below that of wild type during high frequency stimulation. Interestingly, bicuculline enhanced the paired-pulse ratio (PPR) of disynaptic inhibition without changing the monosynaptic inhibition PPR, suggesting that bicuculline modifies interneuron recruitment and not GABA release. Bicuculline improved CA1 output in PGC-1α-/- slices, enhancing EPSP-spike coupling to wild type levels at high and low frequencies. Our results show that it is possible to rescue frequency-dependent I/E imbalances in an animal model of transcriptional dysregulation with a single treatment.
Collapse
Affiliation(s)
- Dwipayan Bhattacharya
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Qin Li
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States.
| |
Collapse
|
7
|
Jung K, Choi Y, Kwon HB. Cortical control of chandelier cells in neural codes. Front Cell Neurosci 2022; 16:992409. [PMID: 36299494 PMCID: PMC9588934 DOI: 10.3389/fncel.2022.992409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Various cortical functions arise from the dynamic interplay of excitation and inhibition. GABAergic interneurons that mediate synaptic inhibition display significant diversity in cell morphology, electrophysiology, plasticity rule, and connectivity. These heterogeneous features are thought to underlie their functional diversity. Emerging attention on specific properties of the various interneuron types has emphasized the crucial role of cell-type specific inhibition in cortical neural processing. However, knowledge is still limited on how each interneuron type forms distinct neural circuits and regulates network activity in health and disease. To dissect interneuron heterogeneity at single cell-type precision, we focus on the chandelier cell (ChC), one of the most distinctive GABAergic interneuron types that exclusively innervate the axon initial segments (AIS) of excitatory pyramidal neurons. Here we review the current understanding of the structural and functional properties of ChCs and their implications in behavioral functions, network activity, and psychiatric disorders. These findings provide insights into the distinctive roles of various single-type interneurons in cortical neural coding and the pathophysiology of cortical dysfunction.
Collapse
|
8
|
Botta A, Lagravinese G, Bove M, Pelosin E, Bonassi G, Avenanti A, Avanzino L. Sensorimotor inhibition during emotional processing. Sci Rep 2022; 12:6998. [PMID: 35488018 PMCID: PMC9054825 DOI: 10.1038/s41598-022-10981-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Visual processing of emotional stimuli has been shown to engage complex cortical and subcortical networks, but it is still unclear how it affects sensorimotor integration processes. To fill this gap, here, we used a TMS protocol named short-latency afferent inhibition (SAI), capturing sensorimotor interactions, while healthy participants were observing emotional body language (EBL) and International Affective Picture System (IAPS) stimuli. Participants were presented with emotional (fear- and happiness-related) or non-emotional (neutral) EBL and IAPS stimuli while SAI was tested at 120 ms and 300 ms after pictures presentation. At the earlier time point (120 ms), we found that fear-related EBL and IAPS stimuli selectively enhanced SAI as indexed by the greater inhibitory effect of somatosensory afferents on motor excitability. Larger early SAI enhancement was associated with lower scores at the Behavioural Inhibition Scale (BIS). At the later time point (300 ms), we found a generalized SAI decrease for all kind of stimuli (fear, happiness or neutral). Because the SAI index reflects integrative activity of cholinergic sensorimotor circuits, our findings suggest greater sensitivity of such circuits during early (120 ms) processing of threat-related information. Moreover, the correlation with BIS score may suggest increased attention and sensory vigilance in participants with greater anxiety-related dispositions. In conclusion, the results of this study show that sensorimotor inhibition is rapidly enhanced while processing threatening stimuli and that SAI protocol might be a valuable option in evaluating emotional-motor interactions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Alessandro Botta
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, ASL4, Azienda Sanitaria Locale Chiavarese, Chiavari, Italy
| | - Alessio Avenanti
- Centro di Neuroscienze Cognitive and Dipartimento di Psicologia, Campus Cesena, Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Laura Avanzino
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
9
|
Szabo GG, Farrell JS, Dudok B, Hou WH, Ortiz AL, Varga C, Moolchand P, Gulsever CI, Gschwind T, Dimidschstein J, Capogna M, Soltesz I. Ripple-selective GABAergic projection cells in the hippocampus. Neuron 2022; 110:1959-1977.e9. [PMID: 35489331 DOI: 10.1016/j.neuron.2022.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Ripples are brief high-frequency electrographic events with important roles in episodic memory. However, the in vivo circuit mechanisms coordinating ripple-related activity among local and distant neuronal ensembles are not well understood. Here, we define key characteristics of a long-distance projecting GABAergic cell group in the mouse hippocampus that selectively exhibits high-frequency firing during ripples while staying largely silent during theta-associated states when most other GABAergic cells are active. The high ripple-associated firing commenced before ripple onset and reached its maximum before ripple peak, with the signature theta-OFF, ripple-ON firing pattern being preserved across awake and sleep states. Controlled by septal GABAergic, cholinergic, and CA3 glutamatergic inputs, these ripple-selective cells innervate parvalbumin and cholecystokinin-expressing local interneurons while also targeting a variety of extra-hippocampal regions. These results demonstrate the existence of a hippocampal GABAergic circuit element that is uniquely positioned to coordinate ripple-related neuronal dynamics across neuronal assemblies.
Collapse
Affiliation(s)
- Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Wen-Hsien Hou
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Anna L Ortiz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Csaba Varga
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark; Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits 2022; 15:795325. [PMID: 35087381 PMCID: PMC8786743 DOI: 10.3389/fncir.2021.795325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) can act on pre- and post-synaptic muscarinic receptors (mAChR) in the cortex to influence a myriad of cognitive processes. Two functionally-distinct regions of the prefrontal cortex-the lateral prefrontal cortex (LPFC) and the anterior cingulate cortex (ACC)-are differentially innervated by ascending cholinergic pathways yet, the nature and organization of prefrontal-cholinergic circuitry in primates are not well understood. Using multi-channel immunohistochemical labeling and high-resolution microscopy, we found regional and laminar differences in the subcellular localization and the densities of excitatory and inhibitory subpopulations expressing m1 and m2 muscarinic receptors, the two predominant cortical mAChR subtypes, in the supragranular layers of LPFC and ACC in rhesus monkeys (Macaca mulatta). The subset of m1+/m2+ expressing SMI-32+ pyramidal neurons labeled in layer 3 (L3) was denser in LPFC than in ACC, while m1+/m2+ SMI-32+ neurons co-expressing the calcium-binding protein, calbindin (CB) was greater in ACC. Further, we found between-area differences in laminar m1+ dendritic expression, and m2+ presynaptic localization on cortico-cortical (VGLUT1+) and sub-cortical inputs (VGLUT2+), suggesting differential cholinergic modulation of top-down vs. bottom-up inputs in the two areas. While almost all inhibitory interneurons-identified by their expression of parvalbumin (PV+), CB+, and calretinin (CR+)-expressed m1+, the localization of m2+ differed by subtype and area. The ACC exhibited a greater proportion of m2+ inhibitory neurons compared to the LPFC and had a greater density of presynaptic m2+ localized on inhibitory (VGAT+) inputs targeting proximal somatodendritic compartments and axon initial segments of L3 pyramidal neurons. These data suggest a greater capacity for m2+-mediated cholinergic suppression of inhibition in the ACC compared to the LPFC. The anatomical localization of muscarinic receptors on ACC and LPFC micro-circuits shown here contributes to our understanding of diverse cholinergic neuromodulation of functionally-distinct prefrontal areas involved in goal-directed behavior, and how these interactions maybe disrupted in neuropsychiatric and neurological conditions.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
11
|
Kinetics and Connectivity Properties of Parvalbumin- and Somatostatin-Positive Inhibition in Layer 2/3 Medial Entorhinal Cortex. eNeuro 2022; 9:ENEURO.0441-21.2022. [PMID: 35105656 PMCID: PMC8856710 DOI: 10.1523/eneuro.0441-21.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 01/19/2023] Open
Abstract
Parvalbumin-positive (Pvalb+) and somatostatin-positive (Sst+) cells are the two largest subgroups of inhibitory interneurons. Studies in visual cortex indicate that synaptic connections between Pvalb+ cells are common while connections between Sst+ interneurons have not been observed. The inhibitory connectivity and kinetics of these two interneuron subpopulations, however, have not been characterized in medial entorhinal cortex (mEC). Using fluorescence-guided paired recordings in mouse brain slices from interneurons and excitatory cells in layer 2/3 mEC, we found that, unlike neocortical measures, Sst+ cells inhibit each other, albeit with a lower probability than Pvalb+ cells (18% vs 36% for unidirectional connections). Gap junction connections were also more frequent between Pvalb+ cells than between Sst+ cells. Pvalb+ cells inhibited each other with larger conductances, smaller decay time constants, and shorter delays. Similarly, synaptic connections between Pvalb+ and excitatory cells were more likely and expressed faster decay times and shorter delays than those between Sst+ and excitatory cells. Inhibitory cells exhibited smaller synaptic decay time constants between interneurons than on their excitatory targets. Inhibition between interneurons also depressed faster, and to a greater extent. Finally, inhibition onto layer 2 pyramidal and stellate cells originating from Pvalb+ interneurons were very similar, with no significant differences in connection likelihood, inhibitory amplitude, and decay time. A model of short-term depression fitted to the data indicates that recovery time constants for refilling the available pool are in the range of 50-150 ms and that the fraction of the available pool released on each spike is in the range 0.2-0.5.
Collapse
|
12
|
Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex. Int J Mol Sci 2021; 23:ijms23010202. [PMID: 35008628 PMCID: PMC8745731 DOI: 10.3390/ijms23010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated—in conjunction with the electron microscopy—that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.
Collapse
|
13
|
Humphries R, Mellor JR, O'Donnell C. Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model. Neuroscience 2021; 489:69-83. [PMID: 34780920 DOI: 10.1016/j.neuroscience.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Acetylcholine has been proposed to facilitate the formation of memory ensembles within the hippocampal CA3 network, by enhancing plasticity at CA3-CA3 recurrent synapses. Regenerative NMDA receptor (NMDAR) activation in CA3 neuron dendrites (NMDA spikes) increase synaptic Ca2+ influx and can trigger this synaptic plasticity. Acetylcholine inhibits potassium channels which enhances dendritic excitability and therefore could facilitate NMDA spike generation. Here, we investigate NMDAR-mediated nonlinear synaptic integration in stratum radiatum (SR) and stratum lacunosum moleculare (SLM) dendrites in a reconstructed CA3 neuron computational model and study the effect of cholinergic inhibition of potassium conductances on this nonlinearity. We found that distal SLM dendrites, with a higher input resistance, had a lower threshold for NMDA spike generation compared to SR dendrites. Simulating acetylcholine by blocking potassium channels (M-type, A-type, Ca2+-activated, and inwardly-rectifying) increased dendritic excitability and reduced the number of synapses required to generate NMDA spikes, particularly in the SR dendrites. The magnitude of this effect was heterogeneous across different dendritic branches within the same neuron. These results predict that acetylcholine facilitates dendritic integration and NMDA spike generation in selected CA3 dendrites which could strengthen connections between specific CA3 neurons to form memory ensembles.
Collapse
Affiliation(s)
- Rachel Humphries
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK; Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Jack R Mellor
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Cian O'Donnell
- Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK; School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Northland Road, Derry/Londonderry BT48 7JL, UK.
| |
Collapse
|
14
|
Prince LY, Bacon T, Humphries R, Tsaneva-Atanasova K, Clopath C, Mellor JR. Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits. PLoS Comput Biol 2021; 17:e1009435. [PMID: 34597293 PMCID: PMC8513881 DOI: 10.1371/journal.pcbi.1009435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/13/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.
Collapse
Affiliation(s)
- Luke Y. Prince
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- Mila, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Travis Bacon
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rachel Humphries
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPRSC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Palacios-Filardo J, Udakis M, Brown GA, Tehan BG, Congreve MS, Nathan PJ, Brown AJH, Mellor JR. Acetylcholine prioritises direct synaptic inputs from entorhinal cortex to CA1 by differential modulation of feedforward inhibitory circuits. Nat Commun 2021; 12:5475. [PMID: 34531380 PMCID: PMC8445995 DOI: 10.1038/s41467-021-25280-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Acetylcholine release in the hippocampus plays a central role in the formation of new memory representations. An influential but largely untested theory proposes that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1. However, feedforward inhibition from entorhinal cortex exhibits greater depression than CA3 resulting in a selective enhancement of excitatory-inhibitory balance and CA1 activation by entorhinal inputs. Entorhinal and CA3 pathways engage different feedforward interneuron subpopulations and cholinergic modulation of presynaptic function is mediated differentially by muscarinic M3 and M4 receptors, respectively. Thus, our data support a role and mechanisms for acetylcholine to prioritise novel information inputs to CA1 during memory formation.
Collapse
Affiliation(s)
- Jon Palacios-Filardo
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK
| | - Matt Udakis
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK
| | - Giles A Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abingdon, Cambridge, UK
- OMass Therapeutics Ltd, The Schrödinger Building, Oxford, UK
| | - Benjamin G Tehan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abingdon, Cambridge, UK
- OMass Therapeutics Ltd, The Schrödinger Building, Oxford, UK
| | - Miles S Congreve
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abingdon, Cambridge, UK
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Alastair J H Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abingdon, Cambridge, UK
| | - Jack R Mellor
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
16
|
Hájos N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits 2021; 15:687257. [PMID: 34177472 PMCID: PMC8222668 DOI: 10.3389/fncir.2021.687257] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells.
Collapse
Affiliation(s)
- Norbert Hájos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
17
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
18
|
Generation of Sharp Wave-Ripple Events by Disinhibition. J Neurosci 2020; 40:7811-7836. [PMID: 32913107 PMCID: PMC7548694 DOI: 10.1523/jneurosci.2174-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Sharp wave-ripple complexes (SWRs) are hippocampal network phenomena involved in memory consolidation. To date, the mechanisms underlying their occurrence remain obscure. Here, we show how the interactions between pyramidal cells, parvalbumin-positive (PV+) basket cells, and an unidentified class of anti-SWR interneurons can contribute to the initiation and termination of SWRs. Using a biophysically constrained model of a network of spiking neurons and a rate-model approximation, we demonstrate that SWRs emerge as a result of the competition between two interneuron populations and the resulting disinhibition of pyramidal cells. Our models explain how the activation of pyramidal cells or PV+ cells can trigger SWRs, as shown in vitro, and suggests that PV+ cell-mediated short-term synaptic depression influences the experimentally reported dynamics of SWR events. Furthermore, we predict that the silencing of anti-SWR interneurons can trigger SWRs. These results broaden our understanding of the microcircuits supporting the generation of memory-related network dynamics. SIGNIFICANCE STATEMENT The hippocampus is a part of the mammalian brain that is crucial for episodic memories. During periods of sleep and inactive waking, the extracellular activity of the hippocampus is dominated by sharp wave-ripple events (SWRs), which have been shown to be important for memory consolidation. The mechanisms regulating the emergence of these events are still unclear. We developed a computational model to study the emergence of SWRs and to explain the roles of different cell types in regulating them. The model accounts for several previously unexplained features of SWRs and thus advances the understanding of memory-related dynamics.
Collapse
|
19
|
Fuenzalida M, Chiu CQ, Chávez AE. Muscarinic Regulation of Spike Timing Dependent Synaptic Plasticity in the Hippocampus. Neuroscience 2020; 456:50-59. [PMID: 32828940 DOI: 10.1016/j.neuroscience.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
Long-term changes in synaptic transmission between neurons in the brain are considered the cellular basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and timing of activity between pre- and post-synaptic cells ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptability in brain network activity during complex behaviors. In this review, we will summarize and discuss different mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory synapses in the hippocampus to shape learning and memory.
Collapse
Affiliation(s)
- Marco Fuenzalida
- Center of Neurobiology and Integrative Physiopathology, Institute of Physiology, Faculty of Science, Universidad de Valparaíso, Chile.
| | - Chiayu Q Chiu
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| | - Andrés E Chávez
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| |
Collapse
|
20
|
Moradi K, Ascoli GA. A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation. Hippocampus 2020; 30:314-331. [PMID: 31472001 DOI: 10.1101/632760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 05/25/2023]
Abstract
The cellular and synaptic architecture of the rodent hippocampus has been described in thousands of peer-reviewed publications. However, no human- or machine-readable public catalog of synaptic electrophysiology data exists for this or any other neural system. Harnessing state-of-the-art information technology, we have developed a cloud-based toolset for identifying empirical evidence from the scientific literature pertaining to synaptic electrophysiology, for extracting the experimental data of interest, and for linking each entry to relevant text or figure excerpts. Mining more than 1,200 published journal articles, we have identified eight different signal modalities quantified by 90 different methods to measure synaptic amplitude, kinetics, and plasticity in hippocampal neurons. We have designed a data structure that both reflects the differences and maintains the existing relations among experimental modalities. Moreover, we mapped every annotated experiment to identified potential connections, that is, specific pairs of presynaptic and postsynaptic neuron types. To this aim, we leveraged Hippocampome.org, an open-access knowledge base of morphologically, electrophysiologically, and molecularly characterized neuron types in the rodent hippocampal formation. Specifically, we have implemented a computational pipeline to systematically translate neuron type properties into formal queries in order to find all compatible potential connections. With this system, we have collected nearly 40,000 synaptic data entities covering 88% of the 3,120 potential connections in Hippocampome.org. Correcting membrane potentials with respect to liquid junction potentials significantly reduced the difference between theoretical and experimental reversal potentials, thereby enabling the accurate conversion of all synaptic amplitudes to conductance. This data set allows for large-scale hypothesis testing of the general rules governing synaptic signals. To illustrate these applications, we confirmed several expected correlations between synaptic measurements and their covariates while suggesting previously unreported ones. We release all data open-source at Hippocampome.org in order to further research across disciplines.
Collapse
Affiliation(s)
- Keivan Moradi
- Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | - Giorgio A Ascoli
- Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
- Bioengineering Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| |
Collapse
|
21
|
Moradi K, Ascoli GA. A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation. Hippocampus 2020; 30:314-331. [PMID: 31472001 PMCID: PMC7875289 DOI: 10.1002/hipo.23148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 01/14/2023]
Abstract
The cellular and synaptic architecture of the rodent hippocampus has been described in thousands of peer-reviewed publications. However, no human- or machine-readable public catalog of synaptic electrophysiology data exists for this or any other neural system. Harnessing state-of-the-art information technology, we have developed a cloud-based toolset for identifying empirical evidence from the scientific literature pertaining to synaptic electrophysiology, for extracting the experimental data of interest, and for linking each entry to relevant text or figure excerpts. Mining more than 1,200 published journal articles, we have identified eight different signal modalities quantified by 90 different methods to measure synaptic amplitude, kinetics, and plasticity in hippocampal neurons. We have designed a data structure that both reflects the differences and maintains the existing relations among experimental modalities. Moreover, we mapped every annotated experiment to identified potential connections, that is, specific pairs of presynaptic and postsynaptic neuron types. To this aim, we leveraged Hippocampome.org, an open-access knowledge base of morphologically, electrophysiologically, and molecularly characterized neuron types in the rodent hippocampal formation. Specifically, we have implemented a computational pipeline to systematically translate neuron type properties into formal queries in order to find all compatible potential connections. With this system, we have collected nearly 40,000 synaptic data entities covering 88% of the 3,120 potential connections in Hippocampome.org. Correcting membrane potentials with respect to liquid junction potentials significantly reduced the difference between theoretical and experimental reversal potentials, thereby enabling the accurate conversion of all synaptic amplitudes to conductance. This data set allows for large-scale hypothesis testing of the general rules governing synaptic signals. To illustrate these applications, we confirmed several expected correlations between synaptic measurements and their covariates while suggesting previously unreported ones. We release all data open-source at Hippocampome.org in order to further research across disciplines.
Collapse
Affiliation(s)
- Keivan Moradi
- Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA (USA)
| | - Giorgio A. Ascoli
- Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA (USA)
- Bioengineering Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA (USA)
| |
Collapse
|
22
|
Brown KA, Filipov NM, Wagner JJ. Dorsoventral-Specific Effects of Nerve Agent Surrogate Diisopropylfluorophosphate on Synaptic Transmission in the Mouse Hippocampus. J Pharmacol Exp Ther 2020; 373:10-23. [DOI: 10.1124/jpet.119.263053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
|
23
|
Suzuki LY, Meehan SK. Verbal working memory modulates afferent circuits in motor cortex. Eur J Neurosci 2018; 48:3117-3125. [PMID: 30218611 DOI: 10.1111/ejn.14154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/01/2018] [Accepted: 09/07/2018] [Indexed: 12/30/2022]
Abstract
Verbal instruction and strategies informed by declarative memory are key to performance and acquisition of skilled actions. We previously demonstrated that anatomically distinct sensory-motor inputs converging on the corticospinal neurons of motor cortex are differentially sensitive to visual attention load. However, how loading of working memory shapes afferent input to motor cortex is unknown. This study used short-latency afferent inhibition (SAI) to probe the effect of verbal working memory upon anatomically distinct afferent circuits converging on corticospinal neurons in the motor cortex. SAI was elicited by preceding a suprathreshold transcranial magnetic stimulus (TMS) with electrical stimulation of the median nerve at the wrist while participants mentally rehearsed a two- or six-digit numeric memory set. To isolate different afferent intracortical circuits in motor cortex SAI was elicited, using TMS involving posterior-anterior (PA) or anterior-posterior (AP) monophasic current. Both PA and AP SAI were significantly reduced during maintenance of the six-digit compared to two-digit memory set. The generalized effect of working memory across anatomically distinct circuits converging upon corticospinal neurons in motor cortex is in contrast to the specific sensitivity of AP SAI to increased attention load. The common response across the PA and AP SAI circuits to increased working memory load may reflect an indiscriminate perisomatic mechanism involved in the voluntary facilitation of desired and/or suppression of unwanted actions during action selection or response conflict.
Collapse
Affiliation(s)
- Lorraine Y Suzuki
- Human Sensorimotor Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Sean K Meehan
- Human Sensorimotor Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Szodorai E, Bampali K, Romanov RA, Kasper S, Hökfelt T, Ernst M, Lubec G, Harkany T. Diversity matters: combinatorial information coding by GABA A receptor subunits during spatial learning and its allosteric modulation. Cell Signal 2018; 50:142-159. [DOI: 10.1016/j.cellsig.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023]
|
25
|
Palacios-Filardo J, Mellor JR. Neuromodulation of hippocampal long-term synaptic plasticity. Curr Opin Neurobiol 2018; 54:37-43. [PMID: 30212713 PMCID: PMC6367596 DOI: 10.1016/j.conb.2018.08.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
Acetylcholine, noradrenaline, dopamine and serotonin all facilitate long-term synaptic plasticity. Neuromodulators facilitate long-term synaptic plasticity by common and divergent mechanisms. Common mechanisms include NMDA receptor facilitation by potassium channel inhibition, gliotransmission and disinhibition. Divergent mechanisms include diversity of disinhibition and temporal and spatial neuromodulator release.
Multiple neuromodulators including acetylcholine, noradrenaline, dopamine and serotonin are released in response to uncertainty to focus attention on events where the predicted outcome does not match observed reality. In these situations, internal representations need to be updated, a process that requires long-term synaptic plasticity. Through a variety of common and divergent mechanisms, it is recently shown that all these neuromodulators facilitate the induction and/or expression of long-term synaptic plasticity within the hippocampus. Under physiological conditions, this may be critical for suprathreshold induction of plasticity endowing neuromodulators with a gating function and providing a mechanism by which neuromodulators enable the targeted updating of memory with relevant information to improve the accuracy of future predictions.
Collapse
Affiliation(s)
- Jon Palacios-Filardo
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
26
|
Szabo GG, Du X, Oijala M, Varga C, Parent JM, Soltesz I. Extended Interneuronal Network of the Dentate Gyrus. Cell Rep 2018; 20:1262-1268. [PMID: 28793251 DOI: 10.1016/j.celrep.2017.07.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Local interneurons control principal cells within individual brain areas, but anecdotal observations indicate that interneuronal axons sometimes extend beyond strict anatomical boundaries. Here, we use the case of the dentate gyrus (DG) to show that boundary-crossing interneurons with cell bodies in CA3 and CA1 constitute a numerically significant and diverse population that relays patterns of activity generated within the CA regions back to granule cells. These results reveal the existence of a sophisticated retrograde GABAergic circuit that fundamentally extends the canonical interneuronal network.
Collapse
Affiliation(s)
- Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Xi Du
- Neuroscience Graduate Program, Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mikko Oijala
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Csaba Varga
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jack M Parent
- Neuroscience Graduate Program, Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [PMID: 28964754 DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
28
|
Dannenberg H, Young K, Hasselmo M. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Front Neural Circuits 2017; 11:102. [PMID: 29321728 PMCID: PMC5733553 DOI: 10.3389/fncir.2017.00102] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
This article provides a review of the effects of activation of muscarinic and nicotinic receptors on the physiological properties of circuits in the hippocampal formation. Previous articles have described detailed computational hypotheses about the role of cholinergic neuromodulation in enhancing the dynamics for encoding in cortical structures and the role of reduced cholinergic modulation in allowing consolidation of previously encoded information. This article will focus on addressing the broad scope of different modulatory effects observed within hippocampal circuits, highlighting the heterogeneity of cholinergic modulation in terms of the physiological effects of activation of muscarinic and nicotinic receptors and the heterogeneity of effects on different subclasses of neurons.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Kimberly Young
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
29
|
Crabtree GW, Park AJ, Gordon JA, Gogos JA. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade. Cell Rep 2017; 17:570-582. [PMID: 27705802 DOI: 10.1016/j.celrep.2016.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/08/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022] Open
Abstract
Proline dehydrogenase (PRODH), which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease.
Collapse
Affiliation(s)
- Gregg W Crabtree
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| | - Alan J Park
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA; Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
30
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
31
|
Hummos A, Nair SS. An integrative model of the intrinsic hippocampal theta rhythm. PLoS One 2017; 12:e0182648. [PMID: 28787026 PMCID: PMC5546630 DOI: 10.1371/journal.pone.0182648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022] Open
Abstract
Hippocampal theta oscillations (4–12 Hz) are consistently recorded during memory tasks and spatial navigation. Despite several known circuits and structures that generate hippocampal theta locally in vitro, none of them were found to be critical in vivo, and the hippocampal theta rhythm is severely attenuated by disruption of external input from medial septum or entorhinal cortex. We investigated these discrepancies that question the sufficiency and robustness of hippocampal theta generation using a biophysical spiking network model of the CA3 region of the hippocampus that included an interconnected network of pyramidal cells, inhibitory basket cells (BC) and oriens-lacunosum moleculare (OLM) cells. The model was developed by matching biological data characterizing neuronal firing patterns, synaptic dynamics, short-term synaptic plasticity, neuromodulatory inputs, and the three-dimensional organization of the hippocampus. The model generated theta power robustly through five cooperating generators: spiking oscillations of pyramidal cells, recurrent connections between them, slow-firing interneurons and pyramidal cells subnetwork, the fast-spiking interneurons and pyramidal cells subnetwork, and non-rhythmic structured external input from entorhinal cortex to CA3. We used the modeling framework to quantify the relative contributions of each of these generators to theta power, across different cholinergic states. The largest contribution to theta power was that of the divergent input from the entorhinal cortex to CA3, despite being constrained to random Poisson activity. We found that the low cholinergic states engaged the recurrent connections in generating theta activity, whereas high cholinergic states utilized the OLM-pyramidal subnetwork. These findings revealed that theta might be generated differently across cholinergic states, and demonstrated a direct link between specific theta generators and neuromodulatory states.
Collapse
Affiliation(s)
- Ali Hummos
- Department of Health Informatics, University of Missouri, Columbia, Missouri, United States of America
- Department of Psychiatry, University of Missouri, Columbia, Missouri, United States of America
| | - Satish S. Nair
- Department of Electrical & Computer Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. J Neurosci 2017; 37:8166-8179. [PMID: 28733354 DOI: 10.1523/jneurosci.3456-16.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.
Collapse
|
33
|
Fajardo-Serrano A, Liu L, Mott DD, McDonald AJ. Evidence for M 2 muscarinic receptor modulation of axon terminals and dendrites in the rodent basolateral amygdala: An ultrastructural and electrophysiological analysis. Neuroscience 2017. [PMID: 28629847 DOI: 10.1016/j.neuroscience.2017.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The basolateral amygdala receives a very dense cholinergic innervation from the basal forebrain that is important for memory consolidation. Although behavioral studies have shown that both M1 and M2 muscarinic receptors are critical for these mnemonic functions, there have been very few neuroanatomical and electrophysiological investigations of the localization and function of different types of muscarinic receptors in the amygdala. In the present study we investigated the subcellular localization of M2 muscarinic receptors (M2Rs) in the anterior basolateral nucleus (BLa) of the mouse, including the localization of M2Rs in parvalbumin (PV) immunoreactive interneurons, using double-labeling immunoelectron microscopy. Little if any M2R-immunoreactivity (M2R-ir) was observed in neuronal somata, but the neuropil was densely labeled. Ultrastructural analysis using a pre-embedding immunogold-silver technique (IGS) demonstrated M2R-ir in dendritic shafts, spines, and axon terminals forming asymmetrical (excitatory) or symmetrical (mostly inhibitory) synapses. In addition, about one-quarter of PV+ axon terminals and half of PV+ dendrites, localized using immunoperoxidase, were M2R+ when observed in single thin sections. In all M2R+ neuropilar structures, including those that were PV+, about one-quarter to two-thirds of M2R+ immunoparticles were plasma-membrane-associated, depending on the structure. The expression of M2Rs in PV+ and PV-negative terminals forming symmetrical synapses indicates M2R modulation of inhibitory transmission. Electrophysiological studies in mouse and rat brain slices, including paired recordings from interneurons and pyramidal projection neurons, demonstrated M2R-mediated suppression of GABA release. These findings suggest cell-type-specific functions of M2Rs and shed light on organizing principles of cholinergic modulation in the BLa.
Collapse
Affiliation(s)
- Ana Fajardo-Serrano
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lei Liu
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
34
|
Silkis IG. Hypothetical neurochemical mechanisms of paradoxical sleep deficiency in Alzheimer’s disease. NEUROCHEM J+ 2017. [DOI: 10.1134/s181971241702012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Differential excitatory control of 2 parallel basket cell networks in amygdala microcircuits. PLoS Biol 2017; 15:e2001421. [PMID: 28542195 PMCID: PMC5443504 DOI: 10.1371/journal.pbio.2001421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/28/2017] [Indexed: 12/29/2022] Open
Abstract
Information processing in neural networks depends on the connectivity among excitatory and inhibitory neurons. The presence of parallel, distinctly controlled local circuits within a cortical network may ensure an effective and dynamic regulation of microcircuit function. By applying a combination of optogenetics, electrophysiological recordings, and high resolution microscopic techniques, we uncovered the organizing principles of synaptic communication between principal neurons and basket cells in the basal nucleus of the amygdala. In this cortical structure, known to be critical for emotional memory formation, we revealed the presence of 2 parallel basket cell networks expressing either parvalbumin or cholecystokinin. While the 2 basket cell types are mutually interconnected within their own category via synapses and gap junctions, they avoid innervating each other, but form synaptic contacts with axo-axonic cells. Importantly, both basket cell types have the similar potency to control principal neuron spiking, but they receive excitatory input from principal neurons with entirely diverse features. This distinct feedback synaptic excitation enables a markedly different recruitment of the 2 basket cell types upon the activation of local principal neurons. Our data suggest fundamentally different functions for the 2 parallel basket cell networks in circuit operations in the amygdala. The perisomatic region of neurons refers collectively to the membrane surface of the cell body or soma, proximal dendrites, and axon initial segment. This is a unique functional domain in which the activity of a neuron can be controlled in the most effective manner. In the cerebral cortex, the perisomatic region of excitatory principal cells is solely innervated by inhibitory interneurons, which can be divided into 3 functional groups: axo-axonic cells and 2 types of basket cells. The reason why 3 distinct types of inhibitory cells are specialized to control principal cell firing is still unknown. To reveal the possible differences in the role of the 3 interneuron types played in cortical operation, we have investigated the organizing principles of synaptic communication between principal cells and inhibitory cell types in the basal nucleus of the amygdala. In this cortical structure, known to be critical for affective behavior, we revealed that the 2 basket cell types avoid innervating each other but contact axo-axonic cells. Both basket cell types have a similar potency to control principal cell firing, but they receive excitatory input from principal cells with entirely distinct features. Our data suggest fundamentally different functions for the 2 parallel basket cell networks in amygdala operation.
Collapse
|
36
|
Betterton RT, Broad LM, Tsaneva‐Atanasova K, Mellor JR. Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors. Eur J Neurosci 2017; 45:1570-1585. [PMID: 28406538 PMCID: PMC5518221 DOI: 10.1111/ejn.13582] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and suppresses both excitatory and inhibitory synaptic transmission, but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad‐spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarisation, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose‐dependent manner by acting primarily through muscarinic M1 receptors.
Collapse
Affiliation(s)
- Ruth T. Betterton
- Centre for Synaptic PlasticitySchool of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | | | - Krasimira Tsaneva‐Atanasova
- Department of MathematicsCollege of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Jack R. Mellor
- Centre for Synaptic PlasticitySchool of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
37
|
Barsy B, Szabó GG, Andrási T, Vikór A, Hájos N. Different output properties of perisomatic region-targeting interneurons in the basal amygdala. Eur J Neurosci 2017; 45:548-558. [PMID: 27977063 DOI: 10.1111/ejn.13498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 01/06/2023]
Abstract
The perisomatic region of principal neurons in cortical regions is innervated by three types of GABAergic interneuron, including parvalbumin-containing basket cells (PVBCs) and axo-axonic cells (AACs), as well as cholecystokinin and type 1 cannabinoid receptor-expressing basket cells (CCK/CB1BCs). These perisomatic inhibitory cell types can also be found in the basal nucleus of the amygdala, however, their output properties are largely unknown. Here, we performed whole-cell recordings in morphologically identified interneurons in slices prepared from transgenic mice, in which the GABAergic cells could be selectively targeted. Investigating the passive and active membrane properties of interneurons located within the basal amygdala revealed that the three interneuron types have distinct single-cell properties. For instance, the input resistance, spike rate, accommodation in discharge rate, or after-hyperpolarization width at the half maximal amplitude separated the three interneuron types. Furthermore, we performed paired recordings from interneurons and principal neurons to uncover the basic features of unitary inhibitory postsynaptic currents (uIPSCs). Although we found no difference in the magnitude of responses measured in the principal neurons, the uIPSCs originating from the distinct interneuron types differed in rise time, failure rate, latency, and short-term dynamics. Moreover, the asynchronous transmitter release induced by a train of action potentials was typical for the output synapses of CCK/CB1BCs. Our results suggest that, despite the similar uIPSC magnitudes originating from the three perisomatic inhibitory cell types, their distinct release properties together with the marked differences in their spiking characteristics may contribute to accomplish specific functions in amygdala network operation.
Collapse
Affiliation(s)
- Boglárka Barsy
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Gergely G Szabó
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Tibor Andrási
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Attila Vikór
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Norbert Hájos
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| |
Collapse
|
38
|
Veres JM, Nagy GA, Hájos N. Perisomatic GABAergic synapses of basket cells effectively control principal neuron activity in amygdala networks. eLife 2017; 6. [PMID: 28060701 PMCID: PMC5218536 DOI: 10.7554/elife.20721] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022] Open
Abstract
Efficient control of principal neuron firing by basket cells is critical for information processing in cortical microcircuits, however, the relative contribution of their perisomatic and dendritic synapses to spike inhibition is still unknown. Using in vitro electrophysiological paired recordings we reveal that in the mouse basal amygdala cholecystokinin- and parvalbumin-containing basket cells provide equally potent control of principal neuron spiking. We performed pharmacological manipulations, light and electron microscopic investigations to show that, although basket cells innervate the entire somato-denditic membrane surface of principal neurons, the spike controlling effect is achieved primarily via the minority of synapses targeting the perisomatic region. As the innervation patterns of individual basket cells on their different postsynaptic partners show high variability, the impact of inhibitory control accomplished by single basket cells is also variable. Our results show that both basket cell types can powerfully regulate the activity in amygdala networks predominantly via their perisomatic synapses. DOI:http://dx.doi.org/10.7554/eLife.20721.001
Collapse
Affiliation(s)
- Judit M Veres
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Gergő A Nagy
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Hájos
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
39
|
Prince LY, Bacon TJ, Tigaret CM, Mellor JR. Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit. Front Synaptic Neurosci 2016; 8:32. [PMID: 27799909 PMCID: PMC5065980 DOI: 10.3389/fnsyn.2016.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval.
Collapse
Affiliation(s)
- Luke Y Prince
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Travis J Bacon
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Cezar M Tigaret
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| |
Collapse
|
40
|
Kerti-Szigeti K, Nusser Z. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells. eLife 2016; 5. [PMID: 27537197 PMCID: PMC4990423 DOI: 10.7554/elife.18426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022] Open
Abstract
Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. DOI:http://dx.doi.org/10.7554/eLife.18426.001
Collapse
Affiliation(s)
- Katalin Kerti-Szigeti
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
41
|
Kohus Z, Káli S, Rovira‐Esteban L, Schlingloff D, Papp O, Freund TF, Hájos N, Gulyás AI. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin. J Physiol 2016; 594:3745-74. [PMID: 27038232 PMCID: PMC4929320 DOI: 10.1113/jp272231] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/21/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS To understand how a network operates, its elements must be identified and characterized, and the interactions of the elements need to be studied in detail. In the present study, we describe quantitatively the connectivity of two classes of inhibitory neurons in the hippocampal CA3 area (parvalbumin-positive and cholecystokinin-positive interneurons), a key region for the generation of behaviourally relevant synchronous activity patterns. We describe how interactions among these inhibitory cells and their local excitatory target neurons evolve over the course of physiological and pathological activity patterns. The results of the present study enable the construction of precise neuronal network models that may help us understand how network dynamics is generated and how it can underlie information processing and pathological conditions in the brain. We show how inhibitory dynamics between parvalbumin-positive basket cells and pyramidal cells could contribute to sharp wave-ripple generation. ABSTRACT Different hippocampal activity patterns are determined primarily by the interaction of excitatory cells and different types of interneurons. To understand the mechanisms underlying the generation of different network dynamics, the properties of synaptic transmission need to be uncovered. Perisomatic inhibition is critical for the generation of sharp wave-ripples, gamma oscillations and pathological epileptic activities. Therefore, we aimed to quantitatively and systematically characterize the temporal properties of the synaptic transmission between perisomatic inhibitory neurons and pyramidal cells in the CA3 area of mouse hippocampal slices, using action potential patterns recorded during physiological and pathological network states. Parvalbumin-positive (PV+) and cholecystokinin-positive (CCK+) interneurons showed distinct intrinsic physiological features. Interneurons of the same type formed reciprocally connected subnetworks, whereas the connectivity between interneuron classes was sparse. The characteristics of unitary interactions depended on the identity of both synaptic partners, whereas the short-term plasticity of synaptic transmission depended mainly on the presynaptic cell type. PV+ interneurons showed frequency-dependent depression, whereas more complex dynamics characterized the output of CCK+ interneurons. We quantitatively captured the dynamics of transmission at these different types of connection with simple mathematical models, and describe in detail the response to physiological and pathological discharge patterns. Our data suggest that the temporal propeties of PV+ interneuron transmission may contribute to sharp wave-ripple generation. These findings support the view that intrinsic and synaptic features of PV+ cells make them ideally suited for the generation of physiological network oscillations, whereas CCK+ cells implement a more subtle, graded control in the hippocampus.
Collapse
Affiliation(s)
- Z. Kohus
- Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
- János Szentágothai, PhD Program of Semmelweis UniversityBudapestHungary
| | - S. Káli
- Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
- Péter Pázmány Catholic UniversityFaculty of Information TechnologyBudapestHungary
| | - L. Rovira‐Esteban
- Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - D. Schlingloff
- Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
- János Szentágothai, PhD Program of Semmelweis UniversityBudapestHungary
| | - O. Papp
- Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - T. F. Freund
- Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
- Péter Pázmány Catholic UniversityFaculty of Information TechnologyBudapestHungary
| | - N. Hájos
- Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - A. I. Gulyás
- Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
42
|
Muller JF, Mascagni F, Zaric V, Mott DD, McDonald AJ. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis. J Comp Neurol 2016; 524:2400-17. [PMID: 26779591 DOI: 10.1002/cne.23959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Franco Mascagni
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Violeta Zaric
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - David D Mott
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Alexander J McDonald
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| |
Collapse
|
43
|
Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC, Broad LM, Fitzjohn SM, Isaac JTR, Mellor JR. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus. Cereb Cortex 2015; 26:414-26. [PMID: 26472558 PMCID: PMC4677984 DOI: 10.1093/cercor/bhv227] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans.
Collapse
Affiliation(s)
- Siobhan H Dennis
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Francesca Pasqui
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Ellen M Colvin
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Helen Sanger
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Adrian J Mogg
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | | | - Lisa M Broad
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Steve M Fitzjohn
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - John T R Isaac
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Jack R Mellor
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
44
|
Septo-hippocampal signal processing: breaking the code. PROGRESS IN BRAIN RESEARCH 2015; 219:103-20. [PMID: 26072236 DOI: 10.1016/bs.pbr.2015.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The septo-hippocampal connections appear to be a key element in the neuromodulatory cholinergic control of the hippocampal neurons. The cholinergic neuromodulation is well established in shifting behavioral states of the brain. The pacemaker role of medial septum in the limbic theta rhythm is demonstrated by lesions and pharmacological manipulations of GABAergic neurons, yet the link between the activity of different septal neuronal classes and limbic theta rhythm is not fully understood. We know even less about the information transfer between the medial septum and hippocampus--is there a particular kind of processed information that septo-hippocampal pathways transmit? This review encompasses fundamental findings together with the latest data of septo-hippocampal signal processing to tackle the frontiers of our understanding about the functional significance of medial septum to the hippocampal formation.
Collapse
|
45
|
Lawrence JJ, Haario H, Stone EF. Presynaptic cholinergic neuromodulation alters the temporal dynamics of short-term depression at parvalbumin-positive basket cell synapses from juvenile CA1 mouse hippocampus. J Neurophysiol 2015; 113:2408-19. [PMID: 25632072 DOI: 10.1152/jn.00167.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022] Open
Abstract
Parvalbumin-positive basket cells (PV BCs) of the CA1 hippocampus are active participants in theta (5-12 Hz) and gamma (20-80 Hz) oscillations in vivo. When PV BCs are driven at these frequencies in vitro, inhibitory postsynaptic currents (IPSCs) in synaptically connected CA1 pyramidal cells exhibit paired-pulse depression (PPD) and multiple-pulse depression (MPD). Moreover, PV BCs express presynaptic muscarinic acetylcholine receptors (mAChRs) that may be activated by synaptically released acetylcholine during learning behaviors in vivo. Using acute hippocampal slices from the CA1 hippocampus of juvenile PV-GFP mice, we performed whole cell recordings from synaptically connected PV BC-CA1 pyramidal cell pairs to investigate how bath application of 10 μM muscarine impacts PPD and MPD at CA1 PV BC-pyramidal cell synapses. In accordance with previous studies, PPD and MPD magnitude increased with stimulation frequency. mAChR activation reduced IPSC amplitude and transiently reduced PPD, but MPD was largely maintained. Consistent with a reduction in release probability (pr), MPD and mAChR activation increased both the coefficient of variation of IPSC amplitudes and the fraction of failures. Using variance-mean analysis, we converted MPD trains to pr functions and developed a kinetic model that optimally fit six distinct pr conditions. The model revealed that vesicular depletion caused MPD and that recovery from depression was dependent on calcium. mAChR activation reduced the presynaptic calcium transient fourfold and initial pr twofold, thereby reducing PPD. However, mAChR activation slowed calcium-dependent recovery from depression during sustained repetitive activity, thereby preserving MPD. Thus the activation of presynaptic mAChRs optimally protects PV BCs from vesicular depletion during short bursts of high-frequency activity.
Collapse
Affiliation(s)
- J Josh Lawrence
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana;
| | - Heikki Haario
- Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Emily F Stone
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana; Department of Mathematical Sciences, University of Montana, Missoula, Montana; and
| |
Collapse
|
46
|
Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 2015; 119:18-33. [PMID: 25595880 DOI: 10.1016/j.nlm.2014.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus.
Collapse
Affiliation(s)
- Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Giancarlo Pepeu
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
47
|
Smucny J, Visani A, Tregellas JR. Could vagus nerve stimulation target hippocampal hyperactivity to improve cognition in schizophrenia? Front Psychiatry 2015; 6:43. [PMID: 25852579 PMCID: PMC4371554 DOI: 10.3389/fpsyt.2015.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/10/2015] [Indexed: 01/26/2023] Open
Affiliation(s)
- Jason Smucny
- Neuroscience Program, University of Colorado Anschutz Medical Campus , Aurora, CO , USA ; Research Service, Denver Veterans Affairs Medical Center , Denver, CO , USA ; Department of Psychiatry, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Adrienne Visani
- Department of Psychiatry, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Jason R Tregellas
- Neuroscience Program, University of Colorado Anschutz Medical Campus , Aurora, CO , USA ; Research Service, Denver Veterans Affairs Medical Center , Denver, CO , USA ; Department of Psychiatry, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| |
Collapse
|
48
|
Yi F, DeCan E, Stoll K, Marceau E, Deisseroth K, Lawrence JJ. Muscarinic excitation of parvalbumin-positive interneurons contributes to the severity of pilocarpine-induced seizures. Epilepsia 2014; 56:297-309. [PMID: 25495999 DOI: 10.1111/epi.12883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 01/20/2023]
Abstract
OBJECTIVE A common rodent model in epilepsy research employs the muscarinic acetylcholine receptor (mAChR) agonist pilocarpine, yet the mechanisms underlying the induction of pilocarpine-induced seizures (PISs) remain unclear. Global M1 mAChR (M1 R) knockout mice are resistant to PISs, implying that M1 R activation disrupts excitation/inhibition balance. Parvalbumin-positive (PV) inhibitory neurons express M1 Rs, participate in cholinergically induced oscillations, and can enter a state of depolarization block (DB) during epileptiform activity. Here, we test the hypothesis that pilocarpine activation of M1 Rs expressed on PV cells contributes to PISs. METHODS CA1 PV cells in PV-CRE mice were visualized with a floxed YFP or hM3Dq-mCherry adeno-associated virus, or by crossing PV-CRE mice with the RosaYFP reporter line. To eliminate M1 Rs from PV cells, we generated PV-M1 knockout (KO) mice by crossing PV-CRE and floxed M1 mice. Action potential (AP) frequency was monitored during application of pilocarpine (200 μm). In behavioral experiments, locomotion and seizure symptoms were recorded in wild-type (WT) or PV-M1 KO mice during PISs. RESULTS Pilocarpine significantly increased AP frequency in CA1 PV cells into the gamma range. In the continued presence of pilocarpine, a subset (5/7) of PV cells progressed to DB, which was mimicked by hM3Dq activation of Gq-receptor signaling. Pilocarpine-induced depolarization, AP firing at gamma frequency, and progression to DB were prevented in CA1 PV cells of PV-M1 KO mice. Finally, compared to WT mice, PV-M1 KO mice were associated with reduced severity of PISs. SIGNIFICANCE Pilocarpine can directly depolarize PV+ cells via M1 R activation, but a subset of these cells progress to DB. Our electrophysiologic and behavioral results suggest that this mechanism is active during PISs, contributing to a collapse of PV-mediated γ-aminobutyric acid (GABA)ergic inhibition, dysregulation of excitation/inhibition balance, and increased susceptibility to PISs.
Collapse
Affiliation(s)
- Feng Yi
- COBRE Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, U.S.A; Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana, U.S.A
| | | | | | | | | | | |
Collapse
|
49
|
Stone E, Haario H, Lawrence JJ. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses. Math Biosci 2014; 258:162-75. [PMID: 25445738 DOI: 10.1016/j.mbs.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/31/2023]
Abstract
In this paper we use a simple model of presynaptic neuromodulation of GABA signaling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Markov Chain Monte Carlo (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation.
Collapse
Affiliation(s)
- Emily Stone
- Department of Mathematical Sciences, The University of Montana Missoula, MT 59812, USA.
| | - Heikki Haario
- Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland
| | - J Josh Lawrence
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana Missoula, MT 59812, USA
| |
Collapse
|
50
|
Hofer KT, Kandrács Á, Ulbert I, Pál I, Szabó C, Héja L, Wittner L. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro. Hippocampus 2014; 25:169-86. [PMID: 25209976 DOI: 10.1002/hipo.22361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
Hippocampal sharp wave-ripples (SPW-Rs) occur during slow wave sleep and behavioral immobility and are thought to play an important role in memory formation. We investigated the cellular and network properties of SPW-Rs with simultaneous laminar multielectrode and intracellular recordings in a rat hippocampal slice model, using physiological bathing medium. Spontaneous SPW-Rs were generated in the dentate gyrus (DG), CA3, and CA1 regions. These events were characterized by a local field potential gradient (LFPg) transient, increased fast oscillatory activity and increased multiple unit activity (MUA). Two types of SPW-Rs were distinguished in the CA3 region based on their different LFPg and current source density (CSD) pattern. Type 1 (T1) displayed negative LFPg transient in the pyramidal cell layer, and the associated CSD sink was confined to the proximal dendrites. Type 2 (T2) SPW-Rs were characterized by positive LFPg transient in the cell layer, and showed CSD sinks involving both the apical and basal dendrites. In both types, consistent with the somatic CSD source, only a small subset of CA3 pyramidal cells fired, most pyramidal cells were hyperpolarized, while most interneurons increased firing rate before the LFPg peak. Different neuronal populations, with different proportions of pyramidal cells and distinct subsets of interneurons were activated during T1 and T2 SPW-Rs. Activation of specific inhibitory cell subsets-with the possible leading role of perisomatic interneurons-seems to be crucial to synchronize distinct ensembles of CA3 pyramidal cells finally resulting in the expression of different SPW-R activities. This suggests that the hippocampus can generate dynamic changes in its activity stemming from the same excitatory and inhibitory circuits, and so, might provide the cellular and network basis for an input-specific and activity-dependent information transmission.
Collapse
Affiliation(s)
- Katharina T Hofer
- Department of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|